=i 25-50-07-03

The Journal of Korean Institute of Communications and Information Sciences ’25-07 Vol.50 No.07
https://doi.org/10.7840/kics.2025.50.7.1011

Performance Measurement of a Real-Time Optical Camera
Communication System on an Edge Server

Tae Hyun Kim®, Yeong Min Jang’

ABSTRACT

Optical camera communication (OCC), a branch of optical wireless communication, provides rapid,
energy-efficient, and secure data transmission. This study introduces a real-time OCC performance measurement
platform tailored for resource-limited edge devices. The system uses a two-dimensional on-off keying multiple
input multiple output (2D OOK-MIMO) modulation technique to decode data from an 8 x 8 LED grid,
processed on an edge server without GPU enhancement. Latency is evaluated using timestamp-based delay
analysis to measure system performance. The performance measurement results indicate that the 10 Hz flicker
rate yields low latency and bit error rates (BERs), thereby enhancing real-time performance. However, the 16
Hz flicker rate increases latency variability and BERs, reducing the dependability of the results without
multi-processing programming. By contrast, multiprocessing, which utilizes the entire processor of the edge
server, substantially improves the average latency from 94.1 ms to 30.09 ms. This performance improvement is
achieved by parallelizing the frame acquisition, object detection, and data decoding stages, allowing the system
to handle incoming frames concurrently. Notwithstanding computing resource limitations, the proposed

framework sustains real-time performance, facilitating low-latency OCC deployment.

Key Words : Optical camera communication, Edge computing, Realtime system, Latency

I. Introduction ufacturing, delay time measurement is crucial for de-
termining system performance. Delay, defined as the
Optical wireless communication, particularly opti- time difference between message transmission and da-
cal camera communication (OCC), has garnered atten- tabase insertion, directly impacts decision-making
tion owing to advantages such as high-speed trans- processes and operational efficiency™. In OCC sys-
mission, low energy consumption, and high se- tems, precisely measuring delay is essential for ensur-
curity™), OCC uses a CMOS camera to receive and ing low-latency communication and stable perform-

decode data transmitted via modulated light, offering ance in edge-based environments.

natural immunity to electromagnetic interference and
improved safety for human eyes. These character-
istics render OCC an appealing option for applications
that require reliable, secure, and low-latency
communication.

In real-time systems such as industrial IoT for man-

However, OCC deployment on edge devices pres-
ents several challenges. Edge servers typically operate
under limited processing power and lack dedicated
GPUs, thereby complicating latency optimization.
Additionally, OCC systems with high LED refresh

rates often experience high latency variability and bit

% This study was supported by the Korea Research Institute for Defense Technology Planning and Advancement (KRIT) grant
funded by the Korean Government (Defense Acquisition Program Administration (DAPA)) (KRIT-CT-23-041, LiDAR/RADAR
Supported Edge Al-based Highly Reliable IR/UV FSO/OCC Specialized Research Laboratory, 2024).

+ First Author : School of Electronic Engineering, Kookmin University, ykj8806@kookmin.ac.kr, &-*§3]%]

Corresponding Author : School of Electrical Engineering, Kookmin University, yjang@kookmin.ac.kr, 4131

T3 1 202504-089-B-RU, Received April 15, 2025; Revised May 13, 2025; Accepted May 20, 2025

1011

mailto:ykj8806@kookmin.ac.kr
mailto:yjang@kookmin.ac.kr

The Journal of Korean Institute of Communications and Information Sciences '25-07 Vol.50 No.07

error rates (BER), further complicating real-time
performance.

To address these issues, this study introduces an
improved OCC performance measurement platform
optimized for edge computing environments. The plat-
form incorporates a two-dimensional on-off keying
multiple input multiple output (2D OOK-MIMO)
modulation technique for data decoding from an 8 X
8 LED grid and applies parallel programming to max-
imize the processing potential of the edge server’s
CPU. Parallel processing significantly reduces the
average latency from approximately 94.1 ms to 30.09
ms only. This improvement enables the platform to
maintain reliable performance even under re-
source-limited conditions.

This study additionally investigates the trade-offs
between two LED refresh rates, i.e., 10 Hz and 16
Hz, analysing the impact on latency and BER. The
obtained results reveal that the systems running at 10
Hz performed consistently better in terms of both la-
tency and BER, whereas the 16 Hz configurations ex-
hibited high latency variability and error rates. Despite
these challenges, the enhanced platform demonstrated
substantial performance gains, confirming the effec-
tiveness of the proposed parallel programming
approach.

The remainder of this paper is organized as follows.
Section 2 outlines the proposed method, detailing the
OCC platform architecture and parallel programming
implementation. Section 3 describes the experimental
setup, including the hardware specifications and test-
ing conditions. Section 4 presents the results and dis-
cussion in which performance improvements and
trade-offs are analysed. Finally, Section 5 concludes
the study with the key findings and potential direc-
tions for future work.

II. Proposed Method

In this section, we present the architecture of the
OCC measurement platform and the enhanced meth-
odology that uses parallel programming to improve

system performance.

1012

2.1 Optical Camera Communication System

The system employs a 2D MIMO"' modulation
technique to encode data for transmission through the
8 x 8 LED matrix. Each LED within the matrix repre-
sents a binary state, i.e., an ON state for binary 1’
and an OFF state for binary ’0.” By combining these
binary states across multiple LEDs, the system simul-
taneously transmits multiple data bits. This modu-
lation technique is designed to improve data through-
put while ensuring that the signal patterns are easily
recognizable by the receiving camera.

The camera, operating at 60 frames per second
(fps), continuously captures video frames that contain
LED modulation patterns. Each frame is analyzed in
real time by an edge device to decode the transmitted
data. This decoding process involves detecting in-
dividual LED states, reconstructing the original binary
data stream, and aligning the received data with the
expected transmission sequence.

To precisely measure latency, each data packet car-
ries three distinct timestamps that track the movement
of the data through the system. The encoder time-
stamp is generated at the LED matrix during trans-
mission to determine the precise moment the data
leaves the transmitter. The decoder timestamp is re-
corded at the point at which the camera captures and
successfully decodes the transmitted data. Finally, the
database timestamp is added when the decoded data

is written to the database.

2.2 Parallel Programming

The OCC monitoring platform faced significant
performance issues during its initial development. The
primary bottleneck was the sequential image process-
ing pipeline where frame acquisition, object detection,
and data decoding were implemented in series. This
serial design generated delays, especially when han-
dling multiple frames per second.

To resolve this issue, parallel programming was in-
troduced to utilize the full capabilities of the edge de-
vice’s Intel Core i5-8250U CPU, which features four
cores and eight threads. The system achieved sig-
nificant performance gains by distributing the OCC
pipeline across independent concurrent threads, simul-

taneously processing different stages of data handling.

=i / Performance Measurement of a Real-Time Optical Camera Communication System on an Edge Server

Without parallel processing

Frame Ohjeet Data
acquisition detection decoding

Send image
for processing | Send data tor
encoding

.

process
| gl

L

T

With parallel processing

Wail [or whole

—

Frame Object Data
acquisition detection decoding
BOrE 0 pead from
buller

Read [rom
bulTer

Fig. 1. Sequence diagram of OCC processes.

The improved design separates the data flow in the
system into three parallelized tasks. The first task in-
volves frame acquisition, in which a dedicated thread
continuously captures frames from the camera. This
ensures that the system maintains a consistent flow
of incoming data without missing frames. Prioritizing
this task proves crucial in minimizing data loss under
high-traffic conditions.

The second task is object detection, where a sepa-
rate thread identifies and localizes the LED source
within each captured frame. This detection result is
passed efficiently to the next stage without holding
up the acquisition process. Parallel execution here en-
sures that detection keeps pace with incoming frames.

The third task involves data decoding, which inter-
prets the spatial-temporal changes of the detected
LED to reconstruct the original binary data. By as-
signing it to an independent thread, the system avoids
decoding bottlenecks and ensures responsive, re-
al-time operation.

Previous studies have explored techniques to im-
prove decoding reliability in OCC systems, such as
accumulating pixel rows within the region of interest

to enhance signal quality and reduce bit errors'®.

While effective in improving BER, these approaches
generally increase per-frame processing complexity
and are less focused on system responsiveness. In con-
trast, the method proposed in this work emphasizes
architectural improvements in the receiver by im-
plementing parallel processing frame acquisition, ob-
ject detection, and data decoding—across independent
threads. This design choice in our paper prioritizes
real-time performance and lower latency, making it
more suitable for deployment on edge devices where
responsiveness is critical.

To further enhance efficiency, several key opti-
mizations were introduced in the parallel program-
ming model. Thread prioritization was implemented
to ensure that the frame acquisition thread maintained
the highest priority, preventing data loss during in-
tense activity. Additionally, batch processing was
adopted for the object detection and decoding stages,
during which multiple frames were grouped and proc-
essed together to reduce overhead. This minimized the
delays owing to frequent thread switching. Finally, a
shared memory buffer system was employed to facili-
tate rapid data exchange between threads, reducing the
requirement for excessive data copying and improving
overall throughput'™.

2.3 Latency Measurement

To evaluate the improved performance of the sys-
tem, latency was assessed using the embedded time-
stamps described earlier. The latency metrics were an-
alyzed using the following formulas to measure both
responsiveness and stability.

Latency was measured by comparing the timestamp
of data transmission at the OCC transmitter with that
of data reception at the OCC receiver. In IoT manu-
facturing systems, the reception timestamp is recorded
and embedded in the payload, and the timestamps of

reception and database insertion are logged™.

L, =D+ Dy (1)

N
> L @
k=1

=

z:

1013

The Journal of Korean Institute of Communications and Information Sciences "25-07 Vol.50 No.07

o = (ﬁ)i@k— Dy ©)
k=1
1 N
J= 5= D.Micrs Ll @
k=1

Equation (1) calculates the latency of the system;
D¢ is the delay from the transmitter to the receiver,
i.e., the time difference between the encoder and de-
coder timestamps, and Dy is the delay from the re-
ceiver to the database, i.e., the time difference be-
tween the decoder and database timestamps. The total
latency for each transmission is denoted as Ly, repre-
senting the end-to-end delay observed in the Ath
transmission.

Equation (2) is used to measure the average latency
L, which represents the mean value of latency over
N transmissions. It is computed as the arithmetic aver-
age of the individual latency values Lk, where & de-
notes the index of each transmission. This average
serves as a baseline metric for evaluating the typical
delay experienced in the system during normal
operation.

Equation (3) uses the standard deviation 0y, of the
latency to accurately measure the variability of the
latency. It is derived by taking the square root of the
variance of the latency values, offering insight into
how much the latency deviates from the mean latency
L. A smaller 0. indicates more consistent system per-
formance, whereas a larger value implies higher fluc-
tuation and less predictability in communication
delays.

Equation (4) measures the average jitter] to de-
termine the latency variation between consecutive
transmissions. It is calculated as the mean of the abso-
lute differences between successive latency values. By
quantifying the temporal variation in delay between
adjacent data packets, jitter provides a critical metric
for assessing real-time system stability, particularly in
time-sensitive applications where consistent delivery

intervals are essential.

1014

. Experimental Setup

In this section, we present the architecture of the
OCC performance measurement platform and the en-
hanced methodology that uses parallel programming

to improve system performance.

3.1 Hardware Specifications

The system was deployed on a resource-constrained
edge server to reflect realistic deployment conditions.
The edge device employed was a JECS-8250B-i5
mini-PC, equipped with an Intel Core 15-8250U CPU
running at 1.6 GHz, featuring four cores and eight
threads. The device was configured using 16 GB of
DDR4 RAM and operated on Windows 10 (64-bit).
The edge device lacked GPU support; therefore, all
processing tasks relied entirely on CPU resources, ren-
dering this device an ideal platform for testing the
effectiveness of parallel programming in overcoming
hardware limitations.

The OCC transmitter employed an 8 x 8 LED ma-
trix, configured to operate at two distinct flicker rates,
i.e.,, 10 Hz (100 ms cycle) and 16 Hz (60 ms cycle).
These refresh rates were selected to analyze the im-
pact of flicker speed on latency and BER
performance. Each flicker rate test was conducted sep-
arately to assess system behaviors across different da-
ta transmission speeds. In addition, a 60 Hz flicker
rate was introduced to evaluate the system under
eye-safe, flicker-free conditions that align with re-
al-world deployment scenarios. All experiments are
conducted in a fixed 3 meter distance.

This hardware configuration was selected to mimic

Table 1. System device specifications

Items Sort
Edge server JECS-8250B-i5
CPU Intel Core i5-8250U 1.6 GHz
RAM 16 GB
Operating system Windows 10
Camera IDS U3-3040CP
LED matrix 8x8
Modulation 2D OOK-MIMO
Programming language Python

=i / Performance Measurement of a Real-Time Optical Camera Communication System on an Edge Server

practical edge computing environments in which hard-
ware resources are limited and performance opti-

mization is crucial.

3.2 Testing Scenarios

A series of controlled performance tests were con-
ducted to evaluate the effectiveness of the enhanced
OCC platform and the impact of parallel
programming. These tests were designed to measure
the latency, stability, and data accuracy of the system
across different operating conditions. The hardware
used and the setup are illustrated in Figure 2. By con-
ducting repeatable tests under various configurations,
the improvements achieved owing to parallel process-
ing were isolated.

The testing procedure incorporated two key LED
refresh rates, i.e., 10 Hz (100 ms cycle) and 16 Hz
(60 ms cycle). These refresh rates were chosen to re-
flect typical OCC transmission settings and compare
the performances under slow and fast flicker cycles.
The tests were conducted twice, i.e., using the original
sequential processing model and when implementing
the improved parallel processing. This direct compar-
ison clearly identified the influence of parallel
programming.

To ensure consistency and reduce variability, each
test configuration was implemented across four con-
secutive runs. Each run lasted for 5 min, yielding
thousands of data samples for each test case. This ex-
tended test duration was crucial for capturing mean-
ingful performance trends while minimizing the im-
pact of outliers.

In the parallel programming configuration, multiple

threads were deployed to simultaneously execute dis-

LED Matrix

L

Mini PC

Fig. 2. Experimental setup of the OCC system.

tinct tasks in the OCC processing pipeline. A dedi-
cated thread was responsible for frame acquisition, en-
suring continuous and uninterrupted capture of video
frames from the camera. Concurrently, a separate
thread performed object detection to localize the LED
source within each frame as they arrived. In parallel,
another decoding thread processed the detected object
data to reconstruct the transmitted binary information.
This multi-threaded approach allowed each critical
task to operate independently, significantly reducing
bottlenecks and improving system responsiveness and
throughput.

The same hardware and environmental conditions
were maintained during the sequential and parallel
processing tests to ensure effective comparison. The
tests were conducted in a controlled lighting environ-
ment to minimize noise and reflections that could af-
fect LED detection accuracy. Additionally, the camera
was positioned at a fixed distance from the LED ma-
trix to maintain consistent image clarity and
field-of-view throughout the test runs.

By implementing parallel programming in the im-
proved system, the tests demonstrated measurable im-
provements in latency reduction, stability, and data
integrity. The results of these tests provided clear evi-
dence of the effectiveness of parallel programming in
addressing the performance limitations encountered in
the original sequential design.

Figure 3 displays the flowchart for measuring sys-
tem performance, with a total of three timestamps in-
cluded, i.e., the encoder, decoder, and database

timestamps. To ensure accurate time representation,

5 Data Insert encoder| :
bt Data 1 . - :
= encoding timestamp
= |
W
= . OO0K
£ pommmmmnd LED Matrix | -
B ! mapping
U

; Object Data
=:| Camera | .] .
=+ detection decoldmg
W: :
E; Insert database Store to | |Insert decoder|:
| timestamp database timestamp
Fig. 3. Flowchart for measuring system performance.

1015

The Journal of Korean Institute of Communications and Information Sciences "25-07 Vol.50 No.07

the ISO 8601 standard was used. For example, the
date “2024-12-25” specifies the year, month, and day,
whereas the time “12:00:00.500” includes hours, mi-
nutes, seconds, and milliseconds (500 ms is the frac-
tional part).

Algorithm 1 summarizes the step-by-step process-
ing flow of the proposed multithreaded receiver.

As shown in Figure 3, the system is structured into
three parallel threads: frame acquisition, object de-
tection, and data decoding, with data passed through
thread-safe queues to ensure synchronization and
stability. By separating these tasks into parallel
threads and managing them through queue-based com-
munication, the system achieves low latency and sta-
ble performance, even on devices with limited com-

puting resources.

Algorithm 1 Parallel OCC Receiver with Frame Acquisition, Detection, and
Decoding

: Input: Live camera frames at 60 fps

: Output: Decoded data packets with timestamps

: Initialize buffers: @ (acquisition to detection), Q2 (detection to decoding)
: Launch three parallel threads:

: Frame_Acquisition

Object Detection

: Data Decoding

: procedure FRAME_ACQUISITION

while system is running do

10: Capture frame from camera

11: Timestamp frame and store in Q1

12: end while

13: end procedure

14: procedure OBJECT_DETECTION

TR S S

©

15: while system is running do

16: Read frame from ¢y

17: Detect LED region and extract binary pattern
18: Store result in Q2

19: end while

20: end procedure
21: procedure DATA_DECODING

22: while system is Tunning do

23: Read binary data from Q2

24: Detect preamble and decode payload
25: Apply Reed-Solomon and CRC check
26: Save decoded result with timestamp
27 end while

28: end procedure

3.3 Performance Metrics

To comprehensively evaluate system performance,
several key metrics were measured throughout the
testing process. Latency measurements were priori-
tized, with three specific metrics used to assess re-
sponsiveness and consistency.

Mean latency represented the average delay experi-
enced across all data packets during each test run. This
metric clearly measured the overall system
responsiveness.

To assess variability in latency performance, the

1016

standard deviation metric was calculated, clarifying
the consistency in the system’s performance over
time. Additionally, jitters were measured to evaluate
short-term fluctuations in latency between consecutive
data packets.

In addition to latency-related metrics, the BER was
analyzed to assess data accuracy. The BER was calcu-
lated by comparing the decoded data against the origi-
nal transmitted data, providing a clear indicator of

transmission integrity.
IV. Experiment and Results

4.1 Latency Analysis

Based on the previous scenario, we collected data.
We consecutively ran the data collection scenario 7
times using three refresh rates, i.e., 10 Hz, 16 Hz,
and 60 Hz, of the LED matrix. The limited computing
power of the edge device limited the image processing
capabilities; therefore, we determined whether the re-
duced refresh rate of the LED matrix affected the la-
tency of the device. Additionally, we obtained results
from the device with parallel processing.

The dataset labels in Table 2 refer to different test
conditions. 10Hz-1 and 10Hz-2 are two separate runs
of the system using a 10 Hz LED refresh rate, while
16Hz-1 and 16Hz-2 were recorded at 16 Hz. The “-1”
and “-2” simply indicate repeated trials to check for
consistency in performance. A third test was con-
ducted at 60 Hz, reflecting a more typical flicker rate
for user-facing applications. The datasets labeled
P-10Hz and P-60Hz correspond to test using parallel

processing for frame acquisition, object detection, and

Table 2. Measurement results demonstrating system
performance

Dataset 1\[4;:]11 Standarﬁn (Si]eviation J[i;t:]r BER
10Hz-1 94.1 45.6 59.3 0.08
10Hz-2 100.1 47 62.2 0.1
16Hz-1 | 140.4 50.8 68.4 0.23
16Hz-2 148.3 50.9 67.8 0.34
60Hz 161.7 54.2 68.6 0.45
P-10Hz | 30.09 11.48 12.67 | 0.002
P-60Hz 33.2 13.0 14.9 | 0.004

=i / Performance Measurement of a Real-Time Optical Camera Communication System on an Edge Server

data decoding. These combinations allow for a clear
evaluation of both flicker rate and processing archi-
tecture on system performance.

The latency distribution is further illustrated in
Figure 4, which depicts the frequency of the observed
latency values across all datasets. As shown in the
figure, the parallel processing system consistently
maintains lower latency values compared to the
non-parallelized counterparts. In addition, Figure 5
presents a boxplot comparing latency variability.
These data highlight that the 10 Hz datasets demon-
strated more stable latency performance than the 16
Hz and 60 Hz counterparts. Parallel processing further
improved latency consistency, with the parallelized
system exhibiting the narrowest distribution range and
lowest median latency.

The 10 Hz systems exhibit a lower BER than the
16 Hz and 60 Hz systems, as shown in Figure 6. A
clear correlation existed between increasing latency
and worsening error performance, possibly owing to

the timing mismatch between the LED and the camera

Normalized Latency Histogram Across Datasets

0.08 10Hz-1
10Hz-2

2 0.07 16Hz-1
g 18\!'{1'2
60Hz
0.06
=] P-10Hz

P-60Hz

100 150 200
Latency (ms)

Fig. 4. Histogram of latency across datasets.

Latency Distribution Comparison

300

250

Latency (ms)
g & 8

o
S

= =

10Hz-1 10Hz-2 16Hz-1 16Hz-2 60Hz P-10Hz P-60Hz
Dataset

Fig. 5. Boxplot of latency for the entire datasets.

Latency Metrics vs BER

10°

Mean Latency
Standard Deviation
= g0 WM Jitter i,
—e— BER 2
E =
@ 10 82
.E 60 8
S &
2 —
40 o
g e
— 20 m
1073
10Hz-1 10Hz-2 16Hz-1 16Hz-2 60Hz P-10Hz P-60Hz
Dataset
Fig. 6. Comparing the BER and latency metrics.
Mean Latency
160
140
120
0
E 100
9
o 80
Q
K]
3 60
40
20
10Hz1 10Hz2 16Hz1 16Hz2 60Hz P-10Hz P-60Hz

Dataset

Fig. 7. Comparing mean latency

and the instability of the edge device with limited
processing power.

In conclusion, the results received were
satisfactory. The best and worst performances corre-
sponded to average latencies of 30.09 ms and 161.7
ms, respectively. Implementing OCC in the edge de-
vice is still feasible to obtain real-time system

performance.

4.2 Prior OCC Systems Comparison

To highlight the practical advantages of the pro-
posed system, a direct comparison is made with two
representative OCC receivers from the literature:
Sitanggang et al.”! and Zhang et al.'®l,

Table 3 presents a comparison between the pro-
posed system and two representative OCC receivers
from previous studies. While all three systems use 2D
OOK modulation, they differ in decoding strategy,
hardware requirements, and overall performance. The
proposed system delivers a data rate of 11.52 kbps
with a low mean latency of 30.09 ms and a BER of

1017

The Journal of Korean Institute of Communications and Information Sciences "25-07 Vol.50 No.07

Table 3. Comparison of results with prior OCC systems

Pr d .
Metrics S;;:z Sitanggang et| Zhang et al.
. 1. [5] (2023 6] (2021
(this work) | [51 (2023)| [6] (2021)
Modulation 2D 2D OOK
scheme | OOK-MIMO | OOK-MIMO
Parallel
Decoding ara e. CNN-based Sequential
programming . .
method . decoding sampling
pipeline
Hardware | Mini pc with | GPU-equipped| Standard
requirement| CPU only pc desktop pc
Distance 3m Sm 1m
Data rate | 11.52 kbps 3.84 kbps 5 kbps
can 30.09 ms | Not specified | Not specified
latency
BER 0.0020 ~0.020 0.0038

0.0020, all achieved using a CPU-only mini PC. In
contrast, Sitanggang et al.”! use a CNN-based decoder

1O rely

that requires GPU acceleration, and Zhang et a
on sequential sampling with a standard desktop PC,
both resulting in lower throughput or higher system
demands. These results demonstrate that the proposed
approach is well-suited for real-time OCC applications

on resource-constrained edge devices.

4.3 Standard Deviation

Standard deviation analysis was conducted to as-
sess the variability of latency results, thereby reveal-
ing system stability. As shown in Figure 8, the 10
Hz datasets exhibit lower standard deviation values
than the 16 Hz and 60 Hz datasets. This indicates
that lower flicker rates increased the predictability and

consistency of latency performance.

Standard Deviation

o
=]

'
S

w
S

N
S

Standard Deviation (ms)

o

10Hz-1 10Hz-2 16Hz-1 16Hz-2 60Hz P-60Hz

Dataset

P-10Hz

Fig. 8. Comparing standard deviations.

1018

The most notable improvement was observed in the
parallel processing configuration in which the stand-
ard deviation decreased to 11.48 ms only, a substantial
reduction with respect to the values obtained from the
original system. This reduction highlights the im-
proved stability of the system, as parallel processing
effectively eliminated the fluctuations caused by proc-

essing delays.

4.4 Jitter

Jitter measurements were obtained to evaluate
short-term latency fluctuations, which are particularly
important for real-time systems. As presented in
Figure 9, the jitter values follow a similar pattern to
the standard deviation results. The 10 Hz datasets ex-
hibited less jitter than the 16 Hz and 60 Hz datasets,
confirming that low flicker rates increased perform-
ance stability.

As mentioned previously, the introduction of paral-
lel processing significantly improved system stability.
The jitter value of the parallelized system was reduced
to 12.67 ms, a considerable improvement over the
highest jitter value of 68.6 ms recorded using the 60
Hz dataset. This result emphasizes the impact of paral-
lel programming in maintaining consistent response

times during continuous data flow.

Jitter

Jitter (ms)

10Hz-1 10Hz-2 16Hz-1 P-10Hz P-60Hz

16Hz2 60Hz
Dataset

Fig. 9. Comparison of the iitter values.

4.5 Bit Error Rate

The BER performances of the systems were de-
termined to assess the reliability of data transmission
across all configurations. As depicted in Figure 10,
the 10 Hz datasets maintain lower BER values than
the 16 Hz and 60 Hz counterparts. This aligns with

=i / Performance Measurement of a Real-Time Optical Camera Communication System on an Edge Server

Bit Error Rate (BER)

-
=)
d

BER (log scale)

5]
&

10Hz1 10Hz2 16Hz1 16Hz2 60Hz P-10Hz P-60Hz
Dataset

Fig. 10. Comparison of the BER values.

expectations, as low refresh rates improved synchroni-
zation between the LED matrix and the frame capture
process of the camera.

However, the greatest improvement in BER per-
formance was observed in the parallelized system,
with a BER of 0.002, drastically lower than any of
the non-parallelized configurations. This result sug-
gests that the reduced latency and improved timing
stability directly improved synchronization and mini-

mized bit errors.

V. Conclusion

This study introduced an enhanced OCC perform-
ance measurement platform to overcome the perform-
ance limitations encountered in resource-constrained
edge computing environments. Parallel programming
techniques enable the system to effectively address the
latency and stability issues observed in the initial
design.

The most significant outcome of this study is the
substantial reduction in system latency. In the original
design, the lowest and highest latencies recorded were
94.1 and 161.7 ms using the 10Hz-1 and 60 Hz data-
sets, respectively. After implementing parallel proc-
essing, the improved system achieved an impressive
latency reduction, with an average latency of 30.09
ms. This marks a 68% reduction compared to the low-
est latency of the non-parallelized system and demon-
strates a remarkable improvement of around 81% in
relation to the highest latency recorded. The sub-
stantial reduction in latency confirms the effectiveness

of parallel programming in optimizing CPU utilization
and eliminating processing bottlenecks without relying
on GPU acceleration.

Overall, this study demonstrates that integrating
parallel programming into OCC systems offers a pow-
erful solution for improving latency and stability and
maintaining reliable data accuracy. Owing to the re-
duced latency from 94.1 ms (best-case) and 161.7 ms
(worst-case) to 30.09 ms only with a BER of 0.002,
the improved system effectively satisfies the demands
of real-time OCC performance in resource-constrained
environments.

Future work should explore adaptive parallelization
techniques that dynamically allocate CPU resources
based on data load conditions to improve efficiency
under variable traffic intensity. Additionally, explor-
ing alternative image processing libraries or hardware
acceleration can further reduce latency. Furthermore,
adaptive flicker rate algorithms may provide a means
to dynamically adjust LED refresh rates to balance

latency reduction with data accuracy.

References

[11 A. Celik, I. Romdhane, G. Kaddoum, and A.
M. Eltawil, “A top-down survey on optical
wireless communications for the internet of
things,” IEEE Commun. Surv. & Tuts., vol.
25, no. 1, pp. 1-45, Firstquarter 2023.
(https://doi.org/10.1109/COMST.2022.3220504)

[2]1 S. Aboagye, A. R. Ndjiongue, T. M. N.
Ngatched, O. A. Dobre, and H. V. Poor,
“RIS-assisted visible light communication
systems: A tutorial,” /EEE Commun. Surv. &
Tuts., vol. 25, pp. 251-288, 2023.

[31 W. Liu, J. Ding, J. Zheng, X. Chen, and C.-L.
I, “Relay-assisted technology in optical
wireless communications: A survey,” [EEE
Access, vol. 8, pp. 194384-194409, 2020.

[4] D. Gamero, et al.,
approach for Internet of Things for
manufacturing SQL and NoSQL database
latency and throughput,” J. Computing and
Inf Sci. Eng., vol. 22, no. 6, p. 060901, Dec.
2022.

“Scalability testing

1019

The Journal of Korean Institute of Communications and Information Sciences ’25-07 Vol.50 No.07

[5]

[6]

[7]

1020

(https://doi.org/10.1115/1.4055733)

O. S. Sitanggang, V. L. Nguyen, H. Nguyen,
R. F. Pamungkas, M. M. Faridh, and Y. M.
Jang, “Design and implementation of a 2D
MIMO OCC system based on deep learning,”
Sensors, vol. 23, no. 17, p. 7637, 2023.
(https://doi.org/10.3390/s23177637)

P. Zhang, Q. Wang, Y. Yang, Y. Wang, Y.
Sun, W. Xu, J. Luo, and L. Chen, “Enhancing
the performance of optical camera communi-
cation via accumulative sampling,” Optics
Express, vol. 29, no. 12, pp. 19015-19023,
2021.

(https://doi.org/10.1364/OE.430503)

Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B.
Clifford, R. Kumar, L. Lacinski, R. Chard, J.
M. Wozniak, 1. Foster, M. Wilde, and K.
Chard, “Parsl: Pervasive parallel programming
in Proc. 28th Int. Symp.
High-Performance Parall. —and Distrib.
Computing, pp. 25-36, Phoenix, AZ, USA,
Jun. 2019.
(https://doi.org/10.1145/3307681.3325400)

in Python,”

Tae Hyun Kim
2024 ~Present : Researcher, De-
fense Technology Specia-
lized Research Lab.
Bl 2021~Present : B.S.
School of Electronic Engi-
Kookmin Unive-

candidate,

neering,
rsity
<Research Interests> Al., Communications, Auto-
motive Control
[ORCID:0009-0000-3169-2706]

Yeong Min Jang

1985 : B.S. degree, Kyungpook
National University

1987 : M.S. degree, Kyungpook
National University

1999 : Ph.D. degree, University
of Massachusetts

2002~Present : Professor, School
of Electrical Engineering, Kookmin University

<Research Interests> Al, OWC, FSO, OCC, Internet
of energy, Sensor Fusion

[ORCID:0000-0002-9963-303X]

