
논문 25-50-07-03 The Journal of Korean Institute of Communications and Information Sciences '25-07 Vol.50 No.07
https://doi.org/10.7840/kics.2025.50.7.1011

1011

Ⅰ. Introduction

Optical wireless communication, particularly opti-

cal camera communication (OCC), has garnered atten-

tion owing to advantages such as high-speed trans-

mission, low energy consumption, and high se-

curity[1-3]. OCC uses a CMOS camera to receive and

decode data transmitted via modulated light, offering

natural immunity to electromagnetic interference and

improved safety for human eyes[3]. These character-

istics render OCC an appealing option for applications

that require reliable, secure, and low-latency

communication.

In real-time systems such as industrial IoT for man-

ufacturing, delay time measurement is crucial for de-

termining system performance. Delay, defined as the

time difference between message transmission and da-

tabase insertion, directly impacts decision-making

processes and operational efficiency[4]. In OCC sys-

tems, precisely measuring delay is essential for ensur-

ing low-latency communication and stable perform-

ance in edge-based environments.

However, OCC deployment on edge devices pres-

ents several challenges. Edge servers typically operate

under limited processing power and lack dedicated

GPUs, thereby complicating latency optimization.

Additionally, OCC systems with high LED refresh

rates often experience high latency variability and bit

※ This study was supported by the Korea Research Institute for Defense Technology Planning and Advancement (KRIT) grant
funded by the Korean Government (Defense Acquisition Program Administration (DAPA)) (KRIT-CT-23-041, LiDAR/RADAR
Supported Edge AI-based Highly Reliable IR/UV FSO/OCC Specialized Research Laboratory, 2024).

w First Author : School of Electronic Engineering, Kookmin University, ykj8806@kookmin.ac.kr, 학생회원
° Corresponding Author : School of Electrical Engineering, Kookmin University, yjang@kookmin.ac.kr, 종신회원
논문번호：202504-089-B-RU, Received April 15, 2025; Revised May 13, 2025; Accepted May 20, 2025

Performance Measurement of a Real-Time Optical Camera
Communication System on an Edge Server

Tae Hyun Kimw, Yeong Min Jang°

ABSTRACT

Optical camera communication (OCC), a branch of optical wireless communication, provides rapid,

energy-efficient, and secure data transmission. This study introduces a real-time OCC performance measurement

platform tailored for resource-limited edge devices. The system uses a two-dimensional on-off keying multiple

input multiple output (2D OOK-MIMO) modulation technique to decode data from an 8 × 8 LED grid,

processed on an edge server without GPU enhancement. Latency is evaluated using timestamp-based delay

analysis to measure system performance. The performance measurement results indicate that the 10 Hz flicker

rate yields low latency and bit error rates (BERs), thereby enhancing real-time performance. However, the 16

Hz flicker rate increases latency variability and BERs, reducing the dependability of the results without

multi-processing programming. By contrast, multiprocessing, which utilizes the entire processor of the edge

server, substantially improves the average latency from 94.1 ms to 30.09 ms. This performance improvement is

achieved by parallelizing the frame acquisition, object detection, and data decoding stages, allowing the system

to handle incoming frames concurrently. Notwithstanding computing resource limitations, the proposed

framework sustains real-time performance, facilitating low-latency OCC deployment.

Key Words : Optical camera communication, Edge computing, Realtime system, Latency

mailto:ykj8806@kookmin.ac.kr
mailto:yjang@kookmin.ac.kr


The Journal of Korean Institute of Communications and Information Sciences '25-07 Vol.50 No.07

1012

error rates (BER), further complicating real-time

performance.

To address these issues, this study introduces an

improved OCC performance measurement platform

optimized for edge computing environments. The plat-

form incorporates a two-dimensional on-off keying

multiple input multiple output (2D OOK-MIMO)

modulation technique for data decoding from an 8 ×
8 LED grid and applies parallel programming to max-

imize the processing potential of the edge server's

CPU. Parallel processing significantly reduces the

average latency from approximately 94.1 ms to 30.09

ms only. This improvement enables the platform to

maintain reliable performance even under re-

source-limited conditions.

This study additionally investigates the trade-offs

between two LED refresh rates, i.e., 10 Hz and 16

Hz, analysing the impact on latency and BER. The

obtained results reveal that the systems running at 10

Hz performed consistently better in terms of both la-

tency and BER, whereas the 16 Hz configurations ex-

hibited high latency variability and error rates. Despite

these challenges, the enhanced platform demonstrated

substantial performance gains, confirming the effec-

tiveness of the proposed parallel programming

approach.

The remainder of this paper is organized as follows.

Section 2 outlines the proposed method, detailing the

OCC platform architecture and parallel programming

implementation. Section 3 describes the experimental

setup, including the hardware specifications and test-

ing conditions. Section 4 presents the results and dis-

cussion in which performance improvements and

trade-offs are analysed. Finally, Section 5 concludes

the study with the key findings and potential direc-

tions for future work.

Ⅱ. Proposed Method

In this section, we present the architecture of the

OCC measurement platform and the enhanced meth-

odology that uses parallel programming to improve

system performance.

2.1 Optical Camera Communication System
The system employs a 2D MIMO[5] modulation

technique to encode data for transmission through the

8 × 8 LED matrix. Each LED within the matrix repre-

sents a binary state, i.e., an ON state for binary '1'

and an OFF state for binary '0.' By combining these

binary states across multiple LEDs, the system simul-

taneously transmits multiple data bits. This modu-

lation technique is designed to improve data through-

put while ensuring that the signal patterns are easily

recognizable by the receiving camera.

The camera, operating at 60 frames per second

(fps), continuously captures video frames that contain

LED modulation patterns. Each frame is analyzed in

real time by an edge device to decode the transmitted

data. This decoding process involves detecting in-

dividual LED states, reconstructing the original binary

data stream, and aligning the received data with the

expected transmission sequence.

To precisely measure latency, each data packet car-

ries three distinct timestamps that track the movement

of the data through the system. The encoder time-

stamp is generated at the LED matrix during trans-

mission to determine the precise moment the data

leaves the transmitter. The decoder timestamp is re-

corded at the point at which the camera captures and

successfully decodes the transmitted data. Finally, the

database timestamp is added when the decoded data

is written to the database.

2.2 Parallel Programming
The OCC monitoring platform faced significant

performance issues during its initial development. The

primary bottleneck was the sequential image process-

ing pipeline where frame acquisition, object detection,

and data decoding were implemented in series. This

serial design generated delays, especially when han-

dling multiple frames per second.

To resolve this issue, parallel programming was in-

troduced to utilize the full capabilities of the edge de-

vice’s Intel Core i5-8250U CPU, which features four

cores and eight threads. The system achieved sig-

nificant performance gains by distributing the OCC

pipeline across independent concurrent threads, simul-

taneously processing different stages of data handling.



논문 / Performance Measurement of a Real-Time Optical Camera Communication System on an Edge Server

1013

The improved design separates the data flow in the

system into three parallelized tasks. The first task in-

volves frame acquisition, in which a dedicated thread

continuously captures frames from the camera. This

ensures that the system maintains a consistent flow

of incoming data without missing frames. Prioritizing

this task proves crucial in minimizing data loss under

high-traffic conditions.

The second task is object detection, where a sepa-

rate thread identifies and localizes the LED source

within each captured frame. This detection result is

passed efficiently to the next stage without holding

up the acquisition process. Parallel execution here en-

sures that detection keeps pace with incoming frames.

The third task involves data decoding, which inter-

prets the spatial-temporal changes of the detected

LED to reconstruct the original binary data. By as-

signing it to an independent thread, the system avoids

decoding bottlenecks and ensures responsive, re-

al-time operation.

Previous studies have explored techniques to im-

prove decoding reliability in OCC systems, such as

accumulating pixel rows within the region of interest

to enhance signal quality and reduce bit errors[6].

While effective in improving BER, these approaches

generally increase per-frame processing complexity

and are less focused on system responsiveness. In con-

trast, the method proposed in this work emphasizes

architectural improvements in the receiver by im-

plementing parallel processing frame acquisition, ob-

ject detection, and data decoding―across independent

threads. This design choice in our paper prioritizes

real-time performance and lower latency, making it

more suitable for deployment on edge devices where

responsiveness is critical.

To further enhance efficiency, several key opti-

mizations were introduced in the parallel program-

ming model. Thread prioritization was implemented

to ensure that the frame acquisition thread maintained

the highest priority, preventing data loss during in-

tense activity. Additionally, batch processing was

adopted for the object detection and decoding stages,

during which multiple frames were grouped and proc-

essed together to reduce overhead. This minimized the

delays owing to frequent thread switching. Finally, a

shared memory buffer system was employed to facili-

tate rapid data exchange between threads, reducing the

requirement for excessive data copying and improving

overall throughput[7].

2.3 Latency Measurement
To evaluate the improved performance of the sys-

tem, latency was assessed using the embedded time-

stamps described earlier. The latency metrics were an-

alyzed using the following formulas to measure both

responsiveness and stability.

Latency was measured by comparing the timestamp

of data transmission at the OCC transmitter with that

of data reception at the OCC receiver. In IoT manu-

facturing systems, the reception timestamp is recorded

and embedded in the payload, and the timestamps of

reception and database insertion are logged[4].

(1)

(2)

Fig. 1. Sequence diagram of OCC processes.



The Journal of Korean Institute of Communications and Information Sciences '25-07 Vol.50 No.07

1014

(3)

(4)

Equation (1) calculates the latency of the system;

​ is the delay from the transmitter to the receiver,

i.e., the time difference between the encoder and de-

coder timestamps, and ​ is the delay from the re-

ceiver to the database, i.e., the time difference be-

tween the decoder and database timestamps. The total

latency for each transmission is denoted as ​, repre-

senting the end-to-end delay observed in the k-th

transmission.

Equation (2) is used to measure the average latency

, which represents the mean value of latency over

transmissions. It is computed as the arithmetic aver-

age of the individual latency values ​​, where k​ de-

notes the index of each transmission. This average

serves as a baseline metric for evaluating the typical

delay experienced in the system during normal

operation.

Equation (3) uses the standard deviation ​ of the

latency to accurately measure the variability of the

latency. It is derived by taking the square root of the

variance of the latency values, offering insight into

how much the latency deviates from the mean latency

. A smaller ​ indicates more consistent system per-

formance, whereas a larger value implies higher fluc-

tuation and less predictability in communication

delays.

Equation (4) measures the average jitter to de-

termine the latency variation between consecutive

transmissions. It is calculated as the mean of the abso-

lute differences between successive latency values. By

quantifying the temporal variation in delay between

adjacent data packets, jitter provides a critical metric

for assessing real-time system stability, particularly in

time-sensitive applications where consistent delivery

intervals are essential.

Ⅲ. Experimental Setup

In this section, we present the architecture of the

OCC performance measurement platform and the en-

hanced methodology that uses parallel programming

to improve system performance.

3.1 Hardware Specifications
The system was deployed on a resource-constrained

edge server to reflect realistic deployment conditions.

The edge device employed was a JECS-8250B-i5

mini-PC, equipped with an Intel Core i5-8250U CPU

running at 1.6 GHz, featuring four cores and eight

threads. The device was configured using 16 GB of

DDR4 RAM and operated on Windows 10 (64-bit).

The edge device lacked GPU support; therefore, all

processing tasks relied entirely on CPU resources, ren-

dering this device an ideal platform for testing the

effectiveness of parallel programming in overcoming

hardware limitations.

The OCC transmitter employed an 8 × 8 LED ma-

trix, configured to operate at two distinct flicker rates,

i.e., 10 Hz (100 ms cycle) and 16 Hz (60 ms cycle).

These refresh rates were selected to analyze the im-

pact of flicker speed on latency and BER

performance. Each flicker rate test was conducted sep-

arately to assess system behaviors across different da-

ta transmission speeds. In addition, a 60 Hz flicker

rate was introduced to evaluate the system under

eye-safe, flicker-free conditions that align with re-

al-world deployment scenarios. All experiments are

conducted in a fixed 3 meter distance.

This hardware configuration was selected to mimic

Items Sort

Edge server JECS-8250B-i5

CPU Intel Core i5-8250U 1.6 GHz

RAM 16 GB

Operating system Windows 10

Camera IDS U3-3040CP

LED matrix 8x8

Modulation 2D OOK-MIMO

Programming language Python

Table 1. System device specifications



논문 / Performance Measurement of a Real-Time Optical Camera Communication System on an Edge Server

1015

practical edge computing environments in which hard-

ware resources are limited and performance opti-

mization is crucial.

3.2 Testing Scenarios
A series of controlled performance tests were con-

ducted to evaluate the effectiveness of the enhanced

OCC platform and the impact of parallel

programming. These tests were designed to measure

the latency, stability, and data accuracy of the system

across different operating conditions. The hardware

used and the setup are illustrated in Figure 2. By con-

ducting repeatable tests under various configurations,

the improvements achieved owing to parallel process-

ing were isolated.

The testing procedure incorporated two key LED

refresh rates, i.e., 10 Hz (100 ms cycle) and 16 Hz

(60 ms cycle). These refresh rates were chosen to re-

flect typical OCC transmission settings and compare

the performances under slow and fast flicker cycles.

The tests were conducted twice, i.e., using the original

sequential processing model and when implementing

the improved parallel processing. This direct compar-

ison clearly identified the influence of parallel

programming.

To ensure consistency and reduce variability, each

test configuration was implemented across four con-

secutive runs. Each run lasted for 5 min, yielding

thousands of data samples for each test case. This ex-

tended test duration was crucial for capturing mean-

ingful performance trends while minimizing the im-

pact of outliers.

In the parallel programming configuration, multiple

threads were deployed to simultaneously execute dis-

tinct tasks in the OCC processing pipeline. A dedi-

cated thread was responsible for frame acquisition, en-

suring continuous and uninterrupted capture of video

frames from the camera. Concurrently, a separate

thread performed object detection to localize the LED

source within each frame as they arrived. In parallel,

another decoding thread processed the detected object

data to reconstruct the transmitted binary information.

This multi-threaded approach allowed each critical

task to operate independently, significantly reducing

bottlenecks and improving system responsiveness and

throughput.

The same hardware and environmental conditions

were maintained during the sequential and parallel

processing tests to ensure effective comparison. The

tests were conducted in a controlled lighting environ-

ment to minimize noise and reflections that could af-

fect LED detection accuracy. Additionally, the camera

was positioned at a fixed distance from the LED ma-

trix to maintain consistent image clarity and

field-of-view throughout the test runs.

By implementing parallel programming in the im-

proved system, the tests demonstrated measurable im-

provements in latency reduction, stability, and data

integrity. The results of these tests provided clear evi-

dence of the effectiveness of parallel programming in

addressing the performance limitations encountered in

the original sequential design.

Figure 3 displays the flowchart for measuring sys-

tem performance, with a total of three timestamps in-

cluded, i.e., the encoder, decoder, and database

timestamps. To ensure accurate time representation,

Fig. 2. Experimental setup of the OCC system. Fig. 3. Flowchart for measuring system performance.



The Journal of Korean Institute of Communications and Information Sciences '25-07 Vol.50 No.07

1016

the ISO 8601 standard was used. For example, the

date “2024-12-25” specifies the year, month, and day,

whereas the time “12:00:00.500” includes hours, mi-

nutes, seconds, and milliseconds (500 ms is the frac-

tional part).

Algorithm 1 summarizes the step-by-step process-

ing flow of the proposed multithreaded receiver.

As shown in Figure 3, the system is structured into

three parallel threads: frame acquisition, object de-

tection, and data decoding, with data passed through

thread-safe queues to ensure synchronization and

stability. By separating these tasks into parallel

threads and managing them through queue-based com-

munication, the system achieves low latency and sta-

ble performance, even on devices with limited com-

puting resources.

3.3 Performance Metrics
To comprehensively evaluate system performance,

several key metrics were measured throughout the

testing process. Latency measurements were priori-

tized, with three specific metrics used to assess re-

sponsiveness and consistency.

Mean latency represented the average delay experi-

enced across all data packets during each test run. This

metric clearly measured the overall system

responsiveness.

To assess variability in latency performance, the

standard deviation metric was calculated, clarifying

the consistency in the system’s performance over

time. Additionally, jitters were measured to evaluate

short-term fluctuations in latency between consecutive

data packets.

In addition to latency-related metrics, the BER was

analyzed to assess data accuracy. The BER was calcu-

lated by comparing the decoded data against the origi-

nal transmitted data, providing a clear indicator of

transmission integrity.

Ⅳ. Experiment and Results 

4.1 Latency Analysis
Based on the previous scenario, we collected data.

We consecutively ran the data collection scenario 7

times using three refresh rates, i.e., 10 Hz, 16 Hz,

and 60 Hz, of the LED matrix. The limited computing

power of the edge device limited the image processing

capabilities; therefore, we determined whether the re-

duced refresh rate of the LED matrix affected the la-

tency of the device. Additionally, we obtained results

from the device with parallel processing.

The dataset labels in Table 2 refer to different test

conditions. 10Hz-1 and 10Hz-2 are two separate runs

of the system using a 10 Hz LED refresh rate, while

16Hz-1 and 16Hz-2 were recorded at 16 Hz. The “-1”

and “-2” simply indicate repeated trials to check for

consistency in performance. A third test was con-

ducted at 60 Hz, reflecting a more typical flicker rate

for user-facing applications. The datasets labeled

P-10Hz and P-60Hz correspond to test using parallel

processing for frame acquisition, object detection, and

Dataset
Mean
[ms]

Standard deviation
[ms]

Jitter
[ms]

BER

10Hz-1 94.1 45.6 59.3 0.08

10Hz-2 100.1 47 62.2 0.1

16Hz-1 140.4 50.8 68.4 0.23

16Hz-2 148.3 50.9 67.8 0.34

60Hz 161.7 54.2 68.6 0.45

P-10Hz 30.09 11.48 12.67 0.002

P-60Hz 33.2 13.0 14.9 0.004

Table 2. Measurement results demonstrating system
performance



논문 / Performance Measurement of a Real-Time Optical Camera Communication System on an Edge Server

1017

data decoding. These combinations allow for a clear

evaluation of both flicker rate and processing archi-

tecture on system performance.

The latency distribution is further illustrated in

Figure 4, which depicts the frequency of the observed

latency values across all datasets. As shown in the

figure, the parallel processing system consistently

maintains lower latency values compared to the

non-parallelized counterparts. In addition, Figure 5

presents a boxplot comparing latency variability.

These data highlight that the 10 Hz datasets demon-

strated more stable latency performance than the 16

Hz and 60 Hz counterparts. Parallel processing further

improved latency consistency, with the parallelized

system exhibiting the narrowest distribution range and

lowest median latency.

The 10 Hz systems exhibit a lower BER than the

16 Hz and 60 Hz systems, as shown in Figure 6. A

clear correlation existed between increasing latency

and worsening error performance, possibly owing to

the timing mismatch between the LED and the camera

and the instability of the edge device with limited

processing power.

In conclusion, the results received were

satisfactory. The best and worst performances corre-

sponded to average latencies of 30.09 ms and 161.7

ms, respectively. Implementing OCC in the edge de-

vice is still feasible to obtain real-time system

performance.

4.2 Prior OCC Systems Comparison
To highlight the practical advantages of the pro-

posed system, a direct comparison is made with two

representative OCC receivers from the literature:

Sitanggang et al.[5] and Zhang et al.[6].

Table 3 presents a comparison between the pro-

posed system and two representative OCC receivers

from previous studies. While all three systems use 2D

OOK modulation, they differ in decoding strategy,

hardware requirements, and overall performance. The

proposed system delivers a data rate of 11.52 kbps

with a low mean latency of 30.09 ms and a BER of

Fig. 4. Histogram of latency across datasets.

Fig. 5. Boxplot of latency for the entire datasets.

Fig. 6. Comparing the BER and latency metrics.

Fig. 7. Comparing mean latency



The Journal of Korean Institute of Communications and Information Sciences '25-07 Vol.50 No.07

1018

0.0020, all achieved using a CPU-only mini PC. In

contrast, Sitanggang et al.[5] use a CNN-based decoder

that requires GPU acceleration, and Zhang et al.[6] rely

on sequential sampling with a standard desktop PC,

both resulting in lower throughput or higher system

demands. These results demonstrate that the proposed

approach is well-suited for real-time OCC applications

on resource-constrained edge devices.

4.3 Standard Deviation
Standard deviation analysis was conducted to as-

sess the variability of latency results, thereby reveal-

ing system stability. As shown in Figure 8, the 10

Hz datasets exhibit lower standard deviation values

than the 16 Hz and 60 Hz datasets. This indicates

that lower flicker rates increased the predictability and

consistency of latency performance.

The most notable improvement was observed in the

parallel processing configuration in which the stand-

ard deviation decreased to 11.48 ms only, a substantial

reduction with respect to the values obtained from the

original system. This reduction highlights the im-

proved stability of the system, as parallel processing

effectively eliminated the fluctuations caused by proc-

essing delays.

4.4 Jitter
Jitter measurements were obtained to evaluate

short-term latency fluctuations, which are particularly

important for real-time systems. As presented in

Figure 9, the jitter values follow a similar pattern to

the standard deviation results. The 10 Hz datasets ex-

hibited less jitter than the 16 Hz and 60 Hz datasets,

confirming that low flicker rates increased perform-

ance stability.

As mentioned previously, the introduction of paral-

lel processing significantly improved system stability.

The jitter value of the parallelized system was reduced

to 12.67 ms, a considerable improvement over the

highest jitter value of 68.6 ms recorded using the 60

Hz dataset. This result emphasizes the impact of paral-

lel programming in maintaining consistent response

times during continuous data flow.

Fig. 9. Comparison of the jitter values.

4.5 Bit Error Rate
The BER performances of the systems were de-

termined to assess the reliability of data transmission

across all configurations. As depicted in Figure 10,

the 10 Hz datasets maintain lower BER values than

the 16 Hz and 60 Hz counterparts. This aligns withFig. 8. Comparing standard deviations.

Metrics
Proposed
system

(this work)

Sitanggang et
al. [5] (2023)

Zhang et al.
[6] (2021)

Modulation
scheme

2D
OOK-MIMO

2D
OOK-MIMO

OOK

Decoding
method

Parallel
programming

pipeline

CNN-based
decoding

Sequential
sampling

Hardware
requirement

Mini pc with
CPU only

GPU-equipped
pc

Standard
desktop pc

Distance 3 m 5 m 1 m

Data rate 11.52 kbps 3.84 kbps 5 kbps

Mean
latency

30.09 ms Not specified Not specified

BER 0.0020 ~0.020 0.0038

Table 3. Comparison of results with prior OCC systems



논문 / Performance Measurement of a Real-Time Optical Camera Communication System on an Edge Server

1019

expectations, as low refresh rates improved synchroni-

zation between the LED matrix and the frame capture

process of the camera.

However, the greatest improvement in BER per-

formance was observed in the parallelized system,

with a BER of 0.002, drastically lower than any of

the non-parallelized configurations. This result sug-

gests that the reduced latency and improved timing

stability directly improved synchronization and mini-

mized bit errors.

Ⅴ. Conclusion

This study introduced an enhanced OCC perform-

ance measurement platform to overcome the perform-

ance limitations encountered in resource-constrained

edge computing environments. Parallel programming

techniques enable the system to effectively address the

latency and stability issues observed in the initial

design.

The most significant outcome of this study is the

substantial reduction in system latency. In the original

design, the lowest and highest latencies recorded were

94.1 and 161.7 ms using the 10Hz-1 and 60 Hz data-

sets, respectively. After implementing parallel proc-

essing, the improved system achieved an impressive

latency reduction, with an average latency of 30.09

ms. This marks a 68% reduction compared to the low-

est latency of the non-parallelized system and demon-

strates a remarkable improvement of around 81% in

relation to the highest latency recorded. The sub-

stantial reduction in latency confirms the effectiveness

of parallel programming in optimizing CPU utilization

and eliminating processing bottlenecks without relying

on GPU acceleration.

Overall, this study demonstrates that integrating

parallel programming into OCC systems offers a pow-

erful solution for improving latency and stability and

maintaining reliable data accuracy. Owing to the re-

duced latency from 94.1 ms (best-case) and 161.7 ms

(worst-case) to 30.09 ms only with a BER of 0.002,

the improved system effectively satisfies the demands

of real-time OCC performance in resource-constrained

environments.

Future work should explore adaptive parallelization

techniques that dynamically allocate CPU resources

based on data load conditions to improve efficiency

under variable traffic intensity. Additionally, explor-

ing alternative image processing libraries or hardware

acceleration can further reduce latency. Furthermore,

adaptive flicker rate algorithms may provide a means

to dynamically adjust LED refresh rates to balance

latency reduction with data accuracy.

References

[1] A. Celik, I. Romdhane, G. Kaddoum, and A.

M. Eltawil, “A top-down survey on optical

wireless communications for the internet of

things,” IEEE Commun. Surv. & Tuts., vol.

25, no. 1, pp. 1-45, Firstquarter 2023.

(https://doi.org/10.1109/COMST.2022.3220504)

[2] S. Aboagye, A. R. Ndjiongue, T. M. N.

Ngatched, O. A. Dobre, and H. V. Poor,

“RIS-assisted visible light communication

systems: A tutorial,” IEEE Commun. Surv. &
Tuts., vol. 25, pp. 251-288, 2023.

[3] W. Liu, J. Ding, J. Zheng, X. Chen, and C.-L.

I, “Relay-assisted technology in optical

wireless communications: A survey,” IEEE
Access, vol. 8, pp. 194384-194409, 2020.

[4] D. Gamero, et al., “Scalability testing

approach for Internet of Things for

manufacturing SQL and NoSQL database

latency and throughput,” J. Computing and
Inf. Sci. Eng., vol. 22, no. 6, p. 060901, Dec.

2022.

Fig. 10. Comparison of the BER values.



The Journal of Korean Institute of Communications and Information Sciences '25-07 Vol.50 No.07

1020

(https://doi.org/10.1115/1.4055733)

[5] O. S. Sitanggang, V. L. Nguyen, H. Nguyen,

R. F. Pamungkas, M. M. Faridh, and Y. M.

Jang, “Design and implementation of a 2D

MIMO OCC system based on deep learning,”

Sensors, vol. 23, no. 17, p. 7637, 2023.

(https://doi.org/10.3390/s23177637)

[6] P. Zhang, Q. Wang, Y. Yang, Y. Wang, Y.

Sun, W. Xu, J. Luo, and L. Chen, “Enhancing

the performance of optical camera communi-

cation via accumulative sampling,” Optics
Express, vol. 29, no. 12, pp. 19015-19023,

2021.

(https://doi.org/10.1364/OE.430503)

[7] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B.

Clifford, R. Kumar, L. Lacinski, R. Chard, J.

M. Wozniak, I. Foster, M. Wilde, and K.

Chard, “Parsl: Pervasive parallel programming

in Python,” in Proc. 28th Int. Symp.
High-Performance Parall. and Distrib.
Computing, pp. 25-36, Phoenix, AZ, USA,

Jun. 2019.

(https://doi.org/10.1145/3307681.3325400)

Tae Hyun Kim

2024~Present : Researcher, De-

fense Technology Specia-

lized Research Lab.

2021~Present : B.S. candidate,

School of Electronic Engi-

neering, Kookmin Unive-

rsity

<Research Interests> AI., Communications, Auto-

motive Control

[ORCID:0009-0000-3169-2706]

Yeong Min Jang

1985 : B.S. degree, Kyungpook

National University

1987 : M.S. degree, Kyungpook

National University

1999 : Ph.D. degree, University

of Massachusetts

2002~Present : Professor, School

of Electrical Engineering, Kookmin University

<Research Interests> AI, OWC, FSO, OCC, Internet

of energy, Sensor Fusion

[ORCID:0000-0002-9963-303X]


