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ABSTRACT

This study explores the limitations of relying sole-
ly on Signal-to-Noise Ratio (SNR) for Bit Error Rate
(BER) prediction in underwater communication envi-
ronments and underscores the critical role of
eXplainable Artificial Intelligence (XAI). By employ-
ing SHapley Additive exPlanations (SHAP), the rela-
tionship between SNR and BER is thoroughly ana-
lyzed, highlighting the inadequacies of SNR as the
sole predictive feature. To address these challenges,
SHAP-based feature selection is utilized to identify
key factors, which are subsequently employed to
train machine learning models. The results demon-
strate a marked improvement in prediction accuracy
over traditional methods, affirming that the in-
tegration of SHAP-driven feature selection sig-

nificantly enhances model performance.
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I. Introduction

Underwater communication systems encounter nu-
merous challenges due to the distinct characteristics
of underwater environments. The propagation speed
of acoustic waves, approximately 1500 my/s, is consid-
ered notably slow, making the measurement and track-

ing of channel conditions particularly difficult.
Additionally, various environmental factors, including
noise, multi-path propagation, and signal attenuation,
significantly ~ influence communication quality.
Accurately predicting the Bit Error Rate (BER) is cru-
cial, as it directly impacts the efficiency and reliability
of underwater communication systems. In conven-
tional outdoor communication systems, SNR has been
the most representative metric for indicating channel
conditions. However, in underwater communication
environments, the aforementioned challenges hinder
SNR from accurately reflecting the true state of the
channel!"?,

To overcome the limitation, machine learn-
ing-based approaches have gained attention®.
Machine learning models are powerful tools capable
of learning complex patterns from high-dimensional
data. These models can incorporate not only SNR but
also a variety of environmental metrics, enabling more
accurate BER prediction. Considering the multiple
factors representing channel characteristic in under-
water environments, integrating these features into
prediction models is essential®”!. Moreover, advanc-
ing the interpretability of these models to ensure both
higher prediction accuracy and trust in their results
remains a pivotal challenge.

We introduce Shapley Additive exPlanations
(SHAP) to analyze underwather channel and to predict
BER using machine learning models. SHAP might be
a useful tool for improving model interpretability. It
quantifies the contribution of individual features and
facilitates the selection of meaningful features, ulti-

mately leading to enhanced model performance.

II. SHAP : SHapley Additive exPlanations

SHAP is an eXplainable Al (XAI) technique that
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quantitatively evaluates the contribution of each fea-
ture to a machine learning model’s prediction!.
Derived from game theory, SHAP focuses on fairly
calculating and distributing feature contributions. By
transforming complex model structures into interpret-
able formats, it enhances the reliability of predictions
and plays a crucial role in optimizing model
performance. The core of SHAP lies in generating
subsets and calculating prediction changes. The con-

tribution of a specific feature 7 is defined as follows:
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where ¢; represents the SHAP value for feature 7, S
is a subset of N excluding 7 and £ denotes the mod-
el’s prediction based on subset S| w(s) represents the
weight assigned to the feature combinations, which
is calculated as:
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The SHAP values computed through this formula
satisfy the property that the sum of all feature con-
tributions equals the model’s final prediction. This en-
ables a precise quantitative evaluation of feature
contributions.

SHAP analysis precisely measures the impact of
each factor on BER (Bit Error Rate) prediction, allow-
ing for the selection of key features essential for mod-
el training. For instance, selecting the & most im-
portant features based on SHAP values and including
them in the training data can improve model

performance. This process can be expressed as:
Fyetecred = {xi | §i € Topy ()} 3)

where F represents the selected feature set, x; denotes
individual features, and @; is the set of all SHAP
values. The condition 7opy®) indicates that only the
features with SHAP values in the top k are selected.

This study utilizes SHAP analysis to identify the
features most significantly affecting BER prediction

in underwater environments. Based on the analysis,
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only the top k features with the highest SHAP values
were selected for model training. This approach grad-
ually improved both the efficiency and predictive ac-
curacy of the model. Such a methodology enhances
the reliability of the underwater communications.

II. Results and Discussion

Real-world underwater data was collected from the
Gulf of Incheon for experimental purposes!'. The col-
lected data consists of Data Rate, Mean Excess Delay
(MED), Root Mean Square Delay (RMS), Coherence
Bandwidth (CB), Doppler Spread, Frequency Shift,
and SNR. While BER is the dominant metric to repre-
sent the channel, underwater environments require
consideration of a wider range of conditions and
characteristics. This can be intuitively analyzed by
visualizing the correlation between SNR and BER in
underwater environments. Figure 1 illustrates the cor-
relation between SNR and BER, while simultaneously
visualizing the problem statement addressed.

Based on the observations from the figure, it was
confirmed that an increase in SNR does not inherently
result in improved BER performance. This highlights
the challenges of predicting BER in underwater envi-
ronments based solely on SNR characteristics.
Furthermore, the importance of selecting features be-
yond SNR for BER prediction through machine learn-
ing models is emphasized. SHAP evaluates feature
importance to deliver more accurate analyses in this
context. Figure 2 illustrates the results of analyzing
the relationship between Data Rate and BER using
SHAP.

BER
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Fig. 1. Correlation Between SNR and BER in Underwater
Channel
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Fig. 2. SHAP Value Analysis for Data Rate in BER
Prediction

In Figure 2, the gray bars represent the data dis-
tribution according to the data rate, while the color
of the dots indicates the corresponding BER values.
The yaxis, labeled as SHAP Value, quantifies the con-
tribution of each feature to predicting the BER. A
larger absolute value of the SHAP Value, regardless
of its sign, implies a higher contribution, whereas val-
ues closer to zero indicate a minimal role in the
prediction.

Notably, as the data rate increases, the SHAP Value
also shows an increasing trend. Specifically, in re-
gions where a higher data rate correlates with higher
actual BER values, the SHAP Value reveals a strong
relationship between the two features. However, not
all features exhibit such distributions of SHAP Values.
Figure 3 illustrates the SHAP Value distribution for
SNR and its relationship with BER.

In Figure 3, the distribution of SHAP values for
SNR in BER prediction is observed to be more con-
centrated compared to Figure 2. Specifically, while
the range of 0 dB to 12 dB includes data points with
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Fig. 3. SHAP Value Analysis for SNR in BER Prediction
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Fig. 4. Impact of Feature Selection on BER Prdeiction
Performance

high SHAP values, the majority of SHAP values are
clustered around 0. Furthermore, contrary to expect-
ations that higher SNR would contribute to higher
SHAP values in BER prediction, most SHAP values
remain near 0 as SNR increases. This suggests that
predicting BER based solely on SNR is challenging.
Additionally, utilizing features with clearer SHAP val-
ues than SNR could lead to the improved prediction
performance. To validate this, performance compar-
isons are conducted using typical machine learning
models. Figure 4 illustrates the prediction perform-
ance based on the number of selected features.

To assess model performance based on the number
of selected features, boosting models such as
XG-Boost, LightGBM, and CatBoost were employed.
Additionally, the R2 score, a widely accepted metric
in regression analysis, was utilized to compare overall
performance. Incorporating features selected based on
SHAP’s feature importance resulted in approximately
a twofold improvement in performance. Furthermore,

as the number of SHAP-selected features increased,
all models exhibited a enhancement in performance.
These findings underscore the critical role of feature
selection in underwater environments, as machine
learning models derive benefits from an optimal com-
bination of relevant features. Additionally, SHAP
method for feature selection was confirmed as an ef-
fective training approach, emphasizing the potential
of eX-plainable Artificial Intelligence (XAI) in ad-

vancing underwater communication systems.
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IV. Conclusion

This study highlighted the limitation in prediction
of BER by using only SNR in underwater communica-
tion environments and demonstrated the need of XAL
By utilizing SHAP-based feature selection, key fea-
tures were identified, significantly improving pre-
diction accuracy. This clearly underscored the value
and importance of feature selection. Future research
will focus on developing more advanced feature se-
lection algorithms beyond SHAP to train robust mod-

els for diverse underwater environments.
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