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Ⅰ. Introduction

With the increasing utilization of Unmanned Aerial

Vehicles (UAVs), research in various fields such as

logistics, disaster relief, and surveillance has been ac-

tively progressing[1]. Among UAV technologies, au-

tonomous flight capability has garnered significant at-

tention, enabling UAVs to perform missions in-

dependently without human intervention. This feature

not only reduces operational costs but also enhances

efficiency in environments that are difficult or hazard-

ous for human access.

An essential component of autonomous UAV sys-

tems is precision autonomous landing technology,

which ensures that UAVs can safely land in confined

spaces or specific target locations. Precision landing

is particularly critical in applications such as cargo

delivery, emergency rescue, and urban operations.

However, achieving high precision in autonomous

landing involves several challenges. Typically, accu-

rate positioning and control require the use of various

sensors, which adds complexity to the system and in-

creases the UAV's payload.

Target detection-based landing, which performs au-

tonomous landing using only a single camera without

additional sensors or equipment, offers significant ad-
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ABSTRACT

This paper proposes an autonomous precision landing system for quadrotor UAVs(Unmanned Aerial

Vehicles) using sequential object detection. The system utilizes a single one-axis tilt gimbal camera to perform

forward view monitoring during flight and precision control during landing, effectively reducing the

computational load of the UAV system. The YOLO(You Only Look Once) algorithm is employed for object

detection, where the landing pad is detected at higher altitudes, and an auxiliary marker is additionally detected

at lower altitudes to enable more precise positional control. Experimental results demonstrate that the proposed

sequential detection approach significantly improves landing accuracy compared to conventional methods that

rely solely on landing pad detection. Furthermore, the system maintains consistent precision across various

altitudes, effectively mitigating bounding box variation issues at close distances. Verification through simulation

and real-world experiments confirms the reliability, accuracy, and practicality of the proposed system, even in

resource-constrained UAV environments.
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vantages in terms of efficiently reducing payload and

overcoming computational limitations of companion

PCs in UAV systems[2,3]. One representative approach

to target detection-based landing is the

AR(Augmented Reality) marker-based system, which

demonstrated high landing precision. However, this

approach faced challenges as the distance between the

UAV and the landing pad increased, making marker

detection difficult[4]. To address this limitation, re-

search has also explored deep learning-based autono-

mous landing systems, which rely on object de-

tection[5]. Nevertheless, these methods suffer from the

issue of decreased alignment accuracy due to the pro-

portional increase in the bounding box size at closer

distances.

To address these issues, this study proposes a pre-

cision autonomous landing system based on sequential

object detection, which overcomes the limitations of

existing deep learning-based landing approaches and

provides higher landing precision. The system utilizes

the YOLO real-time object detection algorithm to de-

tect the landing pad at high altitudes and align the

UAV's camera with the center of the pad, ensuring

a stable descent. As the altitude decreases, the system

detects an auxiliary marker attached to the landing pad

to achieve more precise positional control. This se-

quential object detection approach ensures that the

UAV lands precisely at the target location.

YOLO (You Only Look Once) is a deep learning

algorithm designed to simultaneously detect and clas-

sify objects in images or videos with a single process-

ing pass[6]. In this study, YOLO was chosen for re-

al-time object detection due to its effective balance

between speed and accuracy. In UAV landing, where

real-time performance is crucial, YOLO's unique ar-

chitecture provides fast processing speeds while main-

taining high detection accuracy. Compared to other

deep learning algorithms such as Faster R-CNN and

SSD, YOLO offers significantly faster inference times

while preserving accuracy, making it a more suitable

choice for UAV environments where computational

resources are limited, and real-time processing is re-

quired[7]. This enables the UAV to quickly detect and

precisely align with the landing pad, ensuring the crit-

ical factor of landing accuracy is maintained for safe

operations.

Additionally, this paper adopts the YOLOv5s[8]

model, selected for its superior real-time object de-

tection performance and efficiency on embedded sys-

tems, such as the lightweight companion PC mounted

on the UAV. Compared to other versions, YOLOv5s

demonstrates a better balance of detection accuracy

and computational efficiency, making it highly suit-

able for resource-constrained environments[9,10]. High

recall is critical in UAV landing control to ensure the

landing pad is consistently detected, reducing the risk

of landing failures and enhancing operational safety.

The structure of this paper is organized as follows:

Section 2 describes the landing scenario and system

model, the application of YOLO, and the proposed

landing system algorithm. Section 3 presents the ex-

perimental methods, results, and a comparative analy-

sis with previous research. Finally, Section 4 con-

cludes with the findings from the implementation and

experiments.

Ⅱ. Autonomous Precision Landing for 
UAVs using Sequential Object Detection

2.1 Landing Scenario
Fig. 1 illustrates the flowchart of the autonomous

precision landing system proposed in this paper.

Initially, the UAV utilizes GPS(Global Positioning

System) to receive the coordinates of the landing loca-

Fig. 1. flowchart of the System
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tion and move to the target area[11]. Subsequently, us-

ing a 1-axis tilt gimbal camera oriented downward,

the UAV performs real-time object detection to detect

the pre-trained landing pad. Once the landing pad is

detected, the UAV adjusts its position by moving for-

ward, backward, left, or right to align vertically with

the detected object. When the system determines that

the vertical alignment is complete, the UAV descends

to an altitude below 2 meters and hovers at that

position. Subsequently, the UAV performs a more

precise landing based on the detection of the auxiliary

marker.

2.2 System Model
The system model proposed in this paper consists

mainly of the UAV, the GCS (Ground Control

System), and a VPN(Virtual Private Network) server

for data communication[12,13] between the UAV and

the GCS, as shown in Fig. 2. Through this archi-

tecture, the GCS can monitor the UAV's flight, issue

mission commands, and observe the video feed from

the camera mounted on the UAV in real time.

In this paper, The UAV is a multirotor platform,

and its key components are as follows. The UAV is

built on a Holybro X500 quadrotor frame and is

equipped with a GPS and Pixhawk 6C Flight Control

Unit (FCU) for providing approximate location in-

formation during flight. To facilitate forward vision

and real-time object detection for landing, a SIYI A2

mini 1-axis tilt gimbal camera is mounted on the

UAV. Additionally, a 1D LiDAR distance sensor is

used for more accurate altitude measurements. An

Nvidia Jetson Orin NX companion computer is used

to receive commands from the GCS and to process

computations needed to identify the landing pad based

on the camera footage.

2.3 Application of YOLO(You Only Look 
Once)

Fig. 3 shows the design of the landing pad used

in this paper. To collect image data, the landing pad

with an H marker was captured using a UAV from

various altitudes and positions, resulting in 120

images. To augment the dataset, all images were ro-

tated, expanding the dataset to a total of 1,080 images.

Separate labeling was applied to create distinct data-

sets for the landing pad model and the H auxiliary

marker model. Both datasets were trained using the

YOLOv5s model, generating two independent weight

files. These are used for landing control at high and

low altitudes, respectively. Fig. 4 shows the change

in object detection classes based on altitude.

The decision not to train both classes on a single

weight file is due to a spatial constraint inherent in

YOLO. Two classes overlap, each grid cell can only

Fig. 2. System Model

Fig. 3. Design of the Landing pad 

Fig. 4. Change in Object Detection Classes Based on
Altitude
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represent one class, increasing the likelihood that only

one of the two overlapping objects will be detected.

This can negatively affect landing stability. While

there are multiclass classification techniques to ad-

dress this issue, the computational performance limi-

tations of the companion PC mounted on the UAV

were considered. Thus, instead of employing more

complex computations, the system was implemented

with a focus on lightweight design, adopting a sequen-

tial object detection approach based on altitude.

2.4 Autonomous Precision Landing
This section provides a detailed explanation of the

algorithm for the proposed UAV precision landing

system using the YOLOv5s model to detect objects

in real time and to perform precision landing based

on the detected bounding box information. Fig. 5 illus-

trates the pseudocode describing the operation of the

entire system, outlining the steps necessary for the

UAV to reach the target landing point safely and

accurately. The algorithm consists of two main stages,

with precise control at each stage to ensure successful

landing at the target point. The landing algorithm was

first thoroughly tested in the Gazebo simulation envi-

ronment[14].

Firstly, pixel coordinates within the camera frame

are represented as (x, y), where the x value increases

from left to right across the frame and the y value

increases from top to bottom. This allows for precise

specification of a location within the frame.

The size of the camera frame is defined by the

width in pixels cam_width and height in pixels

cam_height. The center of the frame is calculated as

half of each axis.

(1)

(2)

(frame MiddleX, frame MiddleY) represent the center

position of the camera frame. During landing control,

the UAV's position is adjusted based on the relation-

ship between the frame center and the detected bound-

ing box center.

The coordinates of the detected bounding box in-

clude the minimum and maximum pixel values for

both the x and y axes. Specifically, xmin represents

the left boundary pixel value of the bounding box

along the x-axis, while xmax represents the right

boundary. Similarly, ymin and ymax represent the top

and bottom boundary pixel values of the bounding box

along the y-axis, respectively.

The coordinates of the bounding box center pixel

(xMiddle, yMiddle) can be calculated as shown in

Equations (3) and (4). This allows the position of the

object within the camera frame to be determined.

(3)

(4)

For precision landing, it is necessary for the UAV

and landing pad to be vertically aligned. To achieve

this, the UAV moves forward, backward, left, or right

until the bounding box center coordinates (xMiddle,
Fig. 5. Precision Landing Algorithm
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yMiddle) align with the camera frame center coor-

dinates (frame MiddleX, frame MiddleY).

However, perfectly aligning these two sets of coor-

dinates is challenging due to the nature of quadrotor

UAVs, necessitating an acceptable error margin. Here,

ErrorMargin represents a variable that indicates the

number of pixels for the margin of error, which varies

with altitude, as shown in Table 1.

Detected Class
Altitude

Range (z)
Error Margin from
frameMiddle X,Y

Landing Pad 10m≤ z ± 10%

Landing Pad 8 m≤ z < 10m ± 12%

Landing Pad 6 m≤ z < 8m ± 14%

Landing Pad 4 m≤ z < 6m ± 16%

Landing Pad z < 4m ± 20%

Auxiliary marker 0m≤ z ± 5%

Table 1. Error Margin Based on Height for detected
Classes

2.4.1 Landing Pad-Based Alignment

In the first stage of the algorithm, UAV control

begins when the landing pad is detected, and the ob-

ject detection confidence P is at least 70. During this

process, the UAV is controlled at a speed of 0.3 m/s.

The UAV repeats forward or backward movements

to achieve Y-axis alignment until the center pixel of

the bounding box is within the acceptable error range

along the Y-axis of the camera frame. For example,

as shown in Fig. 6, if the yMiddle value is above the

y-pixel boundary defined by frameMiddleY plus the

ErrorMargin, the UAV will move forward to align

along the Y-axis within the acceptable error range.

Then, the UAV continues to align along the X-axis

until the bounding box center is within the X-axis cen-

tral error range. Similarly, as shown in Fig. 7, if

xMiddle is to the right of the x-pixel boundary defined

by frameMiddleX plus the ErrorMargin, the UAV will

move to the right to perform X-axis alignment within

the error range.

Once both X and Y axis alignments are completed,

the UAV descends to an altitude of approximately 2

meters while searching for the auxiliary marker.

During the descent, as the distance between the UAV

and the landing pad decreases, the size of the bound-

ing box increases. Consequently, the possibility of the

bounding box center deviating from the central error

range also increases. To prevent this and to reduce

frequent horizontal adjustments during descent, the

central error range was progressively expanded as the

altitude decreased, as shown in Table 1. This approach

allows the UAV to descend quickly while maintaining

the landing pad relatively centered in the camera

frame, ensuring stability during descent until the UAV

reaches a height that requires precise control for

landing.

2.4.2 Auxiliary Marker-Based Alignment

The auxiliary marker is a small marker additionally

attached to the landing pad and is used to achieve

more precise positional control at low altitudes. When

the UAV begins to detect the auxiliary marker, the

existing real-time landing pad detection is terminated

properly to reduce computational load and increase

Fig. 6. Example of Landing Pad-Based Y-axis alignment

Fig. 7. Example of Landing Pad-Based X-axis alignment
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detection stability. After descending to an altitude of

2 meters, the UAV starts detecting the auxiliary mark-

er, and if the detection accuracy exceeds 80%, the

second alignment phase begins. Forward, backward,

left, and right directional control is performed in the

same manner as the first alignment; however, to align

with higher precision for the auxiliary marker, the

speed is reduced to 0.1 m/s. In addition, the central

error margin for the X and Y axes is significantly

reduced compared to the first alignment, as shown in

Table 1, allowing for more precise control. Finally,

once both X and Y axis alignments are complete, the

UAV descends to the ground to land safely. This ap-

proach allows the UAV to detect the smaller auxiliary

marker at low altitudes where the landing pad cannot

be fully recognized, enabling more precise alignment

and accurate landing. Fig. 8 shows this example.

Fig. 8. Example of Auxiliary Marker Detection at Low
Altitude

Ⅲ. Experiment

3.1 Experimental Method
In this paper, two experiments were conducted to

evaluate the performance of the Autonomous

Precision Landing using Sequential Object Detection

system. The experimental environment is described in

Table 2.

1) Performance Comparison with Previous Method

2) Evaluation of the Proposed Method at Various

Altitudes

First, to compare the performance with previous

methods, the conventional method of detecting only

the landing pad and the proposed method of sequen-

tially detecting the landing pad and auxiliary marker

were tested. Both methods initiated landing from a

height of 10 meters, and a total of 10 landing trials

were performed. After landing, the distance between

the UAV and the center of the landing pad was meas-

ured as the landing error, and the landing time was

also recorded.

Next, the proposed method was evaluated at vari-

ous altitudes to measure landing accuracy and landing

time, thereby verifying the consistency and robustness

of the proposed system.

3.2 Performance Comparison with Previous 
Method

3.2.1 Previous Method: Landing Using Only

the Landing Pad Detection

Table 3 presents the experimental results when

landing was performed ten times using only the land-

ing pad detection. In this experiment, after the UAV

detected the landing pad, the time taken for the UAV

to descend to the ground and the vertical distance er-

ror between the center of the landing pad and the point

directly below the UAV-mounted camera were

measured. As a result, the minimum error distance

was 9 cm, while the maximum error distance reached

Spec Configuration

GCS Laptop I7 - 13700H

UAV X500 v2

Companion PC Nvidia Jetson Orin NX

FC Pixhawk 6C

Medel YOLOv5 small

Camera SIYI A2 mini

Location KIT Soccer field

Time 15:00 KST

Wind Speed 3.8 m/s

Table 2. Experimental Environment Specifications

Fig. 9. Results of Landing with Only Landing Pad
Detection
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91 cm. The landing time ranged from a minimum of

37 seconds to a maximum of 131 seconds.

3.2.2 Proposed Method: Landing with

Sequential Detection of Landing Pad and

Auxiliary Marker

Table 4 shows the experimental results when land-

ing was performed using sequential detection of both

the landing pad and an auxiliary marker. The measure-

ment method was identical to that used in Table 3.

The results showed that the minimum error distance

was 5cm and the maximum error distance was 31cm,

with relatively consistent error values. The time re-

quired for landing ranged from a minimum of 55 sec-

onds to a maximum of 219 seconds, which indicates

that additional control based on sequential object de-

tection led to a relatively longer landing time.

3.2.3 Comparative Results

Table 5 summarizes the mean error distance and

mean landing time between the approach of detecting

only the landing pad and the approach of sequentially

detecting the landing pad and auxiliary marker for

landing. The proposed method demonstrated an im-

provement in mean error distance, reducing it by 20.8

cm compared to the conventional method, resulting

in landings closer to the center of the landing pad.

Additionally, the standard deviation (STD) was re-

duced by 15 cm, indicating more consistent perform-

ance with the proposed method. Although the mean

landing time was 23.4 seconds longer for the proposed

method, it showed that more precise landings could

Fig. 10. Results of Landing with Sequential Detection

Test Count Error (cm) Time (sec)

1 6 98

2 16 85

3 28 133

4 31 120

5 11 186

6 5 56

7 8 151

8 5 74

9 5 110

10 24 78

Table 4. Landing Performance with Sequential Detection

Test Count Error (cm) Time (sec)

1 22 51

2 91 77

3 43 37

4 9 108

5 23 78

6 45 131

7 21 104

8 14 42

9 25 98

10 47 131

Table 3. Landing Performance with Only Landing Pad
Detection

Metric
Only Landing Pad

Detection
Sequential
Detection

Mean Error (cm) 34.8 14.0

STD (cm) 24.9 9.9

Mean Time (sec) 85.7 109.1

Table 5. Comparison of Landing Performance Metrics

Fig. 11. UAV Landing Trajectory of Proposed Method
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be achieved through additional control mechanisms.

This highlights the suitability of the proposed method

for drone landing applications where accuracy takes

precedence over speed.

From Fig. 11 shows the landing Trajectory, it can

be confirmed that the proposed method allows the

UAV to follow the intended flight path during the

landing process.

3.3 Evaluation of the Proposed Method at

Various Altitudes

The proposed landing method performs precision

control based on the auxiliary marker at a low altitude

of 2 meters, regardless of the initial landing height.

As a result, the landing accuracy is not influenced

by the starting altitude. To verify this, the UAV con-

ducted 10 landings each from initial altitudes of 5m,

10m, and 15m. The mean landing error and standard

deviation were calculated, and the average landing

time was measured.

As shown in Table 6, the landing time increases

proportionally with the starting altitude. This is be-

cause additional alignment control is performed dur-

ing the descent whenever the UAV deviates from its

intended alignment. However, despite differences in

the initial landing heights, the mean landing error and

standard deviation remain consistent across all cases,

demonstrating the reliability and precision of the pro-

posed method.

Altitude 5m 10m 15m

Mean Error (cm) 15.3 14.0 13.4

STD (cm) 8.6 9.9 9.4

Mean Time (sec) 90.6 109.1 116.8

Table 6. Comparison of Proposed Method Performance at
Various Altitudes

Ⅳ. Conclusion

This paper proposed a precision landing system for

UAVs using sequential object detection, which detects

the landing pad at high altitudes and an auxiliary

marker at low altitudes to enhance landing accuracy.

By adopting the YOLO object detection algorithm, the

system effectively balances speed and accuracy, mak-

ing it suitable for UAVs with limited computational

resources.

Experimental results demonstrated the superiority

of the proposed method over conventional approaches.

Sequential detection significantly improved landing

accuracy, particularly by addressing alignment issues

caused by bounding box variations at close distances.

Furthermore, tests conducted at various altitudes

showed consistent landing precision, confirming the

system's reliability, despite landing time increasing

with altitude.

The proposed system overcomes the limitations of

previous methods while maintaining a lightweight de-

sign and ensuring stable and precise landings. Future

work will focus on improving detection performance

in diverse environments and optimizing control algo-

rithms to further reduce landing time, enhancing the

system's overall practicality and efficiency.
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