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Ⅰ. Introduction

Autonomous driving technology, an emerging field

that enables vehicles or robots to navigate and operate

without human intervention, can potentially revolu-

tionize transportation and has therefore attracted much

attention from both academicians and industrial

researchers. Many state-of-the-art methods achieve

autonomous functionality through advanced tech-

nologies, seeking more localized and efficient sensor

solutions than satellite-based systems such as Global

Positioning Systems and Global Navigation Satellite

Systems, which are primarily limited by high latency.

The combination of camera and Light Detection and

Ranging (LiDAR) data is considered as a standout ap-

proach for autonomous driving systems[1].

Cameras capture high-resolution, color-rich im-

agery of the surrounding environment, enabling the

detection and recognition of objects, textures, and oth-

er visual details with remarkable clarity. The standard

pinhole camera is widely used because it is both sim-

ple and effective, but its field-of-view (FoV) is limited

to 80°. An ultrawide FoV (180°) is provided by fish-

eye cameras, which can capture substantially more da-

ta and features in a single image than pinhole cam-

eras[2].

However, as camera sensors cannot measure dis-

tances directly, they cannot adequately capture the

depth information. The limited depth perception chal-

lenges the interpretation of spatial relationships be-

tween the vehicle and its surroundings objects.

Unlike traditional cameras, LiDAR sensors provide

precise distance measurements. The collected data are

represented as a three-dimensional array of points
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with X, Y, and Z coordinates in a Cartesian system.

These arrays, called point clouds, provide a detailed

spatial representation of the environment.

Accordingly, LiDAR is a critical component in auton-

omous driving systems.

Despite these advantages, the high cost and compu-

tational intensity of LiDAR devices greatly raises the

cost of large-scale deployment. In addition, LiDAR

data are inherently sparse and lack red–green–blue

(RGB) color information, complicating their inter-

pretation and processing[3].

To avoid these limitations, LiDAR and camera sen-

sors data are commonly combined in recent autono-

mous driving systems. The integration of cameras and

LiDAR can notably enhance the capabilities of both

autonomous driving and robotics systems. However,

the simultaneous deployment of multiple sensors in-

creases the computational complexity of the system.

The data generated by these sensors can be highly

diverse and complex, requiring sophisticated process-

ing to extract meaningful insights.

Traditionally, feature extraction and decision-mak-

ing tasks based on fusion sensor data have been per-

formed by algorithms such as Iterative Closest

Point[4], RANSAC[5], and K-Means[6]. Although these

methods perform effectively in structured or static en-

vironments, they are often less successful under dy-

namic driving conditions.

In recent years, deep learning has become a focal

point of both research and practical applications.

Researchers in the autonomous driving and robotics

fields have explored ways of integrating deep learning

techniques into their workflows. Given high-quality

and normally distributed data, a well-designed deep

learning methods leverage neural networks to adapt

to variations in sensor viewpoints, lighting conditions,

and environmental dynamics, making them effective

for extrinsic LiDAR-camera calibration in complex

and unstructured environments.

The present study proposes a deep learning-based

online extrinsic calibration method that fuses the data

of LiDAR and fisheye camera sensors. Leveraging the

complementary strengths of the two sensors, the meth-

od aims to enhance the capabilities of autonomous

driving and robotic systems. Whereas LiDAR pro-

vides precise distance measurements between the sen-

sor (or vehicle) and surrounding objects, the fisheye

camera captures a comprehensive 180° RGB repre-

sentation of the environment.

Ⅱ. Related Research

Both the intrinsic and extrinsic parameters of each

sensor in the data-fusion system must be calibrated

to ensure accurate data integration. In this work, we

assume that the intrinsic parameters of the fisheye

camera and LiDAR provided in the dataset have been

calibrated by the manufacturer, as we follow similar

studies[7,8]. Therefore, only extrinsic calibration is con-

sidered here. However, for real-environment applica-

tion, we acknowledge that even minor residual errors

in intrinsic calibration can affect the extrinsic calibra-

tion accuracy.

The existing LiDAR-Camera calibration methods

can be broadly categorized into target-based, target-

less, and learning-based methods. These three catego-

ries are summarized below.

2.1 Target-based Methods
For accurate calibration, target-based methods fre-

quently establish the correspondence between two-di-

mensional (2D) camera images and three-dimensional

(3D) LiDAR points of specially designed objects.

Checkerboards have been extensively utilized in

target-based extrinsic calibration studies. For instance,

Geiger et al.[9] calibrated LiDAR and cameras by de-

tecting the corners of checkerboard patterns and esti-

mating the transformation matrix between the two

sensors. Similarly, Wang et al.[10] proposed an online

extrinsic calibration method employing a checker-

board for 3D LiDAR and panoramic cameras.

2.2 Targetless methods
In real-world autonomous driving and robotics sce-

narios, where ideal calibration targets such as checker-

boards are often unavailable, researchers have devel-

oped various targetless methods.

For instance, Song et al.[11] proposed the Galibr

method, which performs extrinsic LiDAR and camera

calibration through ground plane features. Borer et
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al.[12] calibrated LiDAR and its fisheye camera using

a continuous online extrinsic calibration approach

based on a mutual-information matching method.

2.3 Learning-based Methods
Deep learning has been widely adopted in extrinsic

calibration scenarios. Lv et al.[7] introduced LCCNet,

a neural network model for LiDAR and camera

self-calibration, which leverages a cost volume layer

to facilitate feature matching between RGB image fea-

tures and depth map features. Wang et al.[8] proposed

Multiresolution LiDAR-Camera Calibration Network

(MRCNet), an end-to-end neural network that inputs

the RGB image and the depth image generated from

the LiDAR point cloud and predicts the trans-

formation matrix for extrinsic calibration. Their net-

work adopts a geometric feature-constraint module

and performs multiresolution feature extraction and

feature matching. Zhu et al.[13] proposed CalibDepth,

which also relies on RGB and depth images. The

depth image in CalibDepth provides a unified repre-

sentation, bridging the gap between the RGB image

data and the point cloud inputs. CalibDepth also in-

corporates long short-term memory for autoregressive

generation of the calibration actions at each step.

The abovementioned studies highlight a notable

lack of research on extrinsic calibration between

LiDAR and fisheye cameras, particularly in learn-

ing-based approaches. In this study, we design an

end-to-end, deep learning-based online extrinsic cali-

bration method for LiDAR and fisheye cameras.

Ⅲ. Proposed Methods

The proposed model integrates a residual spherical

convolution layer for feature extraction from fisheye

images with an optical flow based on the depth map.

3.1 Problem Formulation
Given a multimodal input composed of RGB im-

ages and a LiDAR point cloud, online extrinsic cali-

bration obtains a transformation matrix T consisting

of a 3 × 3 rotation matrix and 1 × 3 translation vector.

During the learning process, a random transformation

Trand is applied to matrix T, obtaining an initial matrix

Tinit. Tinit is then applied to the point cloud to obtain

a mis-calibrated depth image. Projection matrix fish-

eye-depth images were generated as described in [14].

The objective of the proposed model is to estimate

the extrinsic calibration matrix Trand, denoted as Tpred,

based on the RGB image and the point cloud using

the mis-calibrated depth image.

3.2 Network Architecture
Our proposed model is divided into three main

components: feature extraction, feature matching, and

a regression layer. This subsection describes each

component in detail.

3.2.1 Feature Extraction

Feature extraction by the proposed model occurs

through two parallel branches, one for the fisheye

RGB image, the other for the mis-calibrated depth

map. To effectively handle the spherical images gen-

erated by the fisheye camera, we introduce a residual

spherical feature-extraction technique to both

branches. This approach builds upon a modified

spherical convolution of SphereNet[15], adapting it to

a residual framework to capture the semantic features

in both the original and refined inputs, ultimately en-

hancing the quality of the extracted features.

The spherical convolution of SphereNet lifts the

kernel of a 3 × 3 convolution layer into spherical

Fig. 1. Architecture of the proposed model.
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space. The kernel shape is defined in spherical space

with j,k∈ {-1, 0, 1} and step sizes of Dq and Df.
The kernel sampling s is defined as

(1)

(2)

(3)

(4)

where q measures the inclination from the positive

z-axis downward (ranging from 0° at the north pole

to 180° at the south pole), while f measures the rota-

tion around the z-axis in the xy-plane, increasing

counterclockwise from a reference direction (typically

the positive x-axis).

3.2.2 Feature Matching

The feature matching layer is inspired by

MRCNet[8], which creates a 3D correlation volume

representing the spatial correlation between the fea-

tures extracted from RGB image and LiDAR depth

map. The 3D correlation volume is defined as

(5)

where xrgb and xlidar denote a feature in the RGB image

and depth map respectively, D represents the search

region where feature correspondences are computed,

while pi and pj denote pixel locations in the RGB im-

age and the depth map. The optical flow between the

two feature sets is then estimated from the 3D correla-

tion volume within a learning-based layer, comprising

a regular convolutional layer that outputs a channel

of size two representing the horizontal and vertical

flow vectors. In this study, the depth map was taken

as the “target” of the optical flow.

3.2.3 Regression Layer

The regression layer inputs the features x with the

finest resolution and processes them through multiple

convolutional layers, followed by an average pooling

layer that condenses the features. The pooled features

are flattened and then passed into a fully connected

layer along with an activation function LeakyReLU

(6)

where a is a small constant. Afterwards, the feature

x is passed into a dropout layer. The process can be

represented mathematically as

(7)

(8)

(9)

(10)

(11)

where B is batch size. This operation reshapes pooled

feature x from B × C × 1 × 1 to a vector of size B

× C.

The reshaped feature is passed into two prediction

branches: one for rotation in quaternion q format and

the other for predicting the X, Y, and Z components

of the translation vector t. Subsequently, the predicted

quaternion is normalized as below

(12)

where is a small constant added for

numerical stability. The output Tpred is a normalized

quaternion vector and a translation vector, which can

be represented as

(13)

where qnorm∈ 4 is the normalized quaternion vector

and t∈ 3 is the translation vector.

3.3 Loss Functions
In this study, the loss functions of both quaternion

and translation predictions in Tpred are expressed in
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terms of the Euclidean distance. The Euclidean-dis-

tance loss functions of translation and rotation are re-

spectively defined as

(14)

(15)

where is translation loss, tl is predicted translation

and is ground truth translation. Similarly, is

rotational loss, ql is predicted quaternion and is

ground truth quaternion.

3.4 bration Inference
Similarly to [7] and [8], the designed network does

not directly predict the extrinsic calibration matrix. As

the generated depth image is based on the mis-calibra-

tion matrix Trand, the predicted matrix will express the

deviations from the initial parameters. To obtain the

extrinsic calibration matrix, the quaternion q in Tpred​
is first converted into a standard 3 × 3 rotation matrix,

which can be represented as

(16)

where R is 3 × 3 rotation matrix and w, x, y, z is the

element in quaternion vector q = (w, x, y, z). Finally,

the T matrix is computed as follows

(17)

where Tpred is predicted transformation matrix

misalignment and Tinit is the matrix multiplication of

transformation matrix misalignment Trand and ground

truth extrinsic parameters T.

Several learning-based methods for extrinsic cali-

bration [7] and [8] employ an iterative inference ap-

proach, which progressively refines the calibration

through multiple networks across different ranges. In

contrast, this study only employs single model ap-

proach similar to that in [16].

Ⅳ. Experiment

4.1 Dataset
The experiment was conducted on the Karlsruhe

Institute of Technology and Toyota Technological

Institute (KITTI)-360 dataset, which comprises eight

sequences taken by four cameras, two utilizing fisheye

lenses. The fisheye cameras of the KITTI-360 dataset

use the model of Mei and Rives[15] as the projection

model.

The present experiment was conducted on fisheye

images from camera 2 (76,251 images in total). We

also used the Velodyne HDL-64E LiDAR point cloud

Fig. 2. Examples of fisheye images from the KITTI-360
dataset

Initial misalignment
(tr/rot)

Metrics
Translation (cm) Rotation ( ° )

Et X Y Z Er Roll Pitch Yaw

0.5m/5.0°
Mean 2.264 1.375 0.753 1.208 0.282 0.171 0.150 0.089

Median 1.991 1.085 0.579 0.941 0.241 0.126 0.119 0.070

Std 1.095 1.228 0.716 1.095 0.197 0.181 0.137 0.081

0.2m/2.0°
Mean 1.608 0.936 0.486 0.929 0.104 0.130 0.108 0.073

Median 0.754 0.756 0.394 0.754 0.094 0.104 0.088 0.060

Std 0.927 0.814 0.436 0.784 0.057 0.115 0.091 0.059

Table. 1. Model performance on two different initial misalignments.
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data provided in the KITTI-360 dataset for depth map

generation. The fisheye images and LiDAR have been

already synchronized in the dataset. All sequences ex-

cept sequence 00 were used for training; the remaining

was reserved for testing and validation.

As mentioned in Section III, the point cloud data

were mis-calibrated using Trand and projected onto the

2D fisheye image. The initial translation and rotation

misalignments were 0.5 meter and 5.0°, respectively.

Following[7], the RGB images were augmented with

color jittering alone.

4.2 Training Details
The proposed deep learning model was im-

plemented using the PyTorch library and trained on

an NVIDIA RTX 3090Ti GPU (24GB), paired with

an Intel Xeon 4215R CPU and 32GB of ran-

dom-access memory (RAM). The model includes ap-

proximately 8M parameters. Training was performed

with a batch size of 16 over 75 epochs. The initial

learning rate was set to 1e−4 and was reduced by

a factor of 0.3 whenever the validation performance

stagnated for 10 consecutive evaluations.

4.3 Results and Discussion
In this experiment, our approach operates within

a maximum initial misalignment of 5.0° in rotation

and 0.5 meter in translation. The translation error Et,

defining the Euclidean distance between the predicted

translation tpred and ground truth translation tgt, is

mathematically expressed as

(19)

where tgt and tpred are ground truth and predicted trans-

lation respectively. Meanwhile, Er is calculated using

the quaternion distance formula. The quaternion dis-

tance is computed as

(19)

where qgt is the ground truth quaternion, qpred is pre-

dicted quaternion and tw, tx, ty, tz are the Hamilton

products of qgt and qpred. In addition, we provide the

absolute error on each translation axis (X, Y, Z) and

in each rotational angle (roll, pitch, yaw). The roll,

pitch, yaw are defined as

(20)

(21)

(22)

where Rpred is the 3 × 3 predicted rotation matrix con-

verted from predicted quaternion qpred.

Given the limited references of learning-based

LiDAR and fisheye camera calibration, particularly on

the KITTI-360 dataset, we also benchmarked our

model against other models trained on regular pinhole

camera images from the KITTI Odometry dataset us-

ing similar training methods. The KITTI Odometry

consists of 22 sequences with 43,552 frames in total.

All comparisons were performed at initial translation

Method
(KITTI Odometry)

Translation (cm) Rotation ( ° )

Mean X Y Z Mean Roll Pitch Yaw

LCCNet [7] 1.673 1.669 1.319 2.032 0.157 0.055 0.308 0.109

MRCNet [8] 0.895 0.814 0.614 1.257 0.111 0.037 0.229 0.068

CalibDepth [13] 0.918 0.997 0.565 1.193 0.163 0.041 0.060 0.388

Table. 2. Comparison of other methods with an initial misalignment of 0.5m/5.0° (translation/rotation).

Method
(KITTI-360)

Translation (cm) Rotation ( ° )

Mean X Y Z Mean Roll Pitch Yaw

Borer et al. [12] - - - - 0.147 0.175 0.117 0.151

Ours 1.106 1.375 0.753 1.208 0.136 0.171 0.150 0.089



논문 / Deep Learning-Based Lightweight LiDAR and Fisheye Camera Online Extrinsic Calibration

709

and rotation misalignments of 0.5 meter and 5.0°, re-

spectively, and all reported metrics are the means of

all sequences. The comparison results are presented

in Table 2.

The proposed method outperforms the approach of

Borer et al.[12] in terms of rotation accuracy, but as

Borer et al. did not report the translation performance,

the translation misalignment in their method is not di-

rectly comparable with ours. Furthermore, Borer et

al.’s method is not a deep learning-based method.

Compared to KITTI Odometry dataset methods, our

model achieves misalignment prediction performance

comparable to those methods within a similar max-

imum misalignment range.

We also evaluate our method alongside other deep

learning-based approaches by comparing model re-

source utilization during inference such as parameter

count, inference time, GPU memory usage, and stor-

age capacity. For iterative methods, since they have

multiple trained models, we selected a single model

with an initial misalignment similar to our approach.

The results were replicated in a resource-constrained

setup featuring an NVIDIA RTX 3060 (8GB), an Intel

i7-12700 (12th Gen) processor, and 16GB of RAM.

The operating system is Ubuntu 20.04. The number

of workers used for the GPU is 0 and the batch size

is set to 1. The findings are summarized in Table 3.

This evaluation highlights the model’s efficiency un-

der limited computational resources, reinforcing its

practicality for real-world deployment.

As seen in Table 3, our proposed model has a

slightly slower inference time compared to

MRCNet[8]. However, in other aspects, such as param-

eter count, GPU memory usage, and storage require-

ments, our model is significantly more efficient. This

highlights the lightweight property of our model and

its suitability for real-time inference.

The extrinsic calibration results are visualized in

Fig. 3. As shown in the image, the LiDAR point cloud

projection closely resembles the ground truth, indicat-

ing that both the LiDAR and fisheye camera are cali-

brated with minimal misalignment.

Ⅴ. Conclusion

We proposed a deep learning-based method for ex-

trinsic calibration between LiDAR and fisheye

cameras. The model introduces a feature-extraction

approach using residual SphereConv2D, an enhance-

ment of SphereConv2D from SphereNet. In addition,

it incorporates optical flow with a depth image as the

flow reference. This lightweight model with only 8M

parameters is designed for real-time applications.

The proposed method calibrates the extrinsic pa-

Fig. 3. Estimated extrinsic calibration using the proposed
deep learning model. From left to right, each row shows
the initial misalignment, ground truth, and calibrated image
results.

Method
(KITTI Odometry)

Parameter count
(params)

Average inference time
(second)

Average GPU memory
usage (MB)

Storage (MB)

LCCNet [7] 69,987,887 0.010 2,030 840.1

MRCNet [8] 76,750,343 0.020 2,496 827.5

Table. 3. Comparison of resource utilization across deep learning methods during inference

Method
(KITTI-360)

Parameter count
(params)

Average inference time
(second)

GPU Memory usage
(MB)

Storage (MB)

Ours 7,925,365 0.021 320 90.98
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rameters under initial misalignments of up to 0.5 me-

ter in translation and 5.0° in rotation. It achieves mean

translation errors of 1.375, 0.753, and 1.208 cm along

the X, Y, and Z axes, respectively, and mean rotation

errors of 0.171°, 0.150°, and 0.089° in the roll, pitch,

and yaw directions, respectively.
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