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Deep Learning-Based Lightweight LiDAR and Fisheye Camera
Online Extrinsic Calibration

Sang-Chul Kim®', Yeong-min Jang”
ABSTRACT

Autonomous driving has been extensively researched in recent years. To improve the mobility and
decision-making capabilities of autonomous vehicles, multiple sensors have been integrated to complement the
limitations of individual sensors. For example, Light Detection and Ranging (LiDAR) is frequently combined
with camera data to overcome the narrow field-of-view (FoV) of traditional pinhole cameras. The fisheye
cameras of LIDAR expand the FoV from up to 80° in traditional cameras to 180°, which is advantageous for
autonomous driving applications. This study introduces a lightweight, deep learning-based LiDAR-fisheye
camera fusion model for real-world environments. The mean translation errors are 1.375, 0.753, and 1.208 cm
along the X, Y, and Z axes, respectively, and the mean rotation errors are 0.171°, 0.150°, and 0.089° in the

roll, pitch, and yaw directions, respectively. These results demonstrate the efficiency and proficiency of our

sensor-fusion approach for autonomous driving.
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I. Introduction

Autonomous driving technology, an emerging field
that enables vehicles or robots to navigate and operate
without human intervention, can potentially revolu-
tionize transportation and has therefore attracted much
attention from both academicians and industrial
researchers. Many state-of-the-art methods achieve
autonomous functionality through advanced tech-
nologies, seeking more localized and efficient sensor
solutions than satellite-based systems such as Global
Positioning Systems and Global Navigation Satellite
Systems, which are primarily limited by high latency.
The combination of camera and Light Detection and
Ranging (LiDAR) data is considered as a standout ap-
proach for autonomous driving systems'!.

Cameras capture high-resolution, color-rich im-

agery of the surrounding environment, enabling the
detection and recognition of objects, textures, and oth-
er visual details with remarkable clarity. The standard
pinhole camera is widely used because it is both sim-
ple and effective, but its field-of-view (FoV) is limited
to 80°. An ultrawide FoV (180°) is provided by fish-
eye cameras, which can capture substantially more da-
ta and features in a single image than pinhole cam-
eras'?.

However, as camera sensors cannot measure dis-
tances directly, they cannot adequately capture the
depth information. The limited depth perception chal-
lenges the interpretation of spatial relationships be-
tween the vehicle and its surroundings objects.

Unlike traditional cameras, LiDAR sensors provide
precise distance measurements. The collected data are

represented as a three-dimensional array of points
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with X, Y, and Z coordinates in a Cartesian system.
These arrays, called point clouds, provide a detailed
spatial ~ representation of the  environment.
Accordingly, LiDAR is a critical component in auton-
omous driving systems.

Despite these advantages, the high cost and compu-
tational intensity of LiDAR devices greatly raises the
cost of large-scale deployment. In addition, LIDAR
data are inherently sparse and lack red - green - blue
(RGB) color information, complicating their inter-
pretation and processing™.

To avoid these limitations, LIDAR and camera sen-
sors data are commonly combined in recent autono-
mous driving systems. The integration of cameras and
LiDAR can notably enhance the capabilities of both
autonomous driving and robotics systems. However,
the simultaneous deployment of multiple sensors in-
creases the computational complexity of the system.
The data generated by these sensors can be highly
diverse and complex, requiring sophisticated process-
ing to extract meaningful insights.

Traditionally, feature extraction and decision-mak-
ing tasks based on fusion sensor data have been per-
formed by algorithms such as Iterative Closest
Point™, RANSAC™, and K-Means'®. Although these
methods perform effectively in structured or static en-
vironments, they are often less successful under dy-
namic driving conditions.

In recent years, deep learning has become a focal
point of both research and practical applications.
Researchers in the autonomous driving and robotics
fields have explored ways of integrating deep learning
techniques into their workflows. Given high-quality
and normally distributed data, a well-designed deep
learning methods leverage neural networks to adapt
to variations in sensor viewpoints, lighting conditions,
and environmental dynamics, making them effective
for extrinsic LiDAR-camera calibration in complex
and unstructured environments.

The present study proposes a deep learning-based
online extrinsic calibration method that fuses the data
of LiDAR and fisheye camera sensors. Leveraging the
complementary strengths of the two sensors, the meth-
od aims to enhance the capabilities of autonomous

driving and robotic systems. Whereas LiDAR pro-
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vides precise distance measurements between the sen-
sor (or vehicle) and surrounding objects, the fisheye
camera captures a comprehensive 180° RGB repre-

sentation of the environment.
II. Related Research

Both the intrinsic and extrinsic parameters of each
sensor in the data-fusion system must be calibrated
to ensure accurate data integration. In this work, we
assume that the intrinsic parameters of the fisheye
camera and LiDAR provided in the dataset have been
calibrated by the manufacturer, as we follow similar
studies™®. Therefore, only extrinsic calibration is con-
sidered here. However, for real-environment applica-
tion, we acknowledge that even minor residual errors
in intrinsic calibration can affect the extrinsic calibra-
tion accuracy.

The existing LiDAR-Camera calibration methods
can be broadly categorized into target-based, target-
less, and learning-based methods. These three catego-

ries are summarized below.

2.1 Target-based Methods

For accurate calibration, target-based methods fre-
quently establish the correspondence between two-di-
mensional (2D) camera images and three-dimensional
(3D) LiDAR points of specially designed objects.

Checkerboards have been extensively utilized in
target-based extrinsic calibration studies. For instance,
Geiger et al.”! calibrated LiDAR and cameras by de-
tecting the corners of checkerboard patterns and esti-
mating the transformation matrix between the two

sensors. Similarly, Wang et al.'%)

proposed an online
extrinsic calibration method employing a checker-

board for 3D LiDAR and panoramic cameras.

2.2 Targetless methods

In real-world autonomous driving and robotics sce-
narios, where ideal calibration targets such as checker-
boards are often unavailable, researchers have devel-
oped various targetless methods.

For instance, Song et al.' proposed the Galibr
method, which performs extrinsic LIDAR and camera
calibration through ground plane features. Borer et
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al."? calibrated LiDAR and its fisheye camera using
a continuous online extrinsic calibration approach

based on a mutual-information matching method.

2.3 Learning-based Methods

Deep learning has been widely adopted in extrinsic
calibration scenarios. Lv et al.”’ introduced LCCNet,
a neural network model for LiDAR and camera
self-calibration, which leverages a cost volume layer
to facilitate feature matching between RGB image fea-
tures and depth map features. Wang et al.”®! proposed
Multiresolution LiDAR-Camera Calibration Network
(MRCNet), an end-to-end neural network that inputs
the RGB image and the depth image generated from
the LiDAR point cloud and predicts the trans-
formation matrix for extrinsic calibration. Their net-
work adopts a geometric feature-constraint module
and performs multiresolution feature extraction and
feature matching. Zhu et al."®! proposed CalibDepth,
which also relies on RGB and depth images. The
depth image in CalibDepth provides a unified repre-
sentation, bridging the gap between the RGB image
data and the point cloud inputs. CalibDepth also in-
corporates long short-term memory for autoregressive
generation of the calibration actions at each step.

The abovementioned studies highlight a notable
lack of research on extrinsic calibration between
LiDAR and fisheye cameras, particularly in learn-
ing-based approaches. In this study, we design an
end-to-end, deep learning-based online extrinsic cali-

bration method for LiDAR and fisheye cameras.
. Proposed Methods

The proposed model integrates a residual spherical
convolution layer for feature extraction from fisheye

images with an optical flow based on the depth map.

3.1 Problem Formulation

Given a multimodal input composed of RGB im-
ages and a LiDAR point cloud, online extrinsic cali-
bration obtains a transformation matrix 7 consisting
of a 3 x 3 rotation matrix and 1 x 3 translation vector.
During the learning process, a random transformation
Trana is applied to matrix 7, obtaining an initial matrix
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Fig. 1. Architecture of the proposed model.

Tinir. Tinir is then applied to the point cloud to obtain
a mis-calibrated depth image. Projection matrix fish-
eye-depth images were generated as described in [14].
The objective of the proposed model is to estimate
the extrinsic calibration matrix 77..s denoted as 7eq
based on the RGB image and the point cloud using
the mis-calibrated depth image.

3.2 Network Architecture

Our proposed model is divided into three main
components: feature extraction, feature matching, and
a regression layer. This subsection describes each

component in detail.

3.2.1 Feature Extraction

Feature extraction by the proposed model occurs
through two parallel branches, one for the fisheye
RGB image, the other for the mis-calibrated depth
map. To effectively handle the spherical images gen-
erated by the fisheye camera, we introduce a residual
spherical feature-extraction technique to both
branches. This approach builds upon a modified

spherical convolution of SphereNet!'”!

, adapting it to
a residual framework to capture the semantic features
in both the original and refined inputs, ultimately en-
hancing the quality of the extracted features.

The spherical convolution of SphereNet lifts the

kernel of a 3 x 3 convolution layer into spherical
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space. The kernel shape is defined in spherical space
with k€ {-1,0, 1} and step sizes of Ay and A,
The kernel sampling s is defined as

oo = (0,0) M
S(+1,0) = (iAcb'O) @
sorn = (0,%44) @)

Saien = (FAg E4p) )

where @ measures the inclination from the positive
z-axis downward (ranging from O  at the north pole
to 180 at the south pole), while ¢ measures the rota-
tion around the z-axis in the xy-plane, increasing
counterclockwise from a reference direction (typically

the positive x-axis).

3.2.2 Feature Matching

The feature matching layer is inspired by
MRCNet!®, which creates a 3D correlation volume
representing the spatial correlation between the fea-
tures extracted from RGB image and LiDAR depth
map. The 3D correlation volume is defined as

c (xrgb(pi)vxdepth(pj)) = U i,jeD ((Xrgb(pi))Trxdepth(pj))r
©)]

where X, and X4 denote a feature in the RGB image
and depth map respectively, D represents the search
region where feature correspondences are computed,
while p; and p; denote pixel locations in the RGB im-
age and the depth map. The optical flow between the
two feature sets is then estimated from the 3D correla-
tion volume within a learning-based layer, comprising
a regular convolutional layer that outputs a channel
of size two representing the horizontal and vertical
flow vectors. In this study, the depth map was taken
as the “target” of the optical flow.

3.2.3 Regression Layer

The regression layer inputs the features x with the
finest resolution and processes them through multiple
convolutional layers, followed by an average pooling
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layer that condenses the features. The pooled features
are flattened and then passed into a fully connected
layer along with an activation function LeakyReLU

(O]

s i . >
LeakyReLU(x;) = { X if ;20 }

ax; if ;<0

where « is a small constant. Afterwards, the feature
X is passed into a dropout layer. The process can be

represented mathematically as

x « avgpool (x) %
x « view(x,B,—1) ®)
x « FCN(x) )

x « LeakyReLU(x, ) (10)
x < Dropout(x) 11)

where B is batch size. This operation reshapes pooled
feature x from B X C x 1 X 1 to a vector of size B
x C.

The reshaped feature is passed into two prediction
branches: one for rotation in quaternion g format and
the other for predicting the X ¥ and Z components
of the translation vector « Subsequently, the predicted

quaternion is normalized as below

q _ q
norm —
12
ISt gt +e (12)

where € (€ = 1le —10) is a small constant added for
numerical stability. The output 7,,.q is a normalized
quaternion vector and a translation vector, which can

be represented as

(Gnorm, t) (13)

where Gnorm ER* is the normalized quaternion vector

and +ER? is the translation vector.

3.3 Loss Functions
In this study, the loss functions of both quaternion

and translation predictions in 7., are expressed in
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terms of the Euclidean distance. The Euclidean-dis-
tance loss functions of translation and rotation are re-
spectively defined as

Lt

=l th —t' Iy, (14)

l

q
L =1lqk - T (15)

where Lf is translation loss, /is predicted translation
. . - .
and &gt is ground truth translation. Similarly, Lﬁ is

. . . . U
rotational loss, ¢ is predicted quaternion and gt is

ground truth quaternion.

3.4 bration Inference

Similarly to [7] and [8], the designed network does
not directly predict the extrinsic calibration matrix. As
the generated depth image is based on the mis-calibra-
tion matrix 77,4 the predicted matrix will express the
deviations from the initial parameters. To obtain the
extrinsic calibration matrix, the quaternion q in Zjeq
is first converted into a standard 3 X 3 rotation matrix,

which can be represented as

1-2(y%2+2%) 2(xy—wz) 2(xz +wy)
R=| 2(xy+wz) 1-2(x%+z%) 2(yz—wx)
2(xz — wy) 2z +wx)  1-2(x*+y?)
(16)

where R is 3 X 3 rotation matrix and w; x, y; zis the
element in quaternion vector q = (W, X, ¥, 2. Finally,
the 7 matrix is computed as follows

T = Tprea Tinie- a7

Fig. 2. Examples of fisheye images from the KITTI-360
dataset

where 7,.s is predicted transformation matrix
misalignment and 7 is the matrix multiplication of
transformation matrix misalignment 77,,; and ground
truth extrinsic parameters 7

Several learning-based methods for extrinsic cali-
bration [7] and [8] employ an iterative inference ap-
proach, which progressively refines the calibration
through multiple networks across different ranges. In
contrast, this study only employs single model ap-

proach similar to that in [16].
IV. Experiment

4.1 Dataset

The experiment was conducted on the Karlsruhe
Institute of Technology and Toyota Technological
Institute (KITTI)-360 dataset, which comprises eight
sequences taken by four cameras, two utilizing fisheye
lenses. The fisheye cameras of the KITTI-360 dataset

use the model of Mei and Rives!"”

as the projection
model.

The present experiment was conducted on fisheye
images from camera 2 (76,251 images in total). We

also used the Velodyne HDL-64E LiDAR point cloud

Table. 1. Model performance on two different initial misalignments.

Initial misalignment e Translation (cm) Rotation (°)
(tr/rot) E, X Y z E, Roll Pitch Yaw
Mean 2.264 1.375 0.753 1.208 0.282 0.171 0.150 0.089
0.5m/5.0° Median 1.991 1.085 0.579 0.941 0.241 0.126 0.119 0.070
Std 1.095 1.228 0.716 1.095 0.197 0.181 0.137 0.081
Mean 1.608 0.936 0.486 0.929 0.104 0.130 0.108 0.073
0.2m/2.0° Median 0.754 0.756 0.394 0.754 0.094 0.104 0.088 0.060
Std 0.927 0.814 0.436 0.784 0.057 0.115 0.091 0.059
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data provided in the KITTI-360 dataset for depth map
generation. The fisheye images and LiDAR have been
already synchronized in the dataset. All sequences ex-
cept sequence 00 were used for training; the remaining
was reserved for testing and validation.

As mentioned in Section III, the point cloud data
were mis-calibrated using 77,4 and projected onto the
2D fisheye image. The initial translation and rotation
misalignments were 0.5 meter and 5.0°, respectively.
Following!”, the RGB images were augmented with

color jittering alone.

4.2 Training Details

The proposed deep learning model was im-
plemented using the PyTorch library and trained on
an NVIDIA RTX 3090Ti GPU (24GB), paired with
an Intel Xeon 4215R CPU and 32GB of ran-
dom-access memory (RAM). The model includes ap-
proximately 8M parameters. Training was performed
with a batch size of 16 over 75 epochs. The initial
learning rate was set to le—4 and was reduced by
a factor of 0.3 whenever the validation performance

stagnated for 10 consecutive evaluations.

4.3 Results and Discussion

In this experiment, our approach operates within
a maximum initial misalignment of 5.0° in rotation
and 0.5 meter in translation. The translation error Ej,
defining the Euclidean distance between the predicted
translation #y.; and ground truth translation &, is
mathematically expressed as

Ee = Nty — tprea ll2- 19)

where f; and £,.; are ground truth and predicted trans-
lation respectively. Meanwhile, E; is calculated using
the quaternion distance formula. The quaternion dis-

tance is computed as

Er(qgtr qpred) =2tan™! (W) (19)
w

where g, is the ground truth quaternion, gpq is pre-
dicted quaternion and ¢, 4, &, f, are the Hamilton
products of g, and gyq In addition, we provide the
absolute error on each translation axis (X, ¥ Z) and
in each rotational angle (roll, pitch, yaw). The roll,
pitch, yaw are defined as

yaw = atan2 (RpTEdZI' Rpredll) (20)

. 2 2
pitch = atan2 (_RW@dsf Rprm31 + Rpred%)

@n
roll = atan2 (RpredSZ;Rpred33) (22)

where Ry is the 3 % 3 predicted rotation matrix con-
verted from predicted quaternion gpeq

Given the limited references of learning-based
LiDAR and fisheye camera calibration, particularly on
the KITTI-360 dataset, we also benchmarked our
model against other models trained on regular pinhole
camera images from the KITTI Odometry dataset us-
ing similar training methods. The KITTI Odometry
consists of 22 sequences with 43,552 frames in total.
All comparisons were performed at initial translation

Table. 2. Comparison of other methods with an initial misalignment of 0.5m/5.0° (translation/rotation).

Method Translation (cm) Rotation (°)

(KITTI Odometry) Mean X Y v/ Mean Roll Pitch Yaw
LCCNet [7] 1.673 1.669 1.319 2.032 0.157 0.055 0.308 0.109
MRCNet [8] 0.895 0.814 0.614 1.257 0.111 0.037 0.229 0.068

CalibDepth [13] 0.918 0.997 0.565 1.193 0.163 0.041 0.060 0.388
Method Translation (cm) Rotation (°)
(KITTI-360) Mean X Y z Mean Roll Pitch Yaw

Borer et al. [12] - - - - 0.147 0.175 0.117 0.151

Ours 1.106 1.375 0.753 1.208 0.136 0.171 0.150 0.089
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and rotation misalignments of 0.5 meter and 5.0°, re-
spectively, and all reported metrics are the means of
all sequences. The comparison results are presented
in Table 2.

The proposed method outperforms the approach of

Borer et al.l'?

in terms of rotation accuracy, but as
Borer et al. did not report the translation performance,
the translation misalignment in their method is not di-
rectly comparable with ours. Furthermore, Borer et
al.’s method is not a deep learning-based method.
Compared to KITTI Odometry dataset methods, our
model achieves misalignment prediction performance
comparable to those methods within a similar max-
imum misalignment range.

We also evaluate our method alongside other deep
learning-based approaches by comparing model re-
source utilization during inference such as parameter
count, inference time, GPU memory usage, and stor-
age capacity. For iterative methods, since they have
multiple trained models, we selected a single model
with an initial misalignment similar to our approach.
The results were replicated in a resource-constrained
setup featuring an NVIDIA RTX 3060 (8GB), an Intel
i7-12700 (12th Gen) processor, and 16GB of RAM.
The operating system is Ubuntu 20.04. The number
of workers used for the GPU is 0 and the batch size
is set to 1. The findings are summarized in Table 3.
This evaluation highlights the model’s efficiency un-
der limited computational resources, reinforcing its
practicality for real-world deployment.

As seen in Table 3, our proposed model has a
slightly ~slower inference time compared to
MRCNet®™. However, in other aspects, such as param-
eter count, GPU memory usage, and storage require-
ments, our model is significantly more efficient. This

highlights the lightweight property of our model and

)

D
-

Fig. 3. Estimated extrinsic calibration using the proposed
deep learning model. From left to right, each row shows
the initial misalignment, ground truth, and calibrated image
results.

its suitability for real-time inference.

The extrinsic calibration results are visualized in
Fig. 3. As shown in the image, the LiDAR point cloud
projection closely resembles the ground truth, indicat-
ing that both the LiDAR and fisheye camera are cali-
brated with minimal misalignment.

V. Conclusion

We proposed a deep learning-based method for ex-
trinsic calibration between LiDAR and fisheye
cameras. The model introduces a feature-extraction
approach using residual SphereConv2D, an enhance-
ment of SphereConv2D from SphereNet. In addition,
it incorporates optical flow with a depth image as the
flow reference. This lightweight model with only 8M
parameters is designed for real-time applications.

The proposed method calibrates the extrinsic pa-

Table. 3. Comparison of resource utilization across deep learning methods during inference

Method Parameter count Average inference time | Average GPU memory Storage (MB)
(KITTI Odometry) (params) (second) usage (MB)
LCCNet [7] 69,987,887 0.010 2,030 840.1
MRCNet [8] 76,750,343 0.020 2,496 827.5
(Kﬁ?;i{%cé 0 Para(r;:rt:; Sc)ount Average(;;fj;zr)lce time | GPU M(el\n/[lg;'y usage Storage (MB)
Ours 7,925,365 0.021 320 90.98
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rameters under initial misalignments of up to 0.5 me-

ter in translation and 5.0° in rotation. It achieves mean

translation errors of 1.375, 0.753, and 1.208 cm along

the X ¥ and Z axes, respectively, and mean rotation
errors of 0.171°, 0.150°, and 0.089° in the roll, pitch,
and yaw directions, respectively.
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