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Ⅰ. Introduction

Research into drone and autonomous vehicle tech-

nology has advanced rapidly in the past few years.

The environment of drone or autonomous driving is

very complex and dynamic. It is shown that a single

sensor cannot guarantee reliable recognition in all

scenarios.

LiDAR―camera systems are widely used in ro-

botic vision applications such as 3D object detection

and navigation task solving. In these applications, the

LiDAR sensor can generate a sparse point cloud of

the surroundings based on the distance measured by

the light. The main advantage of LiDAR is its active

illumination, which can operate independently of the

ambient light. However, the disadvantages of LiDAR

are its high cost, limited resolution, and low refresh

rate, such as the Velodyne-64 LiDAR, which only

measures 64 channels. In addition, LiDAR sensors

cannot measure RGB information. RGB cameras are

relatively inexpensive and can produce high-reso-

lution color images at high frame rates. However, they

cannot directly measure the depth information. In oth-

er words, LiDAR sensors generate sparse 3D in-

formation, while cameras capture 2D dense

information. Fortunately, by fusion of LiDAR and

camera measurements, most of the shortcomings of

LiDAR sensors can be compensated for by RGB cam-

eras, and vice versa. After that, LiDAR-camera sys-

tems can detect and analyze target objects with more

advanced and intelligent vision. However, sensor fu-
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As the integration of multi-sensor systems, such as cameras and LiDAR, becomes increasingly common in
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The proposed block allows the network to be lightweight and excel in calibration performance. The proposed
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respectively. Additionally, it achieved rotation errors of 0.182°, 0.139°, and 0.141° for roll, pitch, and yaw,

respectively. The proposed method also performs calibration in a one-shot approach, which is suitable for

real-time applications. These results highlight the capabilities of the proposed method in enabling reliable fusion

of LiDAR and camera data, enhancing the perception capabilities of autonomous vehicles.
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sion requires extrinsic parameters of LiDAR and

camera. Therefore, it is essential to calibrate the ex-

ternal parameters of these sensors in [1].

Extrinsic calibration is necessary to align the rela-

tive spatial position between LiDAR and the camera.

Since LiDAR and cameras collect data in different

ways, it is essential to determine their relative rela-

tionship accurately. Extrinsic calibration determines

extrinsic parameters which are represented as a trans-

formation matrix. This transformation matrix calcu-

lates the relative position and rotation matrix between

LiDAR and the camera to convert the data into a com-

mon coordinate system.

One approach of extrinsic calibration is to use a

specified target, such as a chessboard pattern or other

straight-line features to extract 2D-3D correspond-

ences between the sensors and estimate the extrinsic

parameters of the LiDAR and cameras. These meth-

ods are also called target-based calibration methods.

In addition, it involves comparing feature points from

LiDAR point clouds and camera images to estimate

the relative transformation between the two sensors.

Most target-based correction algorithms are time-con-

suming, tedious, and offline, making them unsuitable

for drone or autonomous driving. During drone oper-

ation, the positions of sensors will vary slightly de-

pending on the flight time. After a period of operation,

the sensor must be recalibrated to remove accumu-

lated errors due to drift. This necessitates the use of

online and targetless calibration methods.

Several targetless methods have been developed

over the years, which use local feature extraction, such

as edges and planes. However, these methods still lack

the capability in recognizing diverse environments.

Deep learning is introduced to enhance the targetless

scheme. However, deep learning methods may incur

high computational costs. One of the parameters to

measure computational cost is the number of trainable

parameters used in the network, which determines the

size of the deep learning model. Many current meth-

ods use architecture comprising of more than 10 mil-

lion parameters, such as PSNet[2] and CalibDepth[3].

These methods typically use well-known architectures

such as ResNet18, which consists of approximately

11 million parameters. Reducing model size allows

for less memory requirements, enabling its application

in onboard computers in autonomous vehicles.

Therefore, in this study, we propose a new online

camera-LiDAR extrinsic calibration, which can in-

dependently calibrate the extrinsic parameters be-

tween a camera and a LiDAR sensor without using

any specific pattern or calibration object. We focus

on developing a lightweight model with a reduced

number of parameters. More specifically, our con-

tribution can be summarized as follows:

1) We proposed a one-shot extrinsic calibration meth-

od comprising multi-dilation feature extraction

blocks capable of extracting sparse features and

fine-grained features of both RGB camera image

and LiDAR depth image.

2) The proposed method only comprises ~4 million

trainable parameters, making it lightweight for au-

tonomous vehicle applications. The proposed ar-

chitecture consists of two branches of a feature ex-

traction network, each comprising of only 330,000

parameters.

3) By implementing one-shot calibration and light-

weight model architecture, exquisite real-time per-

formance can be achieved. This method was

trained and tested on the KITTI odometry dataset,

which consists of diverse environments.

Ⅱ. Related Research

Mainly, research works in extrinsic calibration have

primarily concentrated on three categories: tar-

get-based methods, target-less methods, and learn-

ing-based methods, each with its own unique approach

and advantages.

The first category, target-based methods, relies on

objects with specified structures or patterns as mul-

ti-sensor co-shooting targets to obtain the extrinsic pa-

rameters between point clouds and RGB images[4].

Giacomini et al.[5] develop a simple yet robust method

for LiDAR and RGB camera extrinsic calibration that

leverages small markers and requires minimal human

intervention, widely available calibration targets such

as A3/A4-sized checkerboard patterns to reduce de-

pendency on complex or custom calibration targets,

which often require specialized equipment and
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manufacturing. Jeong et al.[6] proposed a method

which uses perspective projection instead of orthogo-

nal projection onto a checkerboard target to address

noisy LiDAR points problems while obtaining ex-

trinsic parameters.

The second category, the targetless methods, elimi-

nates the need for predefined targets by estimating ex-

trinsic parameters by extracting useful information

from surrounding environments automatically[4].

Muñoz-Bañón et al.[7] introduced a method for cali-

brating the extrinsic parameters of camera and LiDAR

by utilizing local edge features in arbitrary environ-

ments, allowing for the calculation of 3D-to-2D errors

between the data from both sensors. To minimize

these errors, they employed the per-

spective-three-point (P3P) algorithm in their solution.

Song et al.[8] developed a method called Galibr, which

uses ground planes and edge information to calibrate

the extrinsic parameters of the camera and LiDAR.

Lastly, learning-based methods leverage advance-

ments in machine learning and require no artificial

definition of features, which can learn useful in-

formation using neural networks to automate and en-

hance the calibration process[9]. Schneider et al.[10] in-

troduce RegNet as the first method for calibration that

employs a deep convolutional neural network (CNN),

extracting and matching features with a network be-

fore regressing the calibration parameters.

CalibRCNN[11] and CalibDepth[3] incorporate both

CNN and recurrent networks, such as LSTM, to per-

form calibration not only using spatial features, but

also temporal features. Xiao et al.[12] incorporate trans-

former architecture inside of the deep learning model

which will extract and leverage correlation features

with higher contributions. Together, these method-

ologies represent a comprehensive framework for ad-

dressing the challenges of LiDAR-camera calibration.

In contrast to these methods, our approach empha-

sizes developing a deep learning model tailored for

practical, on-the-field implementation. To achieve

this, we focus on designing a lightweight deep learn-

ing model that meets the requirements for efficiency

and real-world usability for calibrating the extrinsic

parameters in real time.

Ⅲ. Proposed Methods

In this approach, a deep neural network architecture

is proposed to estimate the extrinsic calibration pa-

rameters between LiDAR and camera sensors. Unlike

conventional methods, the proposed framework in-

troduces a significantly more lightweight prediction

model with only ~4 million parameters, making it

well-suited for real-world applications where compu-

tational efficiency is a critical consideration. In this

section, the problem definition, the architecture and

the functionality of each part, and loss function uti-

lization, will be elaborated.

3.1 Problem Definition
Extrinsic calibration in camera-LiDAR system is

the determination of the extrinsic parameters, which

represent the relative pose or rigid transformation be-

tween a LiDAR and a camera placed on the same

platform or vehicle. Extrinsic parameters are used to

transform the coordinate frame of one sensor to the

other, which is important in sensor fusion. To obtain

a 3D LiDAR point coordinate relative to the camera,

the following equation is used:

(1)

where Pc : (Xc, Yc, Zc) is the camera coordinate system,

PL : (XL, YL, ZL) is the LiDAR coordinate system, T
are the extrinsic parameter matrix, R is the rotation

matrix, and t is the translation vector of the

LiDAR-camera system.

In this study, the proposed extrinsic calibration

method aims to predict the amount of misalignment

in the extrinsic parameters. This misalignment is de-

fined as the difference or shift from the known initial

extrinsic parameters Tknown to the actual extrinsic pa-

rameters Tactual. The drift in extrinsic parameters oc-

curs during vehicle operation, mostly caused by vi-

brations, vehicle motions, and temperature changes,

which accumulate over time. The accumulated drift

in extrinsic can be expressed as:

(2)
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where DT is the extrinsic parameter misalignment

caused by this accumulated drift, denoted as rigid

transformation between Tknown and Tactual. The pro-

posed method will estimate DTpredicted to cancel the

misalignment term DT and calibrate the extrinsic pa-

rameters using the following equation:

(3)

If the prediction is accurate, and DT
will cancel each other, making Tknown and Tactual equal.

3.2 Network Architecture
The proposed calibration network is composed of

three main components: two branches of a feature ex-

traction network, a feature matching layer, and fully

connected layers. As all the parameters within these

components are differentiable, the overall network can

be trained end-to-end and simultaneously. The overall

scheme of the proposed method is depicted in Figure 1.

The first part is the feature extraction network,

which consists of two branches designed to extract

features from the RGB images and the depth images

from the point cloud data projection. The feature ex-

traction for each branch is shown in Figure 2. The

feature extraction comprises the multi-dilation block.

The proposed multi-dilation block consists of several

depthwise convolution layers that use various dilation

rates to allow more efficient multiscale feature

extraction.

Dilated convolution offers several advantages over

regular convolution. By introducing gaps between ker-

nel elements, it expands the receptive field without

increasing the number of parameters, allowing the net-

work to capture wide-range dependencies efficiently.

Additionally, dilated convolutions help preserve spa-

tial resolution by avoiding excessive downsampling.

However, dilated convolution with larger dilation may

cause gridding artifact problems, where some in-

formation is lost or overlapping in several pixels[13].

Thus, multiple dilation rates are applied to overcome

the gridding artifacts problem. Additionally, multiple

dilation rates can provide multiple resolution quality

in the feature extraction, allowing richer representa-

tion in the feature maps. By using multiple dilation

rates, sparse features of depth images can be extracted

more effectively. The proposed feature extraction also

obtains three feature map resolutions to be utilized

as coarse-to-fine feature matching in the next part of

the network. These multiresolution feature maps can

be denoted as f1(X), f2(X), and f3(X), from smallest
Fig. 1. The overall architecture of the proposed method.

Fig. 2. The architecture of the feature extraction.
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resolution to largest resolution, respectively, where X
is the input image (RGB image XRGB and depth image

Xdepth). Other parts of the feature extraction, transition

block and stem convolution, are used to reduce the

resolution of the feature maps.

The second part, the feature matching layer, com-

pares the obtained feature maps from both branches

by calculating the 3D correlation cost of correspond-

ing pixels in RGB and depth feature maps (Xrgb and

xdepth). The feature matching part is shown in Figure

3. This part was inspired by the optical flow estima-

tion scheme of PWC-Net[14]. A correlation layer is

used to compute the cost volume c(x1, x2) as the corre-

lation between the flattened feature vectors of Xrgb and

xdepth, which is expressed as follows:

(4)

To reduce complexity, a local cost volume is com-

puted within a small disparity range (d = 9). The re-

sulting cost volume has dimensions d2 × H ×W where

H and W are the height and width of the feature maps.

The cost volume calculation is performed in three

stages, each for f1(X), f2(X), and f3(X), where the fea-

ture matching is performed from fine features to

coarse features. For every stage, the pixel optical flow

is predicted using a CNN layer which determines the

misalignment in both input feature maps. Feature

warping is also performed to match the predicted flow

from the previous stage to the next one.

The third part, fully-connected layers, predicts the

transformation matrix between LiDAR and camera

sensors from the feature matching result of the RGB

branch and depth branch. The network includes three

layers of fully connected layers, followed by two sep-

arate branches, each comprising stacked fully con-

nected layers for estimating rotation and translation.

The network outputs a 1 × 3 translation vector and

a 1 × 4 rotation quaternion.

3.3 Loss Function
For training, the model utilizes an input pair con-

sisting of an RGB image and a misaligned depth

image. Three types of loss functions are employed:

a translation loss (LT), a rotation loss (LR), and a point

cloud distance loss (LP).

(5)

where lT, lR, and lP denotes respective loss weight.

The smooth L1 loss is applied to the translation

vector (tpred). Because it provides a smoother gradient

near zero due to the incorporation of a squared term.

For the rotation loss (LR), the quaternion angular dis-

tance form is used instead of Euclidean distance, as

quaternions represent directional information, and

Euclidean distance fails to capture their differences

accurately. The angular distance is defined as follows:

(6)

where qgt is the ground truth of quaternion, qpred is

the prediction, and Da is the angular distance of two

quaternions.

Besides the regression loss, we also compute the

point cloud distance in the loss function by computing

the distance between the predicted point cloud and

ground truth point cloud for each of the batch data

using the L2 normalization equation and dividing it

by the amount of the overall data. The point cloud

loss is expressed as follows:
Fig. 3. Feature matching architecture.
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(7)

This type of loss function, which combines trans-

lation loss, rotation loss, and point cloud distance loss,

is widely used in 3D computer vision, including ex-

trinsic calibration. Related works such as RegNet[10],

CalibDNN[15], CalibNet[16], and PSNet[2] employ sim-

ilar combined loss functions. Inspired by these meth-

ods, we adopt this approach.

The concept of this loss function originates from

the PoseNet[17] paper (for rotation and translation loss)

and the work of Fan et al.[18] (for point cloud distance

loss). These papers discuss the impact of these loss

components in detail. According to the PoseNet paper,

combining translation and rotation loss is essential, as

regressing position and orientation separately leads to

poor performance. Additionally, the CalibNet paper

highlights that incorporating point cloud distance loss

significantly reduces translation error by ensuring

proper alignment in 3D space

Ⅳ. Experiment and Result

4.1 Dataset
The KITTI odometry dataset[19] was used to train

the proposed model. The KITTI dataset comprises di-

verse driving environments in 22 driving sequences.

The dataset is split into a training set, which consists

of sequence 01-21 with 39,011 frames, and a vali-

dation and test set, which consists of 4541 frames of

sequence 00. To simulate the misalignment condition

in the LiDAR-camera system, the extrinsic parameters

are misaligned within the range of 0.25 m and 10°.

4.2 Training Environment
The training process was conducted using an Intel

Xeon Silver 4215R CPU and an NVIDIA Titan XP

GPU. The model was implemented with Python v3.10

and the PyTorch v2.2 library, utilizing CUDA v11.8

and cuDNN v11.8. The training dataset was processed

in batches of 16 over 200 epochs. At the start of the

training, the learning rate is set to 10-4 and reduced

by a factor of 0.1 if the validation loss stagnates for

10 consecutive epochs. Adam optimizer is also used

to update the model weights during training.

4.3 Evaluation Metrics
The performance of the proposed method is eval-

uated by measuring the rotation and translation errors

of the predicted extrinsic parameters. Absolute trans-

lation errors are evaluated by measuring the Euclidean

distance between predicted translation vectors and

ground truth translation vectors. The absolute trans-

lation error is expressed as follows:

(8)

Absolute rotation errors are evaluated by measuring

the Euler angle difference (Eyaw, Epitch, and Eroll) be-

tween predicted rotation and ground truth rotation.

4.4 Results and Discussions
The performance of the proposed method was as-

sessed using the KITTI odometry dataset with a mis-

alignment range of 0.25 m and 10°. This method em-

ploys a one-shot approach, which runs the model only

once per frame. This approach ensures good real-time

performance, efficient data processing, and efficient

inference. The performance of the proposed method

is then compared to several existing methods.

Table 1 presents the performance comparison in

terms of translation errors and Table 2 presents the

performance comparison in terms of rotation errors.

The performance of all existing methods, except

CalibDepth[3], were evaluated on the same misalign-

ment range with the proposed method (0.25 m and

10°), whereas CalibDepth were evaluated on mis-

alignment range of 1.5 m and 20°. For CalibRCNN[11],

CALNet[20], and PSNet[2], we include the results pre-

sented in the CalibFormer paper[12].

Based on Table 1, the proposed method achieved

the best accuracy in all translation errors metrics,

whereas, based on Table 2, the proposed method ach-

ieved best accuracy in one rotation errors metrics,

which is the pitch rotation error. The proposed method

shows exquisite performance, particularly in trans-

lation accuracy, whereas in terms of rotation accuracy,

the proposed method still requires improvements

while it is still comparable to the existing methods.
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Method
Translation (cm)

Mean X Y Z

CalibRCNN [11] 5.3 6.2 4.3 5.4

CalibDNN [15] 5.07 3.8 1.8 9.6

CALNet [20] 3.03 3.65 1.63 3.80

PSNet [2] 3.07 3.8 2.8 2.6

CalibFormer [12] 1.19 1.10 0.90 1.56

CalibDepth [3] 1.17 1.31 1.02 1.17

Proposed 0.61 1.08 0.18 0.56

Table 1. The translation performance comparison with
existing methods.

Method
Rotation (degree)

Mean Roll Pitch Yaw

CalibRCNN [11] 0.428 0.199 0.64 0.446

CalibDNN [15] 0.3 0.11 0.35 0.44

CALNet [20] 0.20 0.10 0.38 0.12

PSNet [2] 0.15 0.06 0.26 0.12

CalibFormer [12] 0.141 0.076 0.259 0.087

CalibDepth [3] 0.123 0.064 0.226 0.080

Proposed 0.154 0.182 0.139 0.141

Table 2. The rotation performance comparison with
existing methods.

The slight inferiority in rotation accuracy might be

caused by the smaller model size compared to the ex-

isting method and the utilization of non-pre-trained

feature extraction, unlike CalibFormer[12] which uses

pre-trained ResNet18. However, the rotation accuracy

of the proposed method is still applicable to the actual

application. Additionally, we focus on small model

size that allows extrinsic calibration to be performed

on smaller onboard computers.

The performance of the proposed method is also

evaluated qualitatively by observing the comparison

between the projected depth image onto RGB camera

image before and after the calibration. The visual re-

sult is presented in Figure 4, where the misaligned

input, calibrated image, and the ground truth are

presented. Figure 4 shows the proposed method is ca-

pable in aligning the point cloud to match the original

position and orientation shown in the ground truth.

The point cloud projections of the surrounding objects

and landmarks (such as trees, cars, and poles) are

well-aligned with their corresponding camera images.

We also compare the number of parameters with

the existing methods, as presented in Table 3. For this

comparison, only PSNet[2] and CalibDepth[3] men-

tioned the number of parameters in their articles ex-

plicitly, where PSNet only specified the size of its

one branch of feature extraction part. Other methods,

such as CalibRCNN[11], CalibDNN[15], CALNet[20],

and CalibFormer[12], mentioned the utilization of

ResNet-18, which has around ~11 M parameters.

These methods are not included in Table 3 because

the exact numbers are not mentioned explicitly in their

articles. Comparing the proposed method with meth-

ods included in the Table 3 and aforementioned ex-

cluded methods, it shows that the proposed method

utilized a much lower number of parameters while

still outperforming these existing methods, especially

in translation parameters.

In terms of real time performance, the proposed

method completes calibration for each frame in ap-

Fig. 4. The calibration results visualization of the
proposed method.

Methods Number of parameters

PSNet (one branch of feature
extraction part only) [2]

13.5 M

CalibDepth [3] 43 M

Proposed 4.03 M

Table 3. Number of parameters comparison with existing
methods.
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proximately 30 milliseconds, making it well-suited for

real-time applications. The computational analysis of

the proposed model is included in Table 4.

Ⅴ. Conclusion

This study proposes a deep learning-based target-

less LiDAR-camera extrinsic calibration for autono-

mous vehicle application. The proposed method uti-

lizes a novel feature extraction method comprising

multi-dilation blocks that can extract sparse and

fine-grained features of both RGB camera image and

LiDAR depth image. The proposed method also con-

sists of only 4 million parameters, making it

lightweight. The model is also executed in a one-shot

approach, allowing for efficient real-time applications.

The performance of the proposed method is also

evaluated under initial misalignment of up to 0.25 m

and 10.0°. It outperforms several existing methods,

especially in translation errors. The proposed method

achieved translation errors of 1.08 cm, 0.18 cm, and

0.56 cm for X-axes, Y-axes, and Z-axes, respectively.

It also achieved rotation errors of 0.182°, 0.139°, and

0.141°, for roll, pitch, and yaw, respectively. In terms

of rotation accuracy, our proposed method still re-

quires some further improvements, such as training

on more datasets, improving the training methods, or

incorporating advanced deep-learning architecture,

such as transformers, where a lightweight self-atten-

tion mechanism needs to be developed.

For future directions, we plan to expand the appli-

cation of this deep learning based extrinsic calibration

for adverse driving conditions, such as rain, snow, fog,

or night driving conditions, by training the model on

other available datasets supporting these scenarios.

Additionally, this calibration method can be im-

plemented on other modes of autonomous vehicles,

such as unmanned aerial vehicle (UAV), where light-

weight deep learning models become crucial.

Furthermore, we aim to optimize the size of the deep

learning network by not only considering the number

of trainable parameters but also other computational

cost metrics, such as float precision, FLOPs, inference

time, and more.
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