
논문 25-50-04-13 The Journal of Korean Institute of Communications and Information Sciences '25-04 Vol.50 No.04
https://doi.org/10.7840/kics.2025.50.4.647

647

Ⅰ. Introduction

In recent years, advanced technologies at the core

of the Fourth Industrial Revolution, such as big data,

artificial intelligence (AI), the Internet of Things

(IoT), cloud computing, and 5G network communica-

tions, have been widely introduced and made

available. These advanced technologies are closely

connected to our society and have a profound impact

on our daily lives and various industries. However,

as these advanced technologies evolve, potential cy-

bersecurity threats also increase.

The issue of cybersecurity threats is becoming

more prominent not only domestically but also

internationally. In the 2024 Verizon Data Breach

Investigations Report (DBIR)[1], researchers found

that 68% of data breaches are linked to non-malicious

human factors. Additionally, Proofpoint's “2024

Voice of the CISO[2]” report, which surveyed 1,600

chief information security officers (CISOs) world-

wide, found that 70% of CISOs believe their organ-

izations are at risk of suffering a significant cyberse-

curity attack within the next year. Among the various

cybersecurity threats, CISOs expect human error to

※ This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded
by the Korea government(MND) (RS-2022-11220701, Development of Security Technology for Interworking between M-BcN and
5G Commercial Network)

w First Author : Kunsan National University, School of Electronics and Information Eng., so.npng98@gmail.com, 학생회원
° Corresponding Author : Kunsan National University, IT Convergence & Communication Eng., kc.kang@kunsan.ac.kr, 정회원
* Electronics and Telecommunications Research Institute (ETRI), queue@etri.re.kr, 정회원
논문번호：202410-220-A-RN, Received September 30, 2024; Revised December 3, 2024; Accepted December 7, 2024

A Study on Data Reconstruction and Model Parameter
Optimization for Implementation of Anomaly Detection System

Based on User Behavior Analysis

Yu-Jin Sow, Jong-Geun Park*, Kyuchang Kang°

ABSTRACT

In this paper, we implemented an anomaly detection system based on user behavior analysis to effectively

detect user anomalies in a specific domain. For this purpose, we performed EDA on User Behavior Data,

defined feature factors for user behavior features in feature engineering, and proposed a method for combining

feature factors. We performed preprocessing and vectorization on the session data to define user behavior

patterns as 'Session' and provide them as input to the model. The vectorized session data was pre-trained on

BERT Model Architecture using only normal session data. We performed an anomaly detection performance

evaluation after fine-tuning using normal and abnormal session data. As a result of the performance evaluation,

BERT-Medium-uncased model performed well with an Accuracy of 0.9630 and an F1-Score of 0.9628, and the

overall performance was balanced. As a result, we confirmed that by utilizing EDA and feature engineering for

data, we can effectively perform pre-training and fine-tuning and implement a high-performance anomaly

detection system.

Key Words : User behavior analysis, Feature engineering, Feature factor combination method, User anomaly
detection system

mailto:queue@etri.re.kr


The Journal of Korean Institute of Communications and Information Sciences '25-04 Vol.50 No.04

648

be the most significant cybersecurity vulnerability, as

insider threats and human-caused data loss continue

to rise. In 2024, 74% of CISOs agreed that human

error is a serious cybersecurity threat, up 18% from

two years ago, compared to 60% in 2023 and 56%

in 2022. Additionally, 80% of CISOs recognize cy-

bersecurity threats caused by human error, such as da-

ta loss due to employee carelessness, as a significant

issue requiring attention over the next two years. This

is a 17% increase from the 63% reported in 2023,

suggesting that insider threats can occur independent

of malicious intent and individual intent. This means

that organizations must also have countermeasures in

place against insider threats alongside building techni-

cal defenses against cybersecurity threats. This em-

phasizes that insider threats are just as important a

security risk as external attacks.

Businesses and public institutions are working to

strengthen their cyber defenses to respond to and pre-

vent cybersecurity threat incidents. These efforts in-

clude protecting sensitive information through data

encryption and access control, improving internal se-

curity systems by introducing solutions from external

specialized companies, and establishing continuous

monitoring systems for real-time threat detection. As

the importance of cybersecurity is increasing due to

the diversification of attack types such as ransomware,

insider threats, and DDoS attacks, each organization

needs to establish a systematic and effective advanced

security system to respond to cybersecurity threats.

In general, traditional security software, such as

firewalls and intrusion detection systems, can effec-

tively detect and respond to well-known cyberattack

patterns. However, these systems have limitations in

identifying and preventing new types of advanced cy-

bersecurity threats that are constantly evolving. In par-

ticular, the increasing number of data security in-

cidents caused by human error, such as data leaks,

mistakes, and negligence by insiders, shows that cy-

bersecurity threats are not only coming from external

factors but also from internal factors. Currently, vari-

ous organizations are making great efforts to utilize

various security systems and strengthen cybersecurity.

However, in order to effectively respond to newly

modified attack types or potential internal cyberse-

curity threats in addition to existing generalized cyber

threats, existing security systems alone are not

enough. Along with existing security systems, a new

cybersecurity threat detection system is needed that

can respond to new types of attacks or potential in-

ternal threats.

In this paper, we aim to implement a user behavior

analysis-based anomaly detection system for detecting

abnormal user behavior in a specific domain. For this

purpose, we performed exploratory data analysis

(EDA) on a user behavior dataset to extract user be-

havior features and define user behavior feature

elements. In the process, we proposed a new token

combination method for anomaly detection and de-

fined user behavior patterns as “sessions”. Next, we

performed input sequence vectorization on the session

data after a simple preprocessing. We then leveraged

BERT model architecture as the underlying model for

our user behavior analysis-based anomaly detection

system. During the pretraining process, we used only

normal session data for the vectorized session data.

In this study, we focused on the implementation of

the anomaly detection system pipeline as our primary

goal. For this reason, we added a simple binary classi-

fier during the fine-tuning and system evaluation

phases to perform performance evaluation. We aim

to explore a practical methodology for implementing

an anomaly detection system, explicitly emphasizing

analyzing user behavior data characteristics and inves-

tigating optimal model architectures for this domain.

To achieve this goal, we propose a comprehensive ap-

proach addressing two main aspects of system

implementation. First, we conduct an in-depth analysis

of user behavior characteristics to identify essential

features to consider in anomaly detection. We propose

a novel feature factor combination method as part of

our feature engineering approach to address the chal-

lenge of processing large-scale chunk data into

BERT-compatible input. This method enables effec-

tive tokenization of user behavior information while

preserving meaningful patterns within the data.

Furthermore, we conduct extensive ablation case stud-

ies on BERT model to determine the most efficient

configuration for anomaly detection. This includes ex-

ploring various hyperparameters for pre-training and



논문 / A Study on Data Reconstruction and Model Parameter Optimization for Implementation of Anomaly Detection System ~

649

transfer learning phases to optimize the learning proc-

ess for our specific input data characteristics. We sys-

tematically investigate different BERT model archi-

tectures to identify the optimal model size that balan-

ces detection performance with computational

efficiency.

This paper is organized as follows. Chapter 2 re-

views existing related work, and Chapter 3 details the

structure of our proposed user behavior analysis-based

anomaly detection system. Chapter 4 describes the ex-

perimental results of the implemented user anomaly

detection system, and finally, Chapter 5 discusses con-

clusions and future work.

Ⅱ. Related Works

Anomaly detection techniques[3,4] refer to defining

patterns considered “normal” and identifying outliers

or abnormal patterns in data that deviate from them.

Anomaly detection techniques can distinguish normal

samples from abnormal (outliers, anomalies) samples

to find data within a data set with different character-

istics from other observations. Anomaly detection

techniques must now go beyond applying predefined

rules. It can automatically learn new types of anoma-

lies, such as real-time anomaly detection in data

streams and pattern recognition in complex multi-

variate data. As technology evolves, the research and

application of anomaly detection techniques are ex-

panding from statistical methods to machine learn-

ing[5,6] and deep learning[7,8] approaches.

One-class support vector machine (OCSVM)[9] is

an unsupervised learning model variant of supervised

learning SVM. In anomaly detection, OCSVM[10-13]

trains by mapping normal data into a high-dimen-

sional space and finding the normal data's minimum

boundary. It detects an anomaly if the new data is

not contained within the boundary.

A convolutional neural network (CNN)[14] is a deep

learning model that uses convolutional layers to ex-

tract and train image features. In anomaly detection,

CNN[15-17]learns features from normal data, and if fea-

tures extracted from new input data are different from

the trained data, it detects an anomaly.

Long-Short-Term Memory (LSTM)[18] is a re-

current neural network (RNN) model that specializes

in processing time series data. In anomaly detection,

LSTM[19-22] learns normal time series data patterns.

Based on the trained patterns, LSTM predicts the val-

ue at the next point in time and calculates the error

between the predicted value and the actual observed

value. It detects the data as an anomaly if the error

exceeds a threshold.

Auto-Encoder (AE)[23] is a neural network-based

unsupervised learning model with an encoder-decoder

structure. It is mainly used for data compression and

feature extraction. Encoders compress the input data

into a low-dimensional representation. The low-di-

mensional representation is placed in the AE's middle

layer (latent space). The decoder reconstructs the la-

tent space's low-dimensional representation into the

original dimensions. The AE trains the main features

of the data in this process. The AE[24-26] trains a model

on normal data in anomaly detection. The trained AE

calculates the errors that occur in reconstructing the

input data. In this case, if the reconstruction error of

the input data is significant, it is detected as an

anomaly.

A Variational Auto-Encoder (VAE)[27] is an un-

supervised learning model with an encoder-decoder

structure that learns the probability distribution of

data. Encoders compress the input data into a proba-

bility distribution defined by a mean and variance.

Decoders recover the samples' original dimension

from the latent space's probability distribution. VAE

represents the latent variables as probability dis-

tributions and uses reconstruction error and

KL(Kullback–Leibler) divergence as loss functions.

In anomaly detection, a VAE[28-31] trained on normal

data calculates the reconstruction error on the input

data. If the reconstruction error of the input data is

significant, it detects an anomaly.

In recent years, transformer-based models[32] such

as BERT have demonstrated outstanding performance

in natural language processing, and attempts have

been made to utilize them in anomaly detection.

BERT's[33] bidirectional encoding structure and

self-attention mechanism can effectively capture

long-term dependencies and complex patterns in se-

quence data and have shown remarkable results in



The Journal of Korean Institute of Communications and Information Sciences '25-04 Vol.50 No.04

650

anomaly detection tasks.

Dang et al. (2021)[34] proposed a BERT-based mod-

el, TS-BERT, for anomaly detection in time series

data. TS-BERT was developed to effectively handle

the long-term dependence of time series data and im-

prove the problem of lack of label data. However, due

to BERT structure, TS-BERT suffered from increased

computational complexity in mapping low-dimen-

sional data to high-dimensional space and long train-

ing time. In addition, label generation using the spec-

tral residual method made fully unsupervised learning

impossible, and it limited itself to fully reflecting the

unique features of time series data.

Guo et al. (2021)[35] proposed a BERT-based mod-

el, LogBERT, for anomaly detection in log data.

LogBERT was designed to detect log data anomalies

by performing pre-training with Masked Log Key

Prediction (MLKP) and fine-tuning for anomaly

detection. However, LogBERT suffered from high

computational complexity and increased processing

time due to BERT structure, performance deviations

depending on the features of the pre-training data, and

limitations in interpreting the results of deep learning

models.

Tang and Guan (2024)[36] proposed a BERT-based

model, SD-BERT, to detect anomalies in system log

data. SD-BERT was designed to capture log se-

quences' global context and local features effectively

by introducing a Separated Score Attention (SSA)

mechanism and a dual branching module. However,

SD-BERT was trained only on normal log sequences,

which made it difficult to detect new types of anoma-

lies, model complexity limited real-time processing,

and SSA and the dual branching module were opti-

mized for specific datasets, which limited

generalization.

Ⅲ. Method

The structure of the user anomaly detection system

based on user behavior analysis is shown in Figure

1, which consists of (1) exploratory analysis of user

behavior dataset (Dataset EDA), (2) behavior feature

extraction (Feature Extraction/Engineering), (3) fea-

Fig. 1. Anomaly detection system based on user behavior analysis architecture



논문 / A Study on Data Reconstruction and Model Parameter Optimization for Implementation of Anomaly Detection System ~

651

ture preprocessing and vectorization, (4) pre-training

and fine-tuning, and (5) anomaly detection system

evaluation.

First, Dataset EDA performs a preliminary analysis

of user activity log files. Next, Feature

Extraction/Engineering extracts features describing

user behavior and generates feature vectors through

feature factor combination. Then, Feature

Preprocessing & Vectorization create sessions with

preprocessed and vectorized user behavior patterns.

The created sessions are used as input for BERT

model. Next, pre-training is performed only during

normal sessions, and fine-tuning is performed using

anomaly detection tasks. Finally, the anomaly de-

tection system with pre-trained and fine-tuned weights

is evaluated using separate test data.

3.1 Dataset
Computer Emergency Response Team (CERT)[37]

dataset is an insider threat behavior dataset provided

by the Software Engineering Institute (SEI) at

Carnegie Mellon University in the United States. The

CERT dataset contains user activity logs and profiles

spanning 18 months. The CERT dataset is widely used

in the cybersecurity and cyber threat fields for analyz-

ing user behavior patterns and evaluating the perform-

ance of anomaly detection algorithms. The anomaly

detection system implementation in this paper uses the

CERT r6.2 dataset.

The CERT r6.2 version is a large dataset of about

93 GB. This dataset includes 4,000 users, of which

only 5 are malicious insiders, a tiny percentage. There

are a total of 5 malicious insider scenarios, with one

malicious scenario for each malicious insider. The

r6.2 version of CERT includes eight files, including

a Lightweight Directory Access Protocol (LDAP) file

containing user information and five activity log

(logon.csv, file.csv, device.csv, Http.csv, and

email.csv) files related to user behavior. This dataset

is highly imbalanced, with 135,117,169 total activity

logs for all users but only 470 malicious activity logs

from insiders.

Table 1 describes the overall basic statistics of the

CERT r6.2 dataset, and Table 2 describes the mali-

cious insider scenarios in the dataset. Table 3 de-

scribes the files in the dataset, and Table 4 summa-

rizes the key fields in the activity log files in the

dataset.

Dataset r6.2

Employees 4000

Role 46

Insiders 5

Activity Log File 5

Activity 135,117,169

Anomaly Activity 470

Table 1. The statistics of CERT r6.2 dataset

Scenario Description

Scenario 1
ACM2278

A user who has not previously used
removable drives uses a removable
drive after hours, moves their data
elsewhere, and retires.

Scenario 2
CMP2946

An employee who browses job search
websites and applies for jobs at
competitors, and steals data from
removable drives with increasing
frequency.

Scenario 3
PLJ1771

A disgruntled system administrator
steals a keylogger from a supervisor's
computer, sneaks in as the supervisor
the next day, sends a mass email to
the company, and leaves.

Scenario 4
CDE1846

An employee logs into another
employee's computer and sneaks in
his own email when he finds
something of interest.

Scenario 5
MBG3183

A user who was laid off uploads
documents to Dropbox for personal
gain uploading documents to Dropbox
for personal gain.

Table 2. Malicious insider scenarios in the CERT r6.2
dataset

File Description

Logon.csv Records the user's connection status

File.csv
Records work-related files
(Ex. WWWDOWNLOAD,

WWWVISIT etc.)

Table 3. CERT r6.2 dataset file information



The Journal of Korean Institute of Communications and Information Sciences '25-04 Vol.50 No.04

652

File Field Activity

Logon.csv
id, date, user, pc,
activity

Logon, Logoff

File.csv

id, date, user, pc
filename, activity,
content,
to_removable_media,
from_removable_media

File Open,
File Delete,
File Copy,
File Write

Device.csv
id, date, user, pc,
file_tree, activity

Connect,
Disconnect

Http.csv
id, date, user, pc, url,
activity

WWW Visit,
WWW Upload,
WWW Download

Email.csv
id, date, user, pc, to,
cc, bcc, from, activity,
size, attachments

Send, View

Table 4. CERT r6.2 dataset activity log files

3.2 User Behavior Dataset EDA
Exploratory data analysis (EDA)[38,39] is an analysis

method performed in the early stages of data analysis.

The goal of EDA is to understand the structure and

features of the data. In the process, relationships be-

tween variables are explored, and patterns in the data

are discovered. By performing EDA, insights can be

gained for future analysis direction or effective model-

ing, and analysis of user activity logs is required to

detect user anomalies effectively. In this paper, we

performed EDA on raw activity log files ('Logon.csv',

'File.csv', 'Device.csv', 'Http.csv', and 'Email.csv')

for all users in the CERT r6.2 dataset to identify user

behavior types and behavior patterns.

After EDA, we summarized the key features to

consider in this dataset as follows;

(a) Everyone has a 'Logon.csv' file corresponding to

the user's commute file, but other activity log files

may or may not exist.

(b) Users' behavior patterns are represented by time

series data, with periodicity in the form of log-

on-logoff.

(c) Each user normally works a different day and time

of day for their job.

(d) Each user is assigned a computer, but they occa-

sionally use a public computer to access other

users' computers.

(e) If a user's job is ITAdmin, he/she can freely ac-

cess other users' computers as a system

administrator.

(f) As a system administrator, an ITAdmin is likely

to have many entries in their activity logs for ac-

cessing other users' computers.

As seen above, the absence of a specific behavior

cannot be considered abnormal because of cases such

as (a). For example, a user may have never opened

a file, but if the lack of file-related behavior is consid-

ered an anomaly, it will be recognized as a false

positive. From (c), we can see different normal behav-

ior patterns for each occupation. We can see from (e)

and (f) that the ITAdmin occupation has a unique be-

havior pattern, unlike other occupations. To avoid de-

tecting different behavior patterns of various users as

abnormal behavior, we need to define the behavior

patterns of users, and for this, we need feature factors

that determine the behavioral characteristics of users.

3.3 Behavior Feature Extraction
For a pre-trained model to properly understand and

train on user behavior patterns, it is important to pro-

vide user behavior data as input to the model using

meaningful feature factors. In this paper, we extract

meaningful feature fields from user behavior feature

fields and define feature factor, which means a factor

File Description

Device.csv
Record contents of removable device and
thumb drive usage

Http.csv
Records everything related to web
browsing

Email.csv
Records 5 different log activities for every
employee in the virtual company

Decoy.csv

Records the list of decoy file and the PC
name of the decoy file user
(Ex. filename : C:\LJE2413\795JW126.jpg,

PC : PC-0302 )

Psychome-
tric.csv

Records employee personality

LDAP
Records user information such as job title,
department, work period, etc.



논문 / A Study on Data Reconstruction and Model Parameter Optimization for Implementation of Anomaly Detection System ~

653

that determines a feature. By defining meaningful fea-

ture factors, we can reduce the probability of false

positives, which is mistakenly recognizing normal be-

havior as abnormal behavior. In addition, we can ex-

pect to improve the performance of the pre-trained

model. Table 5 describes the fields extracted by EDA

on the user behavior data. Table 6 shows the user

behavior patterns with periodicity in the form of log-

on-logoff defined as a result of EDA.

Field Description

State Field to distinguish activity logs

Date YYYY-MM-DD HH:mm:SS

User User ID

PC Personal Computer PC Name

Activity User Activity Logs

Table 5. Fields extracted from user behavior data EDA

State Date User PC Activity

Logon
2010-01-04

08:28
ACA0360 PC-1659 Logon

Http
2010-01-04

08:44
ACA0360 PC-1659 WWWVisit

Http
2010-01-04

08:51
ACA0360 PC-1659 WWWVisit

Http
2010-01-04

09:32
ACA0360 PC-1659 WWWVisit

Http
2010-01-04

09:44
ACA0360 PC-1659 WWWVisit

Http
2010-01-04

09:49
ACA0360 PC-1659 WWWVisit

···

Http
2010-01-04

19:20
ACA0360 PC-1659 WWWVisit

Http
2010-01-04

19:28
ACA0360 PC-1659 WWWVisit

Http
2010-01-04

19:30
ACA0360 PC-1659 WWWVisit

Email
2010-01-04

19:32
ACA0360 PC-1659 View

Logoff
2010-01-04

19:36
ACA0360 PC-1659 Logoff

Table 6. Behavioral pattern from user behavior data EDA

3.3.1 Associated Field Extraction

The results of extracting user behavior patterns by

performing EDA above are shown in Tables 5 and

6. Five activity log files ('Logon.csv', 'File.csv',

'Device.csv', 'Email.csv', 'Http.csv') are associated

with user behavior in the experimental data. However,

some users only have activity records in 'Logon.csv'.

That is, they do not perform any activities except login

and logoff. Considering this situation, we extracted

only the 'Date', 'PC', and 'Activity' fields common

in the five activity log files as feature factor fields

associated with user behavior data. We defined feature

factors that carry unique significance in anomaly be-

havior detection based on user information.

Specifically, we selected three core feature factors

from the CERT dataset: time, location, and behavior

information, as described in Table 7. 'Date' field rep-

resents the 'Time' feature factor indicating when an

action occurred, 'PC' field represents the 'Location'

feature factor indicating where an action took place,

and 'Activity' field represents the 'Behavior' feature

factor indicating what action occurred.

Field Definition Description

Date
Time

Feature
Factor

Indicates when an action
occurred

PC
Location
Feature
Factor

Indicates where an action took
place

Activity
Behavior
Feature
Factor

Indicates what action occurred

Table 7. Fields associated with user behavior feature

3.3.2 Feature Factor Combination

In this chapter, we propose a feature factor combi-

nation method to detect user anomalies effectively. A

token with a single piece of information may not suffi-

ciently represent a user's complex behavior patterns.

For example, a simple 'Behavior' feature factor does

not capture the time or location context of the

behavior. Also, 'Time' feature factor alone does not

reveal which behavior occurred at a specific time of

day. In this paper, we use a combination of feature

factors to generate meaningful tokens optimized for



The Journal of Korean Institute of Communications and Information Sciences '25-04 Vol.50 No.04

654

anomaly detection, while exploring effective pre-

processing methods to provide optimal input tokens

to the model. Figure 2 shows how the input data of

the model is created by the feature factor combination

method.

In Step 1, we explain the process of extracting ele-

ments from the ‘Date’ field to be used as Time feature

factors. First, the user behavior patterns for the

‘Logon-Logoff’ period were sorted by occurrence

time. we extracted only 'HH:mm' from the 'Date'

field and subdivided it into 'Hour', '1-minute',

'10-minutes', '15-minutes', and '30-minutes' fields,

as shown in Table 8.

Field Value Description

Hour 00-23 24 Hour format

1-minute 00-59 1-minutes (from 0 to 59)

10-minute 00-05
10-minute intervals (6 intervals: 0
to 50)

15-minute 00-03
15-minute intervals (4 intervals: 0
to 45)

30-minute 00-01
30-minute intervals (2 intervals:
0 and 30)

Table 8. Description of elements extracted for use as
time feature factors

We defined the field values for the ‘Time’ feature

factor elements as follows:

∙ The 'Hour' field using a 24-hour format with in-

teger values between 00 and 23.

∙ The '1-minute', '10-minute', '15-minute', and

'30-minute' fields as integer values between 00

and K-1, where K is the quotient of 60 minutes

divided by N minutes. N corresponds to the values

(1, 10, 15, 30) that define the time feature

coefficients.

In Step 2, we describe the process of constructing

a model sequence using the four feature factor combi-

nation method. A model input sequence consists of

a ‘Location’ feature factor token and a ('Behavior'

feature factor + 'Time' feature factor) token. The

'Location' feature factor token corresponds to the val-

ue of the 'PC' field, which exists on the same row

as the 'Logon' action in the 'Activity' field. The

'Behavior' feature factor token corresponds to the val-

ue of the 'Activity' field, and the 'Time' feature factor

token corresponds to the combined value of the

'Time' feature factor elements. 'Time' feature factor

elements refer to the ('Hour', '1-minute', '10-minute',

'15-minute', '30-minute') fields created in Step 1. We

propose four feature factor combination methods to

provide ('Behavior' feature factor + 'Time' feature

factor) as a follow-up token.

The following example explains how to combine

the 'Behavior' feature factor token + 'Time' feature

factor token:

1. Extracting the ‘Activity’ field value (‘Behavior’

feature factor) and the ‘Hour’, ‘1-minute’, ‘10-mi-

nute’, ‘15-minute’ and ‘30-minute’ field values

(‘Time’ feature factor elements) from the user's

behavior pattern during the ‘Logon-Logoff’ period.

2. Creating one significant time feature factor by com-

bining the ‘Hour’ field and the (‘1-minute’, ‘10-mi-

nute’, ‘15-minute’ and ‘30-minute’) field.

3. Combining the ‘Behavior’ feature factor with +

each ‘Time’ feature factor to create a new token.

4. Appending the created tokens after the ‘Location’

feature tokens to form a model sequence.

This process constructs a new model input se-

quence that contains the user's ‘Time’, ‘Location’,

and ‘Behavior’ information. we define a sequence of

model inputs created by this method of combining fea-

ture factors as a ‘Session’.

In Step 3, we provide an example of building ses-

sion data using each feature combination method.

Session data 1, 2, 3, and 4 in Step 3 are the results

of applying methods 1, 2, 3, and 4 in Step 2. The

session data created by the feature factor combination

method goes through feature preprocessing and vecto-

rization processes to be used as model input data.

3.4 Feature Preprocessing and Vectorization
Figure 3 illustrates the steps involved in feature

preprocessing and vectorization to prepare session da-

ta for input into the model.



논문 / A Study on Data Reconstruction and Model Parameter Optimization for Implementation of Anomaly Detection System ~

655

Fig. 2. Feature factor combination method



The Journal of Korean Institute of Communications and Information Sciences '25-04 Vol.50 No.04

656

In Step 1, we prepare the user behavior session data

for input to BERT model and initialize BERT

tokenizer. To tokenize the session data, we use the

byte-pair encoding (BPE)-based ‘WordPiece’ token-

izer[40] provided by the HuggingFace Transformer li-

brary API.

In Step 2, we apply ‘WordPiece’ tokenization to

the input session data. ‘Wordpiece’ tokenization is a

method of splitting words into smaller sub-words.

BERT model uses special tokens ([CLS], [SEP], etc.)

to identify sentence structures and prefixes. The

'[CLS]' (classification) token summarizes or catego-

rizes information in an entire sequence, and the

'[SEP]' (separator) token identifies boundaries be-

tween sentences or segments.

In Step 3, we convert the tokenized input session

data into 'Input IDs'. Next, we apply a padding tech-

nique to the input IDs and generate an 'Attention

Mask' and 'Token Type IDs'. 'Input IDs' result from

converting each token in the tokenized input session

data into a unique integer. We use dynamic and static

padding techniques. Dynamic padding pads varia-

ble-length 'Input IDs' based on the batch's 'Input IDs'

length. Static padding pads all 'Input IDs' to a pre-de-

fined maximum length. Next, create an 'Attention

Mask' of the 'Input IDs'. The 'Attention Mask' sepa-

rates real tokens (1) from padding tokens (0) in the

'Input IDs'. Finally, create 'Token Type IDs' for the

'Input IDs'. The 'Token Type IDs' value is zero in

single sentences. In pairs of sentences, the first sen-

tence has a 'Token Type IDs' value of 0, and the

second sentence has a 'Token Type IDs' value of 1.

We utilize 'Token Type IDs' to prevent two log-

on-logoff periods in one input session data.

In step 4, we create three types of embeddings

('Token', 'Position', and 'Segment' embeddings) and

sum them to make a single input representation vector.

Token embeddings and Position embeddings use

‘Input IDs’, and Segment embeddings use ‘Token

Type IDs’. Token embeddings represent the meaning

of each word or subword (token) in a vector space.

Token embeddings capture the semantic character-

istics of each token and allow semantic relationships

to be learned by representing words with similar

meanings with similar vectors. Position embeddings

provide information about the position of each token

in the sequence. Position embeddings learn order de-

pendencies in language, allowing the same word to

have different meanings or roles depending on its po-

sition in a sentence. Segment embedding utilizes

'Token Type IDs' to separate sentences. It recognizes

the boundaries of each sentence and learns the rela-

tionships between sentences.

In step 5, the input representation vector (the sum

of the three embeddings) and the 'Attention Mask'

are combined to form the final representation vector

that is the input to BERT model.

In Step 6, we provide the final representation vector

as input to BERT model architecture to perform

pre-training and transfer learning.

Fig. 3. Feature preprocessing and vectorization



논문 / A Study on Data Reconstruction and Model Parameter Optimization for Implementation of Anomaly Detection System ~

657

3.5 Pre-Training and Fine-Tuning

3.5.1 BERT Model Architectures

Bidirectional Encoder Representations from

Transformers (BERT) model is a natural language

processing (NLP) model that performs various tasks.

BERT model catches complex semantic relationships,

understands context effectively, and shows remarkable

ability in representation learning. In addition, it can

be pre-trained with large amounts of data, enabling

effective transfer learning with only a small amount

of data. In this paper, we use BERT Model

Architecture as a pre-training model.

To determine the base model of the anomaly de-

tection system, we apply various feature factor combi-

nation methods and feature preprocessing methods for

each BERT model structure (Base, Medium, Small,

Mini and Tiny). Table 9 describes BERT model archi-

tecture by hidden layer (L) and hidden embedding (H)

size.

Hidden
Layer
(L)

Hidden Embeddings (H)

128 256 512 768

2 BERT-Tiny

4 BERT-Mini BERT-Small

6

8 BERT-Medium

10

12 BERT-Base

Table 9. BERT model names by architecture based on
hidden layer (L) and hidden embeddings (H)

3.5.2 Pre-Training

Generally, BERT model is pre-trained using a

masked language model (MLM) task and a next sen-

tence prediction (NSP) task. MLM task involves train-

ing the model by randomly masking some tokens in

the input data and then inferring the masked words.

NSP task focuses on identifying the relationship be-

tween sentences. Two sentences are provided as input

data, and the model is trained to predict whether the

second sentence follows the first sentence.

Recently, BERT variants have employed a variety

of tasks to train more effectively in context. A Lite

BERT (ALBERT)[41] is a lightweight version of BERT

developed by Google and the Toyota Technological

Institute in Chicago. It aims to reduce model size and

improve learning speed while maintaining BERT's

performance. Of particular note is that ALBERT re-

places the traditional NSP task, inefficient for model-

ing sentence coherence, with the sentence order pre-

diction (SOP) task. Decoding-enhanced BERT with

Disentangled Attention (DeBERTa)[42] is a model de-

veloped by Microsoft that aims to improve the atten-

tion mechanism of BERT. Specifically, DeBERTa

abandons the NSP operation and instead uses a sepa-

rate attention mechanism and an improved mask de-

coder to handle content and location information bet-

ter, improving the model's efficiency and overall

performance. Efficiently Learning an Encoder that

Classifies Token Replacements Accurately

(ELECTRA)[43] is a model developed by Stanford

University and Google that aims to improve how

BERT models the mask language to increase the effi-

ciency of dictionary learning. It introduces a replace-

ment token detection (RTD) task instead of NSP.

Robustly Optimized BERT Approach (RoBERTa)[44]

is a model developed by Facebook AI Research that

aims to optimize BERT's pre-training process. It de-

termines that NSP operations are inefficient for down-

stream tasks and removes them entirely. Instead, it

uses only MLM tasks with dynamic masking, sig-

nificantly improving BERT's performance. XLNet[45]

is a model developed by Carnegie Mellon University

and Google that aims to overcome BERT's

limitations. XLNet completely eliminates NSP and in-

stead introduces a new approach called permutation

language modeling (PLM). This method captures

bi-directional context more effectively than NSP, ad-

dressing the mismatch between dictionary learning

and fine-tuning caused by BERT's [MASK] token.

In this paper, we only use MLM tasks as a

pre-training method for a user behavior analysis based

anomaly detection system, according to recent re-

search trends and a survey of various pre-training

strategies. We use dynamic masking to prevent the

pre-trained model from overfitting to user behavior

patterns and to improve its generalization ability. As



The Journal of Korean Institute of Communications and Information Sciences '25-04 Vol.50 No.04

658

the original BERT paper recommended, we randomly

select 15% of all tokens. Of the selected tokens, 80%

were replaced with the [MASK] special token, 10%

with random tokens, and the remaining 10%

unchanged. Figure 4 visualizes BERT model's archi-

tecture with MLM tasks in pre-training, and the

[MASK] token is colored pink.

We exclusively use normal behavior session data

for pre-training, and evaluate the MLM task using a

separate set of normal behavior session data that was

not used during the pre-training phase for validation.

Table 10 describes the common hyperparameters

of BERT model architecture used for pre-training. In

this paper, we set the following hyperparameters to

optimize the model's performance: batch size 512 and

learning rate 1e-5 for pre-training; dropout ratio 0.3

to avoid overfitting; AdamW optimizer (weight at-

tenuation: 0.01) for the model's generalization per-

formance; L1 regularization value set to (λ=1e-6) to

reduce unnecessary noise by activating only some fea-

tures and improve performance. We also applied gra-

dient clipping (max_norm=0.5) for stable training of

the model.

3.5.3 Fine-Tuning

Fine-Tuning method is a type of transfer learning.

It achieves effective results with limited data by using

knowledge from pre-trained models. In this study, we

employed BERT's fine-tuning approach to efficiently

learn from a small amount of outlier data, using a

3:1 split ratio of normal to abnormal session data for

model input. We attached a binary classifier[46] to the

model's final layer for anomaly detection, utilizing the

[CLS] token representation for downstream tasks.

While maintaining most hyperparameters from

pre-training (learning rate 1e-5, AdamW optimizer,

weight decay 0.01, L1 regularization λ=1e-6, gradient

clipping max_norm=0.5), we adjusted the batch size

to 64 and increased dropout rate to 0.4 to prevent

overfitting given the smaller dataset.

CrossEntropyLoss was used as the loss function.

Figure 5 illustrates BERT model architecture for clas-

sification during fine-tuning, while Table 11 details

the complete hyperparameter configuration used in

transfer learning.

Fig. 5. BERT model architectures in the fine-tuning

Hyperparameter Values

Batch size 64

Max length 512

Learning rate 1e-5

Optimizer AdamW

Weight decay 0.01

L1 regularization strength (λ) 1e-6

Gradient clipping max_norm 0.5

Dropout 0.4

Loss Function nn.CrossEntropyLoss()

Table 11. Transfer learning common hyperparameters

Fig. 4. BERT model architecture MLM tasks in the
pre-training

Hyperparameter Values

Batch size 512

Max length 512

Learning rate 1e-5

Optimizer AdamW

Weight decay 0.01

L1 regularization strength(λ) 1e-6

Gradient clipping max_norm 0.5

Dropout 0.3

Table 10. Pre-training common hyperparameters



논문 / A Study on Data Reconstruction and Model Parameter Optimization for Implementation of Anomaly Detection System ~

659

3.6 Performance Evaluation of the Anomaly 
Detection System

In this paper, we use the confusion matrix evalua-

tion metric to evaluate the performance of a user be-

havior analysis based anomaly detection system.

3.6.1 Confusion Matrix Based Performance

Metrics

Confusion matrix[47] is a metric primarily used to

evaluate the predictive performance of binary classi-

fication models. It is often used to recognize specific

types of errors or to evaluate the performance of un-

balanced datasets[48]. Confusion matrix is a 2x2 matrix

structure, and the performance metric consists of four

combinations of actual and predicted classes. To com-

prehensively evaluate the reliability and efficiency

of the anomaly detection system, we use Accuracy,

Precision, Recall, F1-Score, and AUC-ROC[49]. Table

12 describes the four combinations of the confusion

matrix, and Figure 6 shows the performance metrics

according to confusion matrix combination method.

Matrix Components Description

True Positive (TP)
Correctly detected abnormal
behavior as abnormal

False Positive (FP)
Incorrectly detected normal
behavior as abnormal

False Negative (FN)
Incorrectly classified abnormal
behavior as normal

True Negative (TN)
Correctly classified normal
behavior as normal

Table 12. Confusion matrix elements

Fig. 6. Confusion matrix

Ⅳ. Experimental Results

4.1 Experimental Setup
Table 13 describes the configuration of the ex-

perimental environment for an anomaly detection sys-

tem based on user behavior analysis.

Environment Description Ref.

OS Ubuntu 22.04.2 LTS

CPU
Intel(R) Xeon(R)

Platinum 8480+ 48Core

GPU H100 160GB

RAM 480GB

python 3.10.6 50

pytorch 2.1.0 51

pandas 1.5.2 52

scikit-learn 1.2.0 53

transformers 4.34.1 32,54

Table 13. Experimental environment

4.2 Experimental Dataset
In the experiment, we perform EDA to identify user

behavior patterns on the CERT r6.2 dataset of about

130 million data in its original raw data format. We

reconstruct user behavior patterns in the EDA process

and apply a feature factor combination method. Thus,

we finally perform feature preprocessing and generate

data of approximately 1.96 million sessions.

Approximately 1.17 million (60%) of the session data

was used to pre-train the models, and some of the

remaining normal session data was used to validate

the pre-trained models on the MLM task. We use both

normal and abnormal session data for fine-tuning and

system evaluation. Fine-tuning uses a small amount

of 404 session data compared to the amount of session

data used for pre-training. Table 14 describes the

number of normal session data used for pre-training

Pre-Training
Fine-Tuning

Train Validation Test

1,178,278 258 65 81

Table 14. Number of pre-training and transfer learning
sessions data



The Journal of Korean Institute of Communications and Information Sciences '25-04 Vol.50 No.04

660

and the number of session data used for transfer

learning.

4.3 Experimental Results and Analysis
In chapter 4.3.1, we check the feature combination

methods and padding techniques that show high accu-

racy in MLM task based on pre-training results.

In chapter 4.3.2, we present the results of transfer

learning for each BERT-Model architecture by apply-

ing the feature combination method and padding tech-

nique with the best performance in MLM task.

4.3.1 Evaluation of Pre-Trained Models

Based on Feature Factor Combination

Methods and Padding Techniques

To find the optimal balance between appropriate

epochs and overfitting, we set the stabilization point

of the pre-training model as follows:

(1) When the performance change of accuracy is

0.5% compared to the previous checkpoint

(2) When performance continues to improve, but

the amount of increase decreases significantly

We pre-train 1-6 epochs for each BERT model

structure to avoid overfitting and decreasing general-

ization ability. As a result, we find most BERT model

architectures stabilize with pre-trained models in ep-

ochs 2-3. Table 15 indicates the pre-trained model's

performance on the MLM Task according to the fea-

ture factor combination method and padding

technique. BERT model architectures show higher ac-

curacy when 'Behavior' feature factors and '(10-mi-

nute) Time' feature factors are combined, and static

padding is applied.

4.3.2 Performance Evaluation by BERT Model

Architecture

Table 16 shows the results of the performance eval-

uation of anomaly detection systems with the optimal

feature factor combination method and padding tech-

nique for each BERT model architecture.

The performance evaluation shows that BERT-me-

dium-uncased model performs the best, with an accu-

racy of 96.30%, followed by BERT-small-uncased

model and BERT-mini-uncased model, which have

the same accuracy of 95.06%. BERT-medium-un-

cased model also performs the best on F1-Score, an

important performance metric for anomaly detection

systems. We verify that BERT-Medium-uncased ach-

ieves a performance of 96.30% Accuracy, 96.27%

Precision, 96.30% Recall, 96.28% F1-Score, and

99.10% AUC-ROC, showing the best-balanced per-

formance numerically compared to the others of

BERT Model architectures.

In this anomaly detection system,

BERT-Medium-uncased model with a medium-sized

structure achieves the highest performance when com-

bining the 'Behavior' feature factor and the 'Hour +

(10-minute) Time' feature factor and applying static

padding. We found that it is possible to implement

an anomaly detection system with sufficient dataset

EDA, feature engineering, and feature preprocessing

Model Padding 1-minute 10-minute 15-minute 30-minute

BERT-Base-uncased
Dynamic 0.8014 0.8014 0.8015 0.8019

Static 0.9381 0.9489 0.9083 0.8540

BERT-Medium-uncased
Dynamic 0.8011 0.8014 0.8013 0.8014

Static 0.9381 0.9490 0.9099 0.8528

BERT-Small-uncased
Dynamic 0.8011 0.8012 0.8013 0.8013

Static 0.9328 0.9480 0.9087 0.8471

BERT-Mini-uncased
Dynamic 0.8011 0.8012 0.8011 0.8011

Static 0.9288 0.9460 0.9054 0.8477

BERT-Tiny-uncased
Dynamic 0.8010 0.8010 0.8010 0.8011

Static 0.8858 0.9317 0.8961 0.7461

Table 15. Pre-training model MLM task results based on feature factor combination methods and padding techniques



논문 / A Study on Data Reconstruction and Model Parameter Optimization for Implementation of Anomaly Detection System ~

661

without using pre-trained models with complex

structures.

Ⅴ. Conclusion

In this paper, we applied feature factor combination

and preprocessing methods to user behavior data to

construct suitable input data for the model. We aimed

to implement an anomaly detection system using an

optimally scaled BERT model.

We proposed a feature factor combination method

and preprocessing technique to convert user behavior

data into input data of BERT model. We conducted

an ablation study to find the optimal scale model

structure. We found that token construction is very

important for effectively learning user behavior

patterns. In particular, the combination of (time + be-

havior) feature factors and the input sequence padding

method significantly impacted the model's

performance. Static padding allowed us to keep the

input sequence length constant while preserving the

temporal information, which we found effective for

learning behavior patterns. In the experimental results,

we analyzed the performance of each time step. We

found that '1-minute' time features factor showed low

performance due to increased complexity and noise

caused by excessive segmentation. '30-minute' time

feature factor showed low performance because the

time interval is too large, causing important behavioral

information to be lost. On the other hand, we can see

that the best performance is achieved by

BERT-Medium-uncased model, which has an F1

Score of 96.28% and an AUC-ROC of 99.10% for

the '10-minutes' time feature factor. The results sug-

gest that proper segmentation and padding of the data

significantly impact the model's performance for be-

havioral pattern analysis.

In future work, we plan to extend the anomaly de-

tection system to include various types of user behav-

ior data, such as network traffic datasets, to be applied

in real-world environments. Additionally, we aim to

apply BERT Variants and other natural language proc-

essing models to user anomaly detection. Furthermore,

we intend to improve the system's detection perform-

ance by developing the feature factor combination

method proposed in this paper.

References

[1] Verizon, 2024 Data Breach Investigations Report
(2024), Retrieved Sep. 9, 2024, from https://w

ww.verizon.com/business/resources/reports/dbir/

[2] Proofpoint, Voice of the CISO Report (2024),

Retrieved Sep. 9, 2024, from https://www.proo

fpoint.com/kr/resources/white-papers/voice-of-t

he-ciso-report.

[3] N. R. Prasad, S. Almanza-Garcia, and T. T.

Lu, “Anomaly detection,” Comput. Mater.
Contin., vol. 14, no. 1, pp. 1-22, 2009.

(https://doi.org/10.3970/cmc.2009.014.001)

[4] V. Chandola, A. Banerjee, and V. Kumar,

“Anomaly detection: A survey,” ACM
Comput. Surv., vol. 41, no. 3, Article 15, pp.

1-58, Jul. 2009.

(https://doi.org/10.1145/1541880.1541882)

[5] S. Omar, A. Ngadi, and H. H. Jebur,

“Machine learning techniques for anomaly de-

tection: An overview,” Int. J. Comput. Appl.,
vol. 79, no. 2, pp. 33-41, Oct. 2013.

(https://doi.org/10.5120/13715-1478)

[6] A. B. Nassif, M. A. Talib, Q. Nasir, and F.

M. Dakalbab, “Machine learning for anomaly

detection: A systematic review,” IEEE Access,

vol. 9, pp. 78658-78700, May 2021.

(https://doi.org/10.1109/ACCESS.2021.308306

0)

Model Accuracy Precision Recall F1-Score AUC-ROC

BERT-Base
uncased

0.9012 0.8991 0.9012 0.8994 0.9000

BERT-Medium
uncased

0.9630 0.9627 0.9630 0.9626 0.9910

BERT-Small
uncased

0.9506 0.9537 0.9506 0.9487 0.9295

BERT-Mini
uncased

0.9506 0.9536 0.9506 0.9514 0.9475

BERT-Tiny
uncased

0.7531 0.5671 0.7531 0.6470 0.7885

Table 16. Performance evaluation metrics for pre-trained
models with optimal feature factor combination method and
padding techniques

https://www.verizon.com/business/resources/reports/dbir/
https://www.verizon.com/business/resources/reports/dbir/
https://www.proofpoint.com/kr/resources/white-papers/voice-of-the-ciso-report
https://www.proofpoint.com/kr/resources/white-papers/voice-of-the-ciso-report
https://www.proofpoint.com/kr/resources/white-papers/voice-of-the-ciso-report
https://doi.org/10.3970/cmc.2009.014.001
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.5120/13715-1478
https://doi.org/10.1109/ACCESS.2021.3083060
https://doi.org/10.1109/ACCESS.2021.3083060


The Journal of Korean Institute of Communications and Information Sciences '25-04 Vol.50 No.04

662

[7] R. Chalapathy and S. Chawla, “Deep learning

for anomaly detection: A Survey,” arXiv pre-
print arXiv:1901.03407, Jan. 2019. Retrieved

Sep. 09, 2024, from https://arxiv.org/abs/1901.

03407.

(https://doi.org/10.48550/arXiv.1901.03407)

[8] G. Pang, C. Shen, L. Cao, and A. V. D.

Hengel, “Deep learning for anomaly detection:

A review,” ACM Comput. Surv., vol. 54, no.

2, Article 38, pp. 1-38, Mar. 2021.

(https://doi.org/10.1145/3439950)

[9] B. Schölkopf, A. J. Smola, R. C. Williamson,

and P. L. Bartlett, “New support vector algo-

rithms,” Neural Computation, vol. 12, no. 5,

pp. 1207-1245, May 2000.

(https://doi.org/10.1162/089976600300015565)

[10] K. Yang, S. Kpotufe, and N. Feamster, “An

efficient one-class SVM for anomaly detection

in the internet of things,” arXiv preprint
arXiv:2104.11146, Apr. 2021. Retrieved Sep.

09, 2024, from https://arxiv.org/abs/2104.111

46

(https://doi.org/10.48550/arXiv.2104.11146)

[11] R. Chalapathy, A. K. Menon, and S. Chawla,

“Anomaly detection using one-class neural

networks,” arXiv preprint arXiv:1802.06360,

Jan. 2019. Retrieved Sep. 09, 2024, from

https://arxiv.org/abs/1802.06360.

(https://doi.org/10.48550/arXiv.1802.06360)

[12] S. M. Erfani, S. Rajasegarar, S. Karunasekera,

and C. Leckie, “High-dimensional and large-

scale anomaly detection using a linear one-

class SVM with deep learning,” Pattern
Recognition, vol. 58, pp. 121-134, Oct. 2016.

(https://doi.org/10.1016/j.patcog.2016.03.028)

[13] A. Binbusayyis and T. Vaiyapuri, “Unsu-

pervised deep learning approach for network

intrusion detection combining convolutional

autoencoder and one-class SVM,” Applied
Intell., vol. 51, pp. 7094-7108, Oct. 2021.

(https://doi.org/10.1007/s10489-021-02205-9)

[14] Y. Lecun, L. Bottou, Y. Bengio, and P.

Haffner, “Gradient-based learning applied to

document recognition,” in Proc. IEEE, vol.

86, no. 11, pp. 2278-2324, Nov. 1998.

(https://doi.org/10.1109/5.726791)

[15] D. Kwon, K. Natarajan, S. C. Suh, H. Kim,

and J. Kim, “An empirical study on network

anomaly detection using convolutional neural

networks,” in Proc. IEEE 38th ICDCS 2018,

pp. 1595-1598, Vienna, Austria, Jun. 2018.

(https://doi.org/10.1109/ICDCS.2018.00178)

[16] M. K. Hooshmand and D. Hosahalli,

“Network anomaly detection using deep learn-

ing techniques,” CAAI Trans. Intell. Technol.,
vol. 7, no. 2, pp. 228-243, Jun. 2022.

(https://doi.org/10.1049/cit2.12078)

[17] H.-J. Im, T.-R. Kim, J.-G. Song, and B.-S.

Kim, “Anomaly detections model of aviation

system by CNN,” J. Aerospace Syst. Eng.,
vol. 17, no. 4, pp. 67-74, Aug. 2023.

(https://doi.org/10.20910/JASE.2023.17.4.67)

[18] S. Hochreiter and J. Schmidhuber, “Long

short-term memory,” Neural Comput., vol. 9,

no. 8, pp. 1735-1780, Nov. 1997.

(https://doi.org/10.1162/neco.1997.9.8.1735)

[19] B. Lindemann, B. Maschler, N. Sahlab, and

M. Weyrich, “A survey on anomaly detection

for technical systems using LSTM networks,”

Comput. in Industry, vol. 131, no. 103498,

Jun. 2021.

(https://doi.org/10.1016/j.compind.2021.10349

8)

[20] M. S. Elsayed, N. Le-Khac, S. Dev, and A. D.

Jurcut, “Network anomaly detection using

LSTM based autoencoder,” in Proc. 16th
ACM Symp. QoS and Secur. for Wireless and
Mob. Netw. (Q2SWinet '20), pp. 37-45, New

York, NY, USA, Nov. 2020.

(https://doi.org/10.1145/3416013.3426457)

[21] T. Ergen and S. S. Kozat, “Unsupervised

anomaly detection with LSTM neural net-

works,” IEEE Trans. Neural Netw. and Learn.
Syst., vol. 31, no. 8, pp. 3127-3141, Aug.

2020.

(https://doi.org/10.1109/TNNLS.2019.2935975)

[22] T. Kim and S. Cho, “Web traffic anomaly de-

tection using C-LSTM neural networks,”

Expert Syst. with Appl., vol. 106, pp. 66-76,

Apr. 2018.

https://arxiv.org/abs/1901.03407
https://arxiv.org/abs/1901.03407
https://doi.org/10.48550/arXiv.1901.03407
https://doi.org/10.1145/3439950
https://doi.org/10.1162/089976600300015565
https://arxiv.org/abs/2104.11146
https://arxiv.org/abs/2104.11146
https://doi.org/10.48550/arXiv.2104.11146
https://arxiv.org/abs/1802.06360
https://doi.org/10.48550/arXiv.1802.06360
https://doi.org/10.1016/j.patcog.2016.03.028
https://doi.org/10.1007/s10489-021-02205-9
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ICDCS.2018.00178
https://doi.org/10.1049/cit2.12078
https://doi.org/10.20910/JASE.2023.17.4.67
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.compind.2021.103498
https://doi.org/10.1016/j.compind.2021.103498
https://doi.org/10.1145/3416013.3426457
https://doi.org/10.1109/TNNLS.2019.2935975


논문 / A Study on Data Reconstruction and Model Parameter Optimization for Implementation of Anomaly Detection System ~

663

(https://doi.org/10.1016/j.eswa.2018.04.004)

[23] D. E. Rumelhart, G. E. Hinton, and R. J.

Williams, “Learning internal representations

by error propagation,” in Parallel Distributed
Proc.: Explorations in the Microstructures of
Cognition, vol. I, pp. 318-362, D. E.

Rumelhart and J. L. McClelland, Eds.

Cambridge, MA: MIT Press, 1986.

(https://doi.org/10.7551/mitpress/4943.003.012

8)

[24] C. Zhou and R. C. Paffenroth, “Anomaly de-

tection with robust deep autoencoders,” in

Proc. 23rd ACM SIGKDD Int. Conf. KDD
'17, pp. 665-674, New York, NY, USA, Aug.

2017.

(https://doi.org/10.1145/3097983.3098052)

[25] Z. Chen, C. K. Yeo, B. S. Lee, and C. T. Lau,

“Autoencoder-based network anomaly de-

tection,” in Proc. 2018 WTS, pp. 1-5, Phoenix,

AZ, USA, Apr. 2018.

(https://doi.org/10.1109/WTS.2018.8363930)

[26] R. C. Aygun and A. G. Yavuz, “Network

anomaly detection with stochastically im-

proved autoencoder based models,” in Proc.
2017 IEEE 4th Int. Conf. Cyber Security and
Cloud Comput. (CSCloud), pp. 193-198, New

York, NY, USA, Jun. 2017.

(https://doi.org/10.1109/CSCloud.2017.39)

[27] D. P. Kingma and M. Welling, “Auto-encod-

ing variational bayes,” in Proc. 2nd ICLR
2014, pp. 1-14, Banff, Canada, Apr. 2014.

(https://doi.org/10.48550/arXiv.1312.6114)

[28] T. Iqbal and S. Qureshi, “Reconstruction prob-

ability-based anomaly detection using varia-

tional auto-encoders,” Int. J. Comput. and
Appl., vol. 45, no. 3, pp. 231-237, Nov. 2022.

(https://doi.org/10.1080/1206212X.2022.21430

26)

[29] D. Zimmerer, S. A. A. Kohl, J. Petersen, F.

Isensee, and K. H. Maier-Hein, “Context-en-

coding variational autoencoder for un-

supervised anomaly detection,” in Proc. Int.
Conf. MIDL 2019, pp. 1-8, London, UK, Jul.

2019.

(https://doi.org/10.48550/arXiv.1812.05941)

[30] J. Sun, X. Wang, N. Xiong, and J. Shao,

“Learning sparse representation with varia-

tional auto-encoder for anomaly detection,”

IEEE Access, vol. 6, pp. 33353-33361, Jun.

2018.

(https://doi.org/10.1109/ACCESS.2018.284821

0)

[31] R. Yao, C. Liu, L. Zhang, and P. Peng,

“Unsupervised anomaly detection using varia-

tional auto-encoder based feature extraction,”

in Proc. 2019 IEEE Int. Conf. Prognostics and
Health Manag. (ICPHM), pp. 1-7, San

Francisco, CA, USA, Jun. 2019.

(https://doi.org/10.1109/ICPHM.2019.8819434)

[32] A. Vaswani, N. Shazeer, N. Parmar, J.

Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,

and I. Polosukhin, “Attention is all you need,”

in Proc. Advances in NIPS 2017, vol. 30, pp.

5998-6008, Long Beach, USA, Dec. 2017.

(https://doi.org/10.48550/arXiv.1706.03762)

[33] J. Devlin, M. Chang, K. Lee, and K.

Toutanova, “BERT: Pre-training of deep bidir-

ectional transformers for language under-

standing,” in Proc. 2019 Conf. North
American Chapter of the Assoc. Computat.
Linguistics: Human Language Technol.
(NAACL-HLT 2019), pp. 4171-4186,

Minneapolis, USA, Jun. 2019.

(https://doi.org/10.48550/arXiv.1810.04805)

[34] W. Dang, B. Zhou, L. Wei, W. Zhang, Z.

Yang, and S. Hu, “TS-Bert: Time series

anomaly detection via pre-training model

Bert,” in Proc. Int. Conf. Database Syst. for
Advanced Appl. (DASFAA 2021), pp. 220-235,

Taipei, Taiwan, Apr. 2021.

(https://doi.org/10.1007/978-3-030-77964-1_17)

[35] J. Guo, X. Chen, Z. Liu, Y. Chen, and C. Xu,

“LogBERT: Log anomaly detection via

BERT,” in Proc. 2021 IJCNN, pp. 1-8,

Shenzhen, China, Jul. 2021.

(https://doi.org/10.1109/IJCNN52387.2021.953

4113)

[36] X. Tang and Y. Guan, “Log anomaly de-

tection based on BERT,” Signal, Image and
Video Process., vol. 18, no. 2, pp. 1139-1147,

https://doi.org/10.1016/j.eswa.2018.04.004
https://doi.org/10.7551/mitpress/4943.003.0128
https://doi.org/10.7551/mitpress/4943.003.0128
https://doi.org/10.1145/3097983.3098052
https://doi.org/10.1109/WTS.2018.8363930
https://doi.org/10.1109/CSCloud.2017.39
https://doi.org/10.1080/1206212X.2022.2143026
https://doi.org/10.1080/1206212X.2022.2143026
https://doi.org/10.1109/ACCESS.2018.2848210
https://doi.org/10.1109/ACCESS.2018.2848210
https://doi.org/10.1109/ICPHM.2019.8819434
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1810.04805


The Journal of Korean Institute of Communications and Information Sciences '25-04 Vol.50 No.04

664

Feb. 2024.

(https://doi.org/10.1007/s11760-024-03327-6)

[37] B. Lindauer, Insider Threat Test Dataset(2020),

Retrieved Sep. 9, 2024, from https://kilthub.cm

u.edu/articles/dataset/Insider_Threat_Test_Data

set/12841247/1

(https://doi.org/10.1184/R1/12841247.v1.)

[38] J. W. Tukey, Exploratory Data Analysis(1977),

Retrieved Sep. 9, 2024, from https://archive.or

g/details/exploratorydataa00tuke_0/page/n19/m

ode/2up.

[39] A. Gelman, “Exploratory data analysis for

complex models,” J. Comput. and Graphical
Statistics, vol. 13, no. 4, pp. 755-779, Dec.

2004.

(https://doi.org/10.1198/106186004X11435)

[40] Y. Wu, M. Schuster, Z. Chen, et al.,

“Google's neural machine translation system:

Bridging the gap between human and machine

translation,” arXiv preprint, vol. 1609.08144,

Oct. 2016. Retrieved Sep. 9, 2024, from

https://arxiv.org/abs/1609.08144.

(https://doi.org/10.48550/arXiv.1609.08144)

[41] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P.

Sharma, and R. Soricut, “ALBERT: A lite

BERT for self-supervised learning of language

representations,” in Proc. 8th ICLR 2020, pp.

1-17, Addis Ababa, Ethiopia, Apr. 2020.

(https://doi.org/10.48550/arXiv.1909.11942)

[42] P. He, X. Liu, J. Gao, and W. Chen,

“DeBERTa: Decoding-enhanced BERT with

disentangled attention,” in Proc. 9th ICLR
2021, pp. 1-21, Virtual Event, May 2021.

(https://doi.org/10.48550/arXiv.2006.03654)

[43] K. Clark, M. Luong, Q. V. Le, and C. D.

Manning, “ELECTRA: Pre-training text en-

coders as discriminators rather than gen-

erators,” in Proc. 8th ICLR 2020, pp. 1-18,

Addis Ababa, Ethiopia, Apr. 2020.

(https://doi.org/10.48550/arXiv.2003.10555)

[44] Y. Liu et al., “RoBERTa: A robustly opti-

mized BERT pretraining approach,” arXiv pre-
print arXiv:1907.11692, Jul. 2019. Retrieved

Sep. 9, 2024, from https://arxiv.org/abs/1907.

11692.

(https://doi.org/10.48550/arXiv.1907.11692)

[45] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R.

Salakhutdinov, and Q. V. Le, “XLNet:

Generalized autoregressive pretraining for lan-

guage understanding,” in Proc. Advances in
NeurIPS 2019, vol. 32, pp. 5753-5763,

Vancouver, Canada, Dec. 2019.

(https://doi.org/10.48550/arXiv.1906.08237)

[46] C. Sun, X. Qiu, Y. Xu, and X. Huang, “How

to fine-tune BERT for text classification?,” in

Proc. China National Conf. Chinese Comput.
Linguistics (CCL 2019), pp. 194-206,

Kunming, China, Oct. 2019.

(https://doi.org/10.48550/arXiv.1905.05583)

[47] M. Sokolova and G. Lapalme, “A systematic

analysis of performance measures for classi-

fication tasks,” Inf Process. & Manag., vol.

45, no. 4, pp. 427-437, Jul. 2009.

(https://doi.org/10.1016/j.ipm.2009.03.002)

[48] G. E. A. P. A. Batista, R. C. Prati, and M. C.

Monard, “A study of the behavior of several

methods for balancing machine learning train-

ing data,” SIGKDD Explorations Newsletter,

vol. 6, no. 1, pp. 20-29, Jun. 2004.

(https://doi.org/10.1145/1007730.1007735)

[49] J. Davis and M. Goadrich, “The relationship

between precision-recall and ROC curves,” in

Proc. 23rd ICML '06, pp. 233-240, Pittsburgh,

USA, Jun. 2006.

(https://doi.org/10.1145/1143844.1143874)

[50] Python Software Foundation, Python 3.10.6
Release(2022), Retrieved Sep. 09, 2024, from

https://www.python.org/downloads/release/pyth

on-3106/

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J.

Bradbury, G. Chanan, T. Killeen, Z. Lin, N.

Gimelshein, L. Antiga, A. Desmaison, A.

Kopf, E. Yang, Z. DeVito, M. Raison, A.

Tejani, S. Chilamkurthy, B. Steiner, L. Fang,

J. Bai, and S. Chintala, “PyTorch: An imper-

ative style, high-performance deep learning li-

brary,” in Proc. Advances in NeurIPS 2019,

vol. 32, pp. 8024-8035, Vancouver, Canada,

Dec. 2019.

(https://doi.org/10.48550/arXiv.1912.01703)

https://kilthub.cmu.edu/articles/dataset/Insider_Threat_Test_Dataset/12841247/1
https://kilthub.cmu.edu/articles/dataset/Insider_Threat_Test_Dataset/12841247/1
https://kilthub.cmu.edu/articles/dataset/Insider_Threat_Test_Dataset/12841247/1
https://archive.org/details/exploratorydataa00tuke_0/page/n19/mode/2up
https://archive.org/details/exploratorydataa00tuke_0/page/n19/mode/2up
https://archive.org/details/exploratorydataa00tuke_0/page/n19/mode/2up
https://doi.org/10.1198/106186004X11435
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.48550/arXiv.1907.11692
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1145/1007730.1007735
https://doi.org/10.1145/1143844.1143874
https://www.python.org/downloads/release/python-3106/
https://www.python.org/downloads/release/python-3106/


논문 / A Study on Data Reconstruction and Model Parameter Optimization for Implementation of Anomaly Detection System ~

665

[52] W. McKinney, “Data structures for statistical

computing in python,” in Proc. 9th Python in
Sci. Conf., pp. 56-61, Austin, Texas, Jun.

2010.

(https://doi.org/10.25080/Majora-92bf1922-00

a)

[53] F. Pedregosa, G. Varoquaux, A. Gramfort, V.

Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J.

Vanderplas, A. Passos, D. Cournapeau, M.

Brucher, M. Perrot, and É. Duchesnay,

“Scikit-learn: Machine learning in Python,” J.
Mach. Learn. Res., vol. 12, no. 85, pp.

2825-2830, 2011.

(https://www.jmlr.org/papers/v12/pedregosa11

a.html)

Yu-Jin So

Feb. 2023 : B.S. in IT Conve-

rgence & Communication

Eng. Major, School of IT

Information & Control

Eng., Kunsan National

University

Feb. 2025 : M.S in Information

Communication Radio Engineering Major,

School of Electronics and Information Eng.

<Research Interest> Artificial Intelligence,

Artificial Intellgence security (AI security)

[ORCID:0009-0005-9413-0715]

Jong-Geun Park

Feb. 1999 : M.S. in Dept. of

Industrial Engineering,

Sungkyunkwan University

Feb. 2013 : Ph.D. in Dept. of

Computer Engineering,

Chungnam National

University

Mar. 1997~Apr. 2001 : Researcher, Agency for

Defense Development (ADD)

May. 2001~Current : Team leader/Principal Re-

searcher, Intelligent Network Security Research

Section, Electronics and Telecommunications

Research Institute (ETRI)

<Research Interest> Mobile Communication Security,

Cloud Security, Defense Cybersecurity, AI Security

etc.

[ORCID:0000-0003-4973-7700]

Kyuchang Kang

Feb. 1997 : M.S. in Dept. of

Electronics Engineering,

Kyungpook National Uni-

versity

Aug. 2009 : Ph.D. in Dept. of

Computer Engineering,

Chungnam National Uni-

versity

Feb. 1997~Mar. 2001 : Researcher, Agency for

Defense Development (ADD)

Mar. 2001~Mar. 2017 : Principal Researcher,

SW·Content Laboratory, Electronics and

Telecommunications Research Institute (ETRI)

Mar. 2017~Current : Associate Professor, Dept. of IT

and Communication Convergence Engineering,

Kunsan National University

<Research Interest> Open Software Platform,

Artificial Intellgence of Things(AIoT), Artificial

Intellgence security (AI security), Human-

Understanding Cognitive Computing

[ORCID:0000-0003-0833-8906]

https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://www.jmlr.org/papers/v12/pedregosa11a.html

