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Improving Accuracy in Detecting Unknown Objects and
Enhancing Low Visibility Conditions Caused by Sea Fog in
Coastal Areas

Min uk Jung®, Soo Yeon Yoon’

ABSTRACT

South Korea, being in a tense situation with the North and surrounded by the sea on three sides due to its
geographic characteristics, places great importance on coastal surveillance for national security. However,
challenges arise in coastal surveillance operations due to outdated military equipment and a reduction in
military personnel caused by low birth rates. Against this backdrop, this paper presents deep learning based
automation technology as a substitute for human resources. Coastal regions often experience low visibility due
to sea fog caused by unique climate conditions. To address this issue, the Dehazy algorithm is introduced for
fog removal, and an algorithm for background separation is implemented by dividing the boundary between the
sea, sky, and obstacles based on the horizon to focus on objects on the sea. For object detection, the YOLO
algorithm is used, and this paper highlights the difference in object recognition rates and real time processing
speed when identifying unidentified objects, both in the original and processed images.

Key Words : Object Detection, Deeplearning, USO detection, Background Segmentation, Real Time

Processing Capability, Dehaze, Coastal Boundary Operations

. Introduction error in surveillance. If these issues are not addressed,

failures in coastal surveillance operations could pose

Considering the geographical characteristics of serious threats to national security!. Additionally, the
South Korea, surrounded by the sea on three sides, aging of current military equipment has made coastal
coastal surveillance plays a critical role in national surveillance operations more difficult. Approximately
security. However, incidents such as the North Korean 70% of the Army’s coastal surveillance radar and 60%
fishing boat’s entry into Samcheok Port and the of TOD systems have exceeded their lifespan, making
Chinese small boat’s illegal entry in Taean, it harder to detect infiltrations. Furthermore, with a
Chungnam, highlight the ever present risk of human declining population due to low birth rates and short-
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ened military service periods, the shortage of person-
nel for surveillance operations is expected to worsen
in the future. In this context, the introduction of artifi-
cial intelligence(Al) and Big data technologies to the
military could provide solutions to these challenges.
This study focuses on the automatic identification of
unidentified objects along the coast. Building on exist-
ing research, this study integrates several specific
technologies to enhance the accuracy and efficiency
of detection. First, the Dehaze algorithm is used to
remove background noise caused by sea fog, improv-
ing image clarity. Next, the water segmentation and
refinement maritime obstacle detection
Network(WaSR) algorithm is employed to segment
the background by separating the sea, sky, and land
based on the horizon. Using this segmented data, the
object detection algorithm You only look once
(YOLO) is applied to detect objects specifically in the
sea region. Previously, sea fog removal and object de-
tection models were developed independently, but this
study combines these approaches to perform object
detection on clearer, noise reduced images. By com-
paring this approach with previous studies, it is ex-
pected to offer a more efficient and accurate identi-
fication of unidentified objects. This will help provide
solutions to the aforementioned issues, including hu-
man error, reduced military personnel, and aging mili-

tary equipment.

II. References

With the rise of the Fourth Industrial Revolution,
many tasks previously performed by humans are now
being replaced by Al and Big data technologies. The
military is also preparing plans to develop an ad-
vanced, cutting edge force by integrating the latest
technologies. This can provide solutions to the afore-
mentioned problems and help strengthen future na-
tional defense capabilities. Thus, the adoption of Al
technology can automatically detect and swiftly re-
spond to potential threats such as infiltration through
coastal areas or ab- normal behaviors of ships. This
paper will discuss measures for automating coastal
surveillance operations and will explain three essential

algorithms required for the automation of coastal op-
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erations an automatic object detection algorithm, a
background separation algorithm, and a fog removal
algorithm.

2.1 Object Detection

As Vision Al technology advances, numerous ob-
ject detection techniques have emerged, and these
technologies are currently being utilized in various
fields, such as autonomous vehicles, healthcare, se-
curity and surveillance, agriculture, and
manufacturing. Based on these technologies, there is
a need for a system that can identify ships, floating
objects, and submerged objects on the sea and provide
early warnings in the event of unidentified underwater
objects that have not been trained. Major examples
of object detection algorithms that can be mentioned
include Faster R-CNN™, Yolo®, and Single shot mul-
tibox detector(SSD)™.. Faster R-CNN, one of the ob-
ject detection technologies, is an improved model of
the previous Fast-RCNNP!, employing a 2-stage ap-
proach for inference. Since it independently handles
object proposal regions and bounding boxes, it has
a relatively slower inference speed but offers the ad-
vantage of high accuracy. Another model, Yolo, uses
a l-stage approach, predicting the object type and lo-
cation simultaneously, which results in faster in-
ference speeds. This makes Yolo highly suitable for
real time processing, unlike traditional object de-
tection systems, and it is widely used in various fields
for various applications. Furthermore, Yolo continues
to receive version updates, with improvements ad-
dressing the accuracy issues found in earlier versions,
making it one of the most popular object detection
models today.

2.2 Background Subtraction

In order to efficiently carry out coastal surveillance
operations, it is necessary to distinguish and separate
the background elements such as the sky, sea, and
land. If detection is performed without separating
these elements, objects in the sky and on land may
also be indiscriminately recognized, making back-
ground separation a critical measure. Examples of
background separation methods include the
BackgroundSubtractor approach'® used in OpenCV
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and the Semantic Segmentation method. The back-
ground removal algorithms provided by OpenCV con-
sist of BackgroundSubtractorMOG, Background
SubtractorMOG2, and BackgroundSubtractorGMG,
BackgroundSubtractorMOG is a Gaussian mixtur-
ebased background separation algorithm. This method
removes the background by applying a mixture of
Gaussiandistributions (with K values of 3 or 5) to the
background pixels. The weights of the mixture com-
ponents are determined by the amount of time a par-
ticular pixel remains in the same location in the video
for background removal”!. BackgroundSubtractor
GMG is a model that combines statistical background
image removal with pixel level Bayesian
segmentation. This algorithm uses the first few frames

(usually 120) for background modeling and employs

Bayesian inference to detect moving objects or fore-

Fig. 1. An Example of Background Removal Using
BackgroudSubtractorMOG.

Fig. 2. An Example of Background RemovalUsingBackgroud
SubtractorGMG.

ground elements instead of the background.
Looking at background separation methods using
segmentation techniques, this approach has become
increasingly popular in recent background separation
technology. Segmentation based background separa-
tion allows the removal or composition of specific
parts of segmented objects, and the U-net®® algorithm
is widely used for this purpose. Recently, various
models such as Facebook’s Segment
Anything(SAM)®! have also been developed. Among
these, the WaSR"” model is lighter compared to other
segmentation models and, especially when consider-
ing the maritime environment, demonstrated com-
petitive performance compared to other models. Most
notably, it achieved clear separation of obstacles such
as the sea and sky. The WaSR model benefits from
employing the ResNet 101 backbone network, which

provides high accuracy in background separation

=

Lone MU horizon mask

Fig. 3. WaSR Frame Work.

2.3 Dehaze

Sea fog refers to the fog that forms near the surface
of the sea. The low visibility caused by sea fog can
reduce the visibility range, making fog minimization
a crucial factor in coastal surveillance operations. The
algorithms used for sea fog removal include DCP
(Dark Channel Prior)""! and EDN-GTM"?. DCP,
atraditional fog removal method,works by identifying
areas in a foggy image where the intensity of the mini-
mum channel among the R, G, and B channels sig-
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nificantly decreases. These areas are defined as the
Dark Channel, and the pixel values from this channel
are applied to the entire image. This process results
in an image composed only of the channel with the
lowest luminance. From this image, the darkness level
of specific pixels is extracted and defined as the target
luminance, and the boundary value of this luminance
is estimated. The target luminance is set as a top per-
centile, typically between 0.1 percent and 1 percent
For pixels with luminance below the target boundary,
a binary mask is generated to highlight the dark
regions. As a result, the dark regions are marked as
1, and the remaining regions are marked as 0. From
these marked regions, the target luminance is reesti-
mated, and the input image is then restored

In the case of the EDN-GTM model, it utilizes the
U-net network as its core backbone for image
segmentation. This model also adopts the regions
where the RGB values decrease as the Dark Channel,
which is then input into the U-net network. The U-net
structure used in EDN-GTM incorporates mod-
ifications such as adding spatial pyramid pooling and
using the Swish activation function to enhance fog
removal performance. Additionally, since the model
is trained directly on foggy data, it shows superior
performance in fog removal and low visibility im-
provement compared to traditional models. The results

indicate a significant performance improvement of up
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Fig. 4. An image processed for fog removal using the
DCP algorithm.

Fig. 5. Detection performance on blurred and dehazed
images (left in each pair: blurred, right: dehazed, red:
ground truth, green: detection).
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to 4.73% in terms of mAP measurements, and it has
good compatibility with the Yolo model, making it
applicable to real time video processing

Il. Research Methodology

By combining the aforementioned technologies, a
system will be developed for identifying unidentified
underwater objects along the coast. The algorithm
model is structured in the following order Dehaze
model for noise (sea fog) removal, Background
Subtraction model for background separation, and
Object Detection model for automatic object
detection. Let me know if you need any further adjust-
ments

3.1 Select Dehaze model

For sea fog removal, the EDN-GTM model was
used as the Dehaze model. This model showed the
best performance during inference with a pretrained
model and has been previously combined with real
time inference models like Yolo, making it the most
efficient option for this experiment. In scientific sur-
veillance operations, when the coastal environment’
s CCTV system passes through this model, it detects
foggy areas and minimizes noise, producing clearer
images. The resulting images are then fed into the
next task, the object detection algorithm

3.2 Select Object Detection model

Is then processed by the object detection algorithm.
The most suitable object detection model for this task
is the Yolo model. Since Yolo operates using a 1-stage
approach, it offers the advantage of exceptional in-
ference speed. This makes it highly specialized for
processing real time maritime footage received via
CCTV, which is crucial for scenarios requiring rapid
responses, such as maritime detection. Furthermore,
Yolo continues to evolve with new versions, sig-
nificantly improving the accuracy previously a limi-
tation of earlier models and adding new features with
each update. Considering these advantages, the Yolo
model is used for object detection. As the Yolo model
requires images to be in tensor format for inference,

the images should be converted into tensor format af-
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ter passing through the sea fog removal task before
being processed by the Yolo model for the second
task, object detection

3.3 Select Background Subtraction model

The next step is to separate the background into
sea,sky, and obstacles to improve the detection accu-
racy of unidentified objects. Recent studies have pro-
posed the WaSR approach as an effective algorithm
for identifying unidentified underwater objects in ma-
rine environments'®, The WaSR architecture consists
of two main components: an encoder and a decoder.
The encoder is responsible for extracting features and
contextual information from the input image, utilizing
the depth of ResNet-101 to extract rich and distinct
features. The decoder reconstructs the segmented im-
age from the encoded features, ensuring spatial reso-
lution is maintained and the boundaries of the seg-
mented regions are clear and well defined. As shown
in Fig 3, the WaSR network’ s overall structure illus-
trates the interaction between the encoder, which cap-
tures the scene’ s semantics, and the decoder, which
refines this understanding into a detailed segmentation
map. Here, the encoder handles the semantic under-
standing of the scene, while the decoder translates this
into a segmentation map that clearly distinguishes be-
tween the sea, sky, and obstacles. Because WaSR uses
ResNet-101 as its backbone network, it offers the ad-
vantage of high accuracy in background separation.
Additionally, it is well suited for handling challenges
in marine environments, such as water reflections and
various weather conditions, as it includes a function
to adjust brightness preprocessing. Therefore, the
WaSR algorithm is deemed highly suitable for back-
ground separation. The application of WaSR in this
paper is crucial, as its high accuracy in segmentation
ensures optimal performance for the subsequent de-
tection algorithms, making the WaSR model the pre-
ferred choice. Since WaSR is capable of adjusting
brightness preprocessing in response to various marine
conditions like water reflections and weather, it was
selected as the background separation algorithm. The
background separation algorithm is applied simulta-
neously when receiving the dehazed image, rather

than after object detection, so it is more accurate to

refer to it as the second task. Therefore, the dehazed
image undergoes object detection and background
separation simultaneously, and the combined results

are outputted.

3.4 Coastal surveillance system Architecture

Based on CCTV images input from the coastal en-
vironment, a framework is constructed by combining
the aforementioned technologies to remove sea fog
and identify objects floating on the sea. First, after
receiving the maritime image, noise elements such as
sea fog are removed from the image. Then, the image
undergoes object detection and background separation
algorithms, during which only objects on the sea are
inferred using the Yolo algorithm.

Segmenta Ground &
tion - Sky Binary
(WaSR) Mask

dehaze
(EDN-
GTM)

Input
= > |

Object = Output
COBN R
Fig. 6. Model Frame work.

3.5 Train dataset

The dataset used for training consists of
MaSTr1478, a representative set of images used for
maritime object detection, and 24,000 images from the
Alhub marine open dataset. Among these, approx-
imately 10,000 images were processed using the Haze

Image Synthesis!*

algorithm to create foggy images
for training. The foggy images generated through
Haze Image Synthesis will be used for training the
Dehaze algorithm, EDM-GTM, while the remaining
data will be used for training WaSR and Yolov7.
As shown in Fig 7, this dataset is divided into three
natural regions for each image: sky, horizon, and sea,
making it a suitable dataset for detecting obstacles in
the sea area. To use this dataset for object detection,
it was categorized into 10 classes: fishing boat, naval
vessel, submarine, rubber boat, person, vehicle, heli-
copter, airplane, animal, and buoy. Among these, any
objects not trained, along with buoys, will be assumed

to be unidentified underwater objects
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Fig. 7. Model Frame work.

IV. Experiment

4.1 Experimental environment

The PC environment used for model training is Red
Hat Enterprise Linux Server Release 7.9. The PC
specifications include an Intel(R) Xeon(R) Gold
6248R CPU @ 3.00GHz, and the training was con-
ducted using two NVIDIA A40 graphics cards.

4.2 Experimental Results

The purpose of this study is to develop a deep
learning based approach to improve object detection
in marine environments, and experiments were con-
ducted using the framework implemented according
to the previously mentioned research methodology. In
the first experiment, inference was performed using
the pretrained models of EDN-GTM, Yolov7™! and

Table 1. Sample Original Images

Table 2. Detection Results

WaSR, and the results are as follows

The results showed that although object detection
for unidentified objects on the sea was performed,
there were frequent issues where reflected images on
the water were mistakenly identified as unidentified
underwater objects. Additionally, the sea fog removal
step in the noise reduction process did not produce
satisfactory results. The resolution in the noisy areas
slightly changed, but the noise was not properly
removed. This issue is attributed to the use of a pre-
trained model instead of a model trained directly with
the relevant data and weights. To address this, a re-
experiment was conducted using a model trained with
custom data. The dataset used for training included
around 10,000 images with added fog effects from
the Haze Image Synthesis Dataset. When the results
were rechecked using the weight files obtained from
this trained model, the output was as follows

The inference results, as shown in Table 4, indicate
that the model trained with images containing sea fog
was able to handle foggy areas more flexibly com-
pared to the model used in the initial experiment.
Additionally, the sea fog removal effect contributed
to an increase in the detection rate of unidentified
objects. The next experiment will compare object de-
tection rates before and after sea fog removal.

As seen in Table 5 and Table 6, the object detection
accuracy is higher in the images where sea fog was
removed compared to the results from images without
fog removal. Next, the inference speed will be

Table 3. Example Images from the Haze Dataset Used
for Inference
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Table 5. Validation Results (Before Haze Removal)

Table 6. Validation Results (After Haze Removal)

measured. Since inference on a GPU environment was
not possible, the speed comparison was conducted us-
ing CPU inference.

4.3 Differences in Inference by Model

The object detection models used in the experiment
were Yolov5"® and Yolov7. Looking at Yolov5® s
backbone, it uses the CSP-Darknet” network for fea-
ture map extraction, and in the neck section, it utilizes
SPP to upsample the image before passing it to the
head for inference. In contrast, Yolov7 has a simpler
structure where the output goes directly from the
backbone to the head without passing through the
neck. Although YoloV6!"® was released later than
Yolov7, in research related to floating objects in the
sea, Yolov3" Yolov5, Scaled Yolov4™, and
Yolov7 have been primarily used. Yolov7, in partic-
ular, demonstrated high recognition rates and fast in-
ference speeds in the object detection competition
held in July 2022. In this experiment, we will explore
the differences between Yolov5 and Yolov7, for
which prior research on object detection exists

When comparing the object detection rates of
Yolov5 and Yolov7 using the same images, there was
no significant difference in detection accuracy.
However, in terms of inference speed, some noticeable
differences between the two models were observed
When using the model, the inference speed was meas-
uredat 4 seconds. In addition to Yolov7, other com-
monly used models for marine environment detection
include Scaled Yolov4 and Yolov5. Therefore,

Table 7. Object Detection Results with EDN-GTM.
Yolov5, and WaSR

Table 8. Object Detection Results with EDN-GTM,
Yolov7, and WaSR

Yolov5 will also be used as the object detection model
to compare the inference speeds

When using Yolov5, it took approximately 10 sec-
onds for the sea fog to be removed from the image
and for the unidentified underwater object to be in-
ferred, with a slight variation of around 1 second. In
contrast, when using Yolov7, the inference speed in
the same situation was around 4 seconds, which is
about 6 seconds faster. It can be assumed that if the
inference had been conducted in a GPU environment
rather than a CPU environment, the difference in in-
ference speed would have been even greater. Next,
to achieve faster inference speeds, I set the weight

file of Yolov7 to Yolov7-tiny. The tiny version uses

Fig. 8. EDN-GTM + Yolov7 + WaSR.(using CPU)

Fig. 9. EDN-GTM + Yolov5 + WaSR.(using CPU)
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Fig. 10. Inference results using Tiny (Using CPU)

significantly fewer layers and filters compared to the
standard weight file, and employs the LeakyReLU ac-
tivation function in each layer, resulting in faster in-
ference speeds for object detection. Therefore, it is
expected that using the tiny model will lead to even
faster inference speeds

Contrary to expectations, applying the tiny model
did not result in any difference in inference speed.
This leads to the conclusion that the factor affecting
inference speed is the sea fog removal algorithm, the
EDNGTM model. This model is based on the U-net
network, which, due to its deep and complex layers,
is not suitable for real time processing. However, it
is known to produce efficient results when performing

tasks that require high accuracy.

V. Conclusion and Future Research

This study presents an object detection method-
ology for identifying unidentified underwater objects
in marine areas, based on sea fog removal technology.
In the preprocessing stage, fog removal was applied
to enhance image clarity, followed by object detection
using the YOLO algorithm, with background segmen-
tation limited to the marine area to improve detection
accuracy. Experimental results show that fog removal
improved the identification accuracy of unidentified
objects. however, some limitations were observed,
such as reduced accuracy in images with high noise

and the complexity of the model, which hinders real
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time processing. Future work will focus on addressing
detection errors caused by noise, such as reflections
on water, and enhancing real time detection
performance. To achieve this, model optimization
methods, including UNet model lightweighting using
TensorRT! will be explored for potential applica-
tion in real time noise removal and object detection.
Additionally, we aim to secure higher detection accu-
racy to develop a solution that can be efficiently uti-

lized in coastal surveillance operations
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