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HyBaTwin: Web-Based Hybrid Digital Twin Platform
for Electric Vehicle Battery Capacity Estimation
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ABSTRACT

This study presents early results of a web-based digital twin (DT) for battery management systems (BMS).
The proposed DT explores a hybrid of model-based and data-driven approaches, enabling the exploitation of
each approach’s distinctive merits and constraints. Experiments employing explainable artificial intelligence
(XAI) techniques were undertaken to select the most trustworthy and explainable approach to be deployed to a
web server. First, a model-based DT was developed using physics based modelling and Al to achieve the
hybrid model. Next, four models, including a deep neural network, a long-short-term memory network, a graph
neural network (GNN), and a transformer neural network (TNN) model, were independently trained to
minimize the residual between the actual battery data and the prediction of the model-based DT. All hybrid
DT models were assessed based on mean squared error, latency, and prediction confidence. With the best
confidence score of 98.255% and lowest latency of 0.079, the hybrid GNN DT model emerged as the best,
demonstrating the viability of the proposed explainable hybrid approach in approximating actual battery
behavior and the utility of a web-based DT.
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[. Introduction is indispensable for informed decision-making during

the charge and discharge process'. With the surge

Battery management systems (BMS) play a sig- in EVs, there is an equal urgency in refining and en-
nificant role in monitoring and regulating the health hancing capacity estimation methodologies.

and performance of batteries in electric vehicles
(EVs)!". One critical functionality of BMS is esti-
mating the battery capacity - a key parameter that di-

1.1 Background and Motivation
Digital twins (DT) are an emerging subset of the
rectly influences the EV’s range, efficiency, and over- metaverse ecosystem™, providing virtual replicas of

all reliability. Accurate and robust capacity estimation physical entities that enable seamless integration be-

tween the digital and physical worlds. The concept

% This work was partly supported by Innovative Human Resource Development for Local Intellectualization program through the
Institute of IITP grant funded by the Korea government(MSIT) (IITP-2024-RS-2020-11201612, 33%) and by Priority Research
Centers Program through the NRF funded by the MEST(2018R1A6A1A03024003, 33%) and by the MSIT, Korea, under the
ITRC support program(IITP-2024-RS-2024-00438430, 34%) supervised by the IITP.

¢ First Author : Kumoh National Institute of Technology, Department of IT Convergence Engineering, judithnjoku24 @kumoh.ac kr,

LREE

Corresponding ~ Author : Kumoh  National Institute of Technology, Department of IT Convergence Engineering,

dskim@kumoh.ac.kr, 413

*  Africhange Technologies, Nigeria

*%* Computer Science and Electrical Engineering, West Virginia University, Morgantown, 26506, WV, USA

*%% Kumoh National Institute of Technology, Department of IT Convergence Engineering
Tl E 1 202410-258-A-RN, Received October 28, 2024;Revised November 26, 2024; Accepted November 26, 2024

549


mailto:judithnjoku24@kumoh.ac.kr
mailto:dskim@kumoh.ac.kr

The Journal of Korean Institute of Communications and Information Sciences '25-04 Vol.50 No.04

of DTs!"! has been explored for BMS due to their abil-
ity to simulate and predict real-world battery behav-
iors accurately”. Two main DT types can be devel-
oped for BMS: Model and data-driven approaches.
Model-based DTs leverage the principles of battery
physics to model the intricate processes within the bat-
teryw]. For instance, in [7], models were constructed
to describe the physical processes that occur in
Lithium-ion (Li-ion) batteries, such as diffusion. The
equations that govern these models were presented in
[8], [9] highlighted the relevance of these models,
with the impending limitation. Ultimately, these mod-
els face complexities introduced by diverse operating
conditions and dynamic environments by EVs. On the
other hand, the data-driven DTs are powered by ma-
chine learning (ML) algorithms!®!!,

1.2 Related Works

Numerous studies have explored data-driven ap-
proaches for developing battery DTs. The DT pre-
sented in [12] explored various ML algorithms for the
prediction of battery state, including models such as
deep neural networks (DNN), long-short-term memo-
ry networks (LSTM), and gated recurrent units
(GRU). In [1], similar ML algorithms were explored
for predicting battery state based on a DT framework.
Other ML models such as Transformers have been
utilized by studies in [13] and [14] for predicting bat-
tery states. Another advanced ML algorithm, graph
neural network was introduced by [15] and [16] were
introduced for the state of health estimation in lith-
ium-ion batteries. [17] introduced a reference method-
ology for developing DTs for Li-ion batteries, high-
lighting the role of ML in optimal battery modelling.
These models excel at capturing non-linear relation-
ships and complex patterns but often need more
interpretability.

Hybrid DTs are an approach that combines the
strengths of both methods. A hybrid DT aims to har-
ness the accuracy of physics-based models and the
adaptability of data-driven models, creating a syner-
gistic solution that excels in precision and versatility.
This integration addresses the limitations of stand-
alone models and provides a holistic representation
of the battery. In [9], the relevance of exploring the
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strengths of these two types of DTs and utilizing a
hybrid DT was postulated. However, there were no
experiments to validate this, and there were no dem-
onstrations to show performance. Nevertheless, the
pursuit of accuracy is only part of the equation. The
need for explainability arises as a critical consid-
eration in deploying Al-based solutions, particularly
in safety-critical applications like EVs. Understanding
why a model makes a specific prediction is paramount
for user trust, regulatory compliance, and overall soci-
etal acceptance!'®).

Explainable artificial intelligence (XAI) techniques,
like Local Interpretable Model-agnostic Explanations
(LIME), serve as indispensable tools for shedding
light on the decision-making processes of complex
models"”. These techniques allow users to interpret
the factors influencing a model’s predictions, trans-
forming a seemingly opaque model into a transparent
and trustworthy ally. Moreover, most previous studies
need to present a working battery DT that processes
battery data in real-time and produces results. The
main objective of this study is to develop a web-based,
explainable hybrid DT that can resolve the above-list-
ed drawbacks.

1.3 Contribution

The key contributions of this paper are as follows:

1. We integrated physics-based modeling and ML
algorithms to develop hybrid DT models that
create a synergistic effect, enhancing both the
accuracy and adaptability of the capacity estima-
tion process.

2. We developed and evaluated the performance of
four variants of hybrid DT models.

3. We employed the LIME XAI technique to give
users a transparent view of the decision-making
process and instill confidence in the estimated
battery capacity values.

4. We deploy the model to a web-based system
to ensure accessibility and ensure that the bene-
fits of the Hybrid DT Platform extend beyond
specialized laboratories, reaching a broader
audience.

5. The experimental results highlight a hybrid GNN
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DT as the best with the best confidence score

and lowest latency.
II. Methodology

The methodology employed in this research is a
multilayered approach consisting of five modules:
Physical module, data module, cognitive module,
communication module, and virtual module, as illus-
trated in Fig. 1. Each module contributes uniquely to
the overall system, ensuring accuracy, interpretability,
and user engagement. The following subsections de-
tail the processes and tools employed in each module,
emphasizing the seamless integration of diverse tech-

nologies for a holistic solution.

2.1 Physical Module - Data Collection

The physical module serves as a bedrock for the
Hybrid DT, capturing real-world data from the EVs.
Sensors measure the relevant data within the battery.
In this work, a dataset that replicates real-life data
collection was employed. This dataset, from NASA’s
Ames Prognostics Center, includes Li-ion battery ex-

periments with diverse operational profiles and inten-

Cogmtlve Module

tional aging effects. Discharge cycles conclude at
end-of-life criteria-30% fade in rated capacity (2 Ah
to 1.4 Ah)®,

2.2 Data Module - Data Pre-processing

A data pre-processing phase occurs after acquiring
raw data from the physical module. This involves
comprehensive data analysis, outlier detection, ex-
ploratory data analysis, handling missing data, and da-
ta normalization, as illustrated in Fig. 2. Correlation
analysis is also conducted to identify features highly
correlated to the battery capacity and can be used in
model development.

2.3 Cognitive Module - Model development

The cognitive module is the heart of our method-
ology, representing the convergence of the two DT
approaches to form the Hybrid DT. This module is
instrumental in harnessing the strengths of both ap-
proaches to achieve accurate and interpretable pre-

dictions of battery capacity.

2.3.1 Model-based Digital Twin
The physics that represents the life degradation of
a typical Li-ion battery is complex. The end-of-life

——————— > Communication Module

Models are deployed to Web Server

Al Models i<— ——————
Explainability
.pkl Models

Battery Model

Extract Data

Virtual Module

Data Module

R

Preprocess Data

Feature Engineering ]— -

—* 3D Model
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Fig. 1. Architecture of Proposed Web-based Hybrid Digital Twin
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Fig. 2. Process flow of the Data module

of batteries is typically represented as those with 80%
availability of their rated maximum capacity. This
degradation can be represented using one of the em-

pirical models™®:

L=1-(1-1L")el, 1)

where: L represents the actual battery lifetime at
any given time. L' signifies the initial available battery
lifetime. #; characterizes the linearized degradation
rate per unit time and cycle®®. ¢is the discharge time.
o is the discharge cycle depth, o is the average cycle
state of charge, and 7. is the cell temperature. This
formulation enables a dynamic representation of the
degradation process over time. The exponential term
el accounts for the cumulative impact of degradation,
influencing the overall battery health and availability.
The linearized degradation rate can thus be repre-
sented as:

fd:fd(t»670'7TC)' (2)

Substituting the variable L with battery capacity,

C, Eq.1, can be rewritten as:
C = Cpel?, 3
where, Cis the battery capacity, and (; is the initial

capacity.

The following approximation can represent £y

C = CO efd XTwin

Fig. 3. Model-based Digital Twin

552

fa= K2 @

where 7 denotes the charge-discharge cycle, 7. repre-
sents the temperature measured in the cell during the
cycle, ¢ is the discharging time and % is an empirical
constant with a fixed value of 0.13%%. The current
and future battery capacity can be determined by pass-
ing capacity, temperature, and cycle details through
this model. Fig. 3 illustrates the model-based DT.

2.3.2 Data-driven Digital Twin

The data-driven employs ML models to simulate
the battery behavior. The models learn from data and
identify patterns and relationships that physics-based
approaches may overlook. Various ML models can
be explored for this purpose. This study employed
four ML models: a DNN, LSTM, GNN, and a TNN,
as illustrated in Fig. 4.

1. Deep Neural Network (DNN): The model em-
ployed in this study comprises three dense layers
with 64 units in two layers and 1 units in the
last dense layer. All layers were activated using
the ReLU activation function.

2. Long Short-Term Memory (LSTM): This model
comprises an LSTM layer with 64 units, a dense
layer of 64 units, and another dense layer with 1.

3. Graph Neural Networks (GNN): This model
comprises a 64 unit embedding layer for graph
nodes, a global average pooling layer, and an-
other dense layer with a 1 unit.

4. Transformers Neural network (TNN): The model
employed here is composed of a dense layer of
64 units, which provides shared representation
for the input sequence, an attention mechanism
consisting of attention weights in a dense layer,
a flattened layer, Sofimax activation layer, and
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Fig. 4. Data-Driven Digital-Twin Approaches

a concatenation layer. The model terminates
with a fully connected dense layer of 64 units
and the ReLU activation function.

2.3.3 Hybrid Digital Twin

The model-based and data-driven approaches are
combined to form a hybrid digital twin, as illustrated
in Fig. 5. To achieve this hybrid, the dataset is trans-
formed by passing the necessary variables through the
model-based formulation; then, the ML models are
trained to minimize the difference between the mod-
el-based twin and the actual battery data. This differ-
ence is termed the residual Thus, all models are
trained to minimize the mean-squared error function

represented as:

MSEpsss =

S
Lpg=

(Xin,i - thin,i)27 (5)

Input Layer Input Layer Input Layer Input Layer
| | |
Dense (64 units, . Embedding Shared
reLU) LSTM (64 units) layer Representation
Dense (64 units, Dense (64 units, e Dense ( 1 unit)
— e -
{ | -
Activation Layer
Output Layer Output Layer Output Layer
DNN LSTM GNN
Dense (64
units)
i
Output Layer
Transformer

where n is the number of data points. X, and X,
are the predicted value from the model-based twin and
the actual value from the real battery data for the /-t
data point, respectively. As illustrated in Fig. 5, both
model-based and data-driven approaches receive the
experimental data. The output of the model-based ap-
proach serves as part of the hybrid model objective.

Integrating the degradation model within the
Hybrid DT allows for a comprehensive understanding
of battery health and longevity. The empirical nature
of the model ensures adaptability to various scenarios,
making it a valuable tool in the realm of battery prog-
nostics and digital twin development. Furthermore, the
ML models can adapt to complex and non-linear sce-

narios of actual battery data.

Xin Y
—— [ MLModel |—F
Xresidual = Xin~ Xtwin
yTwin
Xin
C = CO efd Xrwin

Fig. b. Hybrid Digital Twin
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2.3.4 Explainable Hybrid Digital Twin

We incorporated the LIME XAI approach to shed
light on the intricate decision-making process of the
DT, thus enhancing its interpretability. LIME creates
interpretable models locally around specific instances.
For the prediction of capacity (C) at a given cycle
(i), the LIME explanation (¢) can be approximated

as a linear model:
Lopy — ; 3 )
#i (f) arg{bnelgL(f,gwm)

Here, 94 is a linear model in the local region around
cycle 7, L is a loss function measuring the difference
between the Hybrid DT’s predictions and the linear
model’s predictions. z; is a proximity measure be-
tween cycle 7 and the instances sampled for LIME.
A confidence score can be derived by aggregating co-
efficients from the explanation for a given instance.
A high score indicates high confidence in the model
predictions, and a low prediction indicates otherwise.
This XAI technique provides valuable insights into
how specific cycles contribute to the Hybrid DT’s pre-
dictions, elucidating the underlying decision mecha-
nisms and facilitating a more transparent

interpretation.

2.4 Communication Module

This is the bridge between the physical and sub-
sequent modules of the hybrid DT platform. Its pri-
mary role is to ensure the smooth transmission and
reception of data. Wireless communication protocols
such as MQTT or HTTP may be employed for seam-
less data transmission. Processed and pre-processed
data from the data module are forwarded to the cogni-
tive module for model training and development. Web

socket communication was employed in this study.

2.5 Virtual Module

A 3D battery model is created and hosted on this
module, along with the hybrid DT model.

This module provides a bridge between the insights
gained from the ML models in the cognitive module
and the visualization of these insights for analysis and
decision-making. Fig. 6 summarizes the logic behind
how users can access the web server and create cus-
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Enable Data
Streaming

Initialize System

Create Digital
Twin

Predict Battery

Capacit

Connect Data

Visualize Result
Source

Fig. 6. Process flow of the platform

tom DTs.

Web-Based Platform Deployment This aims to
make the virtual module accessible to users. An inter-
active web application was developed using the Flask
framework for the backend and React for the front

end.

Development of 3D Battery Models A 3D model
was made in the Blender software in the .gltf format
to reproduce the battery in a digital format. By explor-
ing T7hree. js JavaScript library, the 3D model was
embedded in the web application.

Integration of Real Data and Simulation Real da-
ta is incorporated from the physical module to test
the fidelity of the hybrid DT. Diverse scenarios can
also be simulated and visualized to examine the im-
pact on battery capacity. Users can input different pa-

rameters and observe the corresponding results.

. Performance Evaluation and Results

To analyze the feasibility and explainability of the
proposed model, we employed all models in-
dependently for all battery types. All models were
trained using Google Colaboratory with the NVIDIA
Tesla K80 GPU. The best model was saved as a file

for deployment to the server.
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Results from Data Module Fig. 7 and Table 1
shows the correlation analysis results obtained for
Battery B0018. From this result, it is best only to con-
duct capacity estimation using the capacity data and
corresponding cycle, as these features have the best

positive and negative correlations.

Results from Cognitive Module After receiving
the data from the data module, it was split using a
ratio of 80 20 for training and validation,

respectively. Data from a different battery was then

Table 1. Features with Highest and Lowest Correlation to
Capacity
Feature Correlation with Capacity
Voltage measured 0.19
Temperature measured -0.09
Current charge 0.21
Voltage charge 0.21
Time 0.20
id_cycle -0.92

.
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used as a test set. All models were trained to minimize
the established loss function, using the adam opti-
mizer, for 100 epochs and with a batch size of 20.

The model-based and data-driven DTs were eval-
uated based on MSE, while all hybrid DTs were eval-
uated on the basis of MSE, latency, and confidence
score. Table 2 compares all implemented data-driven
DTs with the model-based DT. In analyzing the ex-
perimental results, the Model DT demonstrates con-
sistently low MSE values across all batteries, estab-
lishing itself as a strong baseline. However, when
comparing data-driven approaches, specific ob-
servations emerge. The DNN DT variant exhibits
higher MSE values, suggesting potential limitations in
capturing the underlying patterns of the data. In com-
parison, the TNN DT incurs the lowest MSE in all
batteries.

The data-driven approaches were all independently
combined with the model-based DT approach to yield
the hybrid variants. The results of this experiment are
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Table 2. Comparison of MSE between Model-based DT and Data-driven DT Variants

Battery ID Model DT Hybrid DNN Hybrid LSTM Hybrid GNN Hybrid Trans
B0005 0.00880 0.00855 0.00925 0.00805 0.00161
B0006 0.03382 0.04231 0.04324 0.04350 0.00062
B0007 0.00931 0.00323 0.00191 0.00151 0.00095
B0018 0.00947 0.01411 0.0150 0.0151 0.00461

Table 3. Experimental Results Comparing all Variants of the Hybrid DT

Battery ID Hybrid DNN DT Hybrid LSTM DT Hybrid GNN DT Hybrid TNN DT
MSE Confidence Latency (s) MSE  Confidence Latency (s) MSE  Confidence Latency () MSE  Confidence Latency (s)
B0005 0.00834 0.8991 0.14001 0.00877 0.87562 0.15172  0.00818 0.94526 0.07917 0.00155 0.86589  0.14769
B0006 0.04187  0.80952 0.21979 0.04110 0.89251 0.15288 0.04221 0.95145 0.09328 0.00056 0.82546  0.18940
B0007  0.00126 099125 022540 0.00154 091254  0.15503 0.00147 091256  0.13703 0.00081 0.99540  0.39036
B0018 0.01332  0.99357 0.18873 0.01290 0.88521 0.08573 0.01232 0.98255 0.09237 0.00448 0.71015  0.15004
1.55 *
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Cycles Cycles

Fig. 8. Comparison of Model and Hybrid Digital Twins
for Battery B0005

represented in Table 3. The hybrid LSTM DT variant
competes closely with the Model DT in terms of MSE.
However, it introduces a slightly higher latency for
specific batteries, which warrants careful consid-
eration of the trade-offs between predictive accuracy
and computational efficiency. The hybrid GNN DT
variant, while showcasing MSE comparable to the
Model DT, presents higher latency, which is partic-
ularly noteworthy for real-time applications. The hy-
brid TNN DT variant displays competitive MSE val-
ues but is marked by significantly higher latency for
select batteries. Regarding explainable Al (XAI) con-
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Fig. 9. Comparison of Model and Hybrid Digital Twins
for Battery B0018

fidence, the hybrid GNN DT for B00O7 stands out
with high confidence in predictions.

Figs. 8 compares the model and all hybrid DTs.
All models in Figs. 8 and 9 were both trained and
validated on battery B0O0O5 and tested on BO0018
respectively. The results show a competitively close
performance across all models.

For results on XAI, we have presented a plot for
the explainable model: GNN. Fig. 10 shows an in-
stance prediction by the hybrid GNN DT to highlight
the XAI results. The results show a very high con-

fidence score of about 0.8. This is also evidenced by
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Fig. 11. Explainability result for selected instance on
Transformer Hybrid DT the interactive experience with a monitored battery.

the Real versus Predicted Values plot, showing a very IV. Conclusions and Future Works

accurate prediction for capacity values between cycle
100 and 170. Fig. 11 illustrates a similar result for This study presented early results for a Web-based

the Transformer variant. Ultimately, the best approach battery digital twin. The main objective was to address

depends on the specific priorities of the application— the complexities faced by battery models for develop-

balancing predictive accuracy, latency constraints, and ing digital twins. Since battery digital twins can be

the need for explainability. created from either model-based approaches or da-

ta-driven approaches, each with its distinctive merit
Results from Virtual Module The GNN Hybrid

DT was deployed to the web server for instance-based

and constraint, we adopt a hybrid approach. Our hy-

957



The Journal of Korean Institute of Communications and Information Sciences "25-04 Vol.50 No.04

brid digital twin approach fuses model-based and da-

ta-driven methods

for precise battery capacity

estimation. Enhanced with XAI, our model demon-

strated appreciable accuracy and reliability.

Future studies will focus on improving prediction

accuracy and latency and exploring more complex

physics-based models and data-driven approaches.

Future efforts will also focus on ensuring security in
the DT space.
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