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Ⅰ. Introduction

Battery management systems (BMS) play a sig-

nificant role in monitoring and regulating the health

and performance of batteries in electric vehicles

(EVs)[1,2]. One critical functionality of BMS is esti-

mating the battery capacity - a key parameter that di-

rectly influences the EV’s range, efficiency, and over-

all reliability. Accurate and robust capacity estimation

is indispensable for informed decision-making during

the charge and discharge process[1]. With the surge

in EVs, there is an equal urgency in refining and en-

hancing capacity estimation methodologies.

1.1 Background and Motivation
Digital twins (DT) are an emerging subset of the

metaverse ecosystem[3,4], providing virtual replicas of

physical entities that enable seamless integration be-

tween the digital and physical worlds. The concept
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This study presents early results of a web-based digital twin (DT) for battery management systems (BMS).
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minimize the residual between the actual battery data and the prediction of the model-based DT. All hybrid

DT models were assessed based on mean squared error, latency, and prediction confidence. With the best

confidence score of 98.255% and lowest latency of 0.079, the hybrid GNN DT model emerged as the best,

demonstrating the viability of the proposed explainable hybrid approach in approximating actual battery

behavior and the utility of a web-based DT.
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of DTs[1] has been explored for BMS due to their abil-

ity to simulate and predict real-world battery behav-

iors accurately[5]. Two main DT types can be devel-

oped for BMS: Model and data-driven approaches.

Model-based DTs leverage the principles of battery

physics to model the intricate processes within the bat-

tery[6]. For instance, in [7], models were constructed

to describe the physical processes that occur in

Lithium-ion (Li-ion) batteries, such as diffusion. The

equations that govern these models were presented in

[8], [9] highlighted the relevance of these models,

with the impending limitation. Ultimately, these mod-

els face complexities introduced by diverse operating

conditions and dynamic environments by EVs. On the

other hand, the data-driven DTs are powered by ma-

chine learning (ML) algorithms[10,11].

1.2 Related Works
Numerous studies have explored data-driven ap-

proaches for developing battery DTs. The DT pre-

sented in [12] explored various ML algorithms for the

prediction of battery state, including models such as

deep neural networks (DNN), long-short-term memo-

ry networks (LSTM), and gated recurrent units

(GRU). In [1], similar ML algorithms were explored

for predicting battery state based on a DT framework.

Other ML models such as Transformers have been

utilized by studies in [13] and [14] for predicting bat-

tery states. Another advanced ML algorithm, graph

neural network was introduced by [15] and [16] were

introduced for the state of health estimation in lith-

ium-ion batteries. [17] introduced a reference method-

ology for developing DTs for Li-ion batteries, high-

lighting the role of ML in optimal battery modelling.

These models excel at capturing non-linear relation-

ships and complex patterns but often need more

interpretability.

Hybrid DTs are an approach that combines the

strengths of both methods. A hybrid DT aims to har-

ness the accuracy of physics-based models and the

adaptability of data-driven models, creating a syner-

gistic solution that excels in precision and versatility.

This integration addresses the limitations of stand-

alone models and provides a holistic representation

of the battery. In [9], the relevance of exploring the

strengths of these two types of DTs and utilizing a

hybrid DT was postulated. However, there were no

experiments to validate this, and there were no dem-

onstrations to show performance. Nevertheless, the

pursuit of accuracy is only part of the equation. The

need for explainability arises as a critical consid-

eration in deploying AI-based solutions, particularly

in safety-critical applications like EVs. Understanding

why a model makes a specific prediction is paramount

for user trust, regulatory compliance, and overall soci-

etal acceptance[18].

Explainable artificial intelligence (XAI) techniques,

like Local Interpretable Model-agnostic Explanations

(LIME), serve as indispensable tools for shedding

light on the decision-making processes of complex

models[19]. These techniques allow users to interpret

the factors influencing a model’s predictions, trans-

forming a seemingly opaque model into a transparent

and trustworthy ally. Moreover, most previous studies

need to present a working battery DT that processes

battery data in real-time and produces results. The

main objective of this study is to develop a web-based,

explainable hybrid DT that can resolve the above-list-

ed drawbacks.

1.3 Contribution
The key contributions of this paper are as follows:

1. We integrated physics-based modeling and ML

algorithms to develop hybrid DT models that

create a synergistic effect, enhancing both the

accuracy and adaptability of the capacity estima-

tion process.

2. We developed and evaluated the performance of

four variants of hybrid DT models.

3. We employed the LIME XAI technique to give

users a transparent view of the decision-making

process and instill confidence in the estimated

battery capacity values.

4. We deploy the model to a web-based system

to ensure accessibility and ensure that the bene-

fits of the Hybrid DT Platform extend beyond

specialized laboratories, reaching a broader

audience.

5. The experimental results highlight a hybrid GNN
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DT as the best with the best confidence score

and lowest latency.

Ⅱ. Methodology

The methodology employed in this research is a

multilayered approach consisting of five modules:

Physical module, data module, cognitive module,

communication module, and virtual module, as illus-

trated in Fig. 1. Each module contributes uniquely to

the overall system, ensuring accuracy, interpretability,

and user engagement. The following subsections de-

tail the processes and tools employed in each module,

emphasizing the seamless integration of diverse tech-

nologies for a holistic solution.

2.1 Physical Module - Data Collection
The physical module serves as a bedrock for the

Hybrid DT, capturing real-world data from the EVs.

Sensors measure the relevant data within the battery.

In this work, a dataset that replicates real-life data

collection was employed. This dataset, from NASA’s

Ames Prognostics Center, includes Li-ion battery ex-

periments with diverse operational profiles and inten-

tional aging effects. Discharge cycles conclude at

end-of-life criteria-30% fade in rated capacity (2 Ah

to 1.4 Ah)[8].

2.2 Data Module - Data Pre-processing
A data pre-processing phase occurs after acquiring

raw data from the physical module. This involves

comprehensive data analysis, outlier detection, ex-

ploratory data analysis, handling missing data, and da-

ta normalization, as illustrated in Fig. 2. Correlation

analysis is also conducted to identify features highly

correlated to the battery capacity and can be used in

model development.

2.3 Cognitive Module - Model development
The cognitive module is the heart of our method-

ology, representing the convergence of the two DT

approaches to form the Hybrid DT. This module is

instrumental in harnessing the strengths of both ap-

proaches to achieve accurate and interpretable pre-

dictions of battery capacity.

2.3.1 Model-based Digital Twin

The physics that represents the life degradation of

a typical Li-ion battery is complex. The end-of-life

Fig. 1. Architecture of Proposed Web-based Hybrid Digital Twin
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of batteries is typically represented as those with 80%

availability of their rated maximum capacity. This

degradation can be represented using one of the em-

pirical models[20]:

(1)

where: L represents the actual battery lifetime at

any given time. L1 signifies the initial available battery

lifetime. fd characterizes the linearized degradation

rate per unit time and cycle[20]. t is the discharge time.

δ is the discharge cycle depth, σ is the average cycle

state of charge, and Tc is the cell temperature. This

formulation enables a dynamic representation of the

degradation process over time. The exponential term

accounts for the cumulative impact of degradation,

influencing the overall battery health and availability.

The linearized degradation rate can thus be repre-

sented as:

(2)

Substituting the variable L with battery capacity,

C, Eq.1, can be rewritten as:

(3)

where, C is the battery capacity, and C0 is the initial

capacity.

The following approximation can represent fd.

(4)

where i denotes the charge-discharge cycle, Tc repre-

sents the temperature measured in the cell during the

cycle, ti is the discharging time and k is an empirical

constant with a fixed value of 0.13[20]. The current

and future battery capacity can be determined by pass-

ing capacity, temperature, and cycle details through

this model. Fig. 3 illustrates the model-based DT.

2.3.2 Data-driven Digital Twin

The data-driven employs ML models to simulate

the battery behavior. The models learn from data and

identify patterns and relationships that physics-based

approaches may overlook. Various ML models can

be explored for this purpose. This study employed

four ML models: a DNN, LSTM, GNN, and a TNN,

as illustrated in Fig. 4.

1. Deep Neural Network (DNN): The model em-

ployed in this study comprises three dense layers

with 64 units in two layers and 1 units in the

last dense layer. All layers were activated using

the ReLU activation function.

2. Long Short-Term Memory (LSTM): This model

comprises an LSTM layer with 64 units, a dense

layer of 64 units, and another dense layer with 1.

3. Graph Neural Networks (GNN): This model

comprises a 64 unit embedding layer for graph

nodes, a global average pooling layer, and an-

other dense layer with a 1 unit.

4. Transformers Neural network (TNN): The model

employed here is composed of a dense layer of

64 units, which provides shared representation

for the input sequence, an attention mechanism

consisting of attention weights in a dense layer,

a flattened layer, Softmax activation layer, and

Fig. 2. Process flow of the Data module

Fig. 3. Model-based Digital Twin
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a concatenation layer. The model terminates

with a fully connected dense layer of 64 units

and the ReLU activation function.

2.3.3 Hybrid Digital Twin

The model-based and data-driven approaches are

combined to form a hybrid digital twin, as illustrated

in Fig. 5. To achieve this hybrid, the dataset is trans-

formed by passing the necessary variables through the

model-based formulation; then, the ML models are

trained to minimize the difference between the mod-

el-based twin and the actual battery data. This differ-

ence is termed the residual. Thus, all models are

trained to minimize the mean-squared error function

represented as:

(5)

where n is the number of data points. Xtwin,i and Xin,i

are the predicted value from the model-based twin and

the actual value from the real battery data for the i-th
data point, respectively. As illustrated in Fig. 5, both

model-based and data-driven approaches receive the

experimental data. The output of the model-based ap-

proach serves as part of the hybrid model objective.

Integrating the degradation model within the

Hybrid DT allows for a comprehensive understanding

of battery health and longevity. The empirical nature

of the model ensures adaptability to various scenarios,

making it a valuable tool in the realm of battery prog-

nostics and digital twin development. Furthermore, the

ML models can adapt to complex and non-linear sce-

narios of actual battery data.

Fig. 5. Hybrid Digital Twin

Fig. 4. Data-Driven Digital-Twin Approaches
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2.3.4 Explainable Hybrid Digital Twin

We incorporated the LIME XAI approach to shed

light on the intricate decision-making process of the

DT, thus enhancing its interpretability. LIME creates

interpretable models locally around specific instances.

For the prediction of capacity (C) at a given cycle

(i), the LIME explanation (ϕ) can be approximated

as a linear model:

Here, is a linear model in the local region around

cycle i, L is a loss function measuring the difference

between the Hybrid DT’s predictions and the linear

model’s predictions. πi is a proximity measure be-

tween cycle i and the instances sampled for LIME.

A confidence score can be derived by aggregating co-

efficients from the explanation for a given instance.

A high score indicates high confidence in the model

predictions, and a low prediction indicates otherwise.

This XAI technique provides valuable insights into

how specific cycles contribute to the Hybrid DT’s pre-

dictions, elucidating the underlying decision mecha-

nisms and facilitating a more transparent

interpretation.

2.4 Communication Module
This is the bridge between the physical and sub-

sequent modules of the hybrid DT platform. Its pri-

mary role is to ensure the smooth transmission and

reception of data. Wireless communication protocols

such as MQTT or HTTP may be employed for seam-

less data transmission. Processed and pre-processed

data from the data module are forwarded to the cogni-

tive module for model training and development. Web

socket communication was employed in this study.

2.5 Virtual Module
A 3D battery model is created and hosted on this

module, along with the hybrid DT model.

This module provides a bridge between the insights

gained from the ML models in the cognitive module

and the visualization of these insights for analysis and

decision-making. Fig. 6 summarizes the logic behind

how users can access the web server and create cus-

tom DTs.

Web-Based Platform Deployment This aims to

make the virtual module accessible to users. An inter-

active web application was developed using the Flask
framework for the backend and React for the front

end.

Development of 3D Battery Models A 3D model

was made in the Blender software in the .gltf format

to reproduce the battery in a digital format. By explor-

ing Three. js JavaScript library, the 3D model was

embedded in the web application.

Integration of Real Data and Simulation Real da-

ta is incorporated from the physical module to test

the fidelity of the hybrid DT. Diverse scenarios can

also be simulated and visualized to examine the im-

pact on battery capacity. Users can input different pa-

rameters and observe the corresponding results.

Ⅲ. Performance Evaluation and Results

To analyze the feasibility and explainability of the

proposed model, we employed all models in-

dependently for all battery types. All models were

trained using Google Colaboratory with the NVIDIA

Tesla K80 GPU. The best model was saved as a file

for deployment to the server.

Fig. 6. Process flow of the platform
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Results from Data Module Fig. 7 and Table 1

shows the correlation analysis results obtained for

Battery B0018. From this result, it is best only to con-

duct capacity estimation using the capacity data and

corresponding cycle, as these features have the best

positive and negative correlations.

Results from Cognitive Module After receiving

the data from the data module, it was split using a

ratio of 80 : 20 for training and validation,

respectively. Data from a different battery was then

used as a test set. All models were trained to minimize

the established loss function, using the adam opti-

mizer, for 100 epochs and with a batch size of 20.

The model-based and data-driven DTs were eval-

uated based on MSE, while all hybrid DTs were eval-

uated on the basis of MSE, latency, and confidence

score. Table 2 compares all implemented data-driven

DTs with the model-based DT. In analyzing the ex-

perimental results, the Model DT demonstrates con-

sistently low MSE values across all batteries, estab-

lishing itself as a strong baseline. However, when

comparing data-driven approaches, specific ob-

servations emerge. The DNN DT variant exhibits

higher MSE values, suggesting potential limitations in

capturing the underlying patterns of the data. In com-

parison, the TNN DT incurs the lowest MSE in all

batteries.

The data-driven approaches were all independently

combined with the model-based DT approach to yield

the hybrid variants. The results of this experiment are

Feature Correlation with Capacity

Voltage measured 0.19

Temperature measured -0.09

Current charge 0.21

Voltage charge 0.21

Time 0.20

id_cycle -0.92

Table 1. Features with Highest and Lowest Correlation to
Capacity

Fig. 7. Correlation Analysis
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represented in Table 3. The hybrid LSTM DT variant

competes closely with the Model DT in terms of MSE.

However, it introduces a slightly higher latency for

specific batteries, which warrants careful consid-

eration of the trade-offs between predictive accuracy

and computational efficiency. The hybrid GNN DT

variant, while showcasing MSE comparable to the

Model DT, presents higher latency, which is partic-

ularly noteworthy for real-time applications. The hy-

brid TNN DT variant displays competitive MSE val-

ues but is marked by significantly higher latency for

select batteries. Regarding explainable AI (XAI) con-

fidence, the hybrid GNN DT for B0007 stands out

with high confidence in predictions.

Figs. 8 compares the model and all hybrid DTs.

All models in Figs. 8 and 9 were both trained and

validated on battery B0005 and tested on B0018

respectively. The results show a competitively close

performance across all models.

For results on XAI, we have presented a plot for

the explainable model: GNN. Fig. 10 shows an in-

stance prediction by the hybrid GNN DT to highlight

the XAI results. The results show a very high con-

fidence score of about 0.8. This is also evidenced by

Battery ID Model DT Hybrid DNN Hybrid LSTM Hybrid GNN Hybrid Trans

B0005 0.00880 0.00855 0.00925 0.00805 0.00161

B0006 0.03382 0.04231 0.04324 0.04350 0.00062

B0007 0.00931 0.00323 0.00191 0.00151 0.00095

B0018 0.00947 0.01411 0.0150 0.0151 0.00461

Table 2. Comparison of MSE between Model-based DT and Data-driven DT Variants

Battery ID Hybrid DNN DT Hybrid LSTM DT Hybrid GNN DT Hybrid TNN DT

MSE Confidence Latency (s) MSE Confidence Latency (s) MSE Confidence Latency (s) MSE Confidence Latency (s)

B0005 0.00834 0.8991 0.14001 0.00877 0.87562 0.15172 0.00818 0.94526 0.07917 0.00155 0.86589 0.14769

B0006 0.04187 0.80952 0.21979 0.04110 0.89251 0.15288 0.04221 0.95145 0.09328 0.00056 0.82546 0.18940

B0007 0.00126 0.99125 0.22540 0.00154 0.91254 0.15503 0.00147 0.91256 0.13703 0.00081 0.99540 0.39036

B0018 0.01332 0.99357 0.18873 0.01290 0.88521 0.08573 0.01232 0.98255 0.09237 0.00448 0.71015 0.15004

Table 3. Experimental Results Comparing all Variants of the Hybrid DT

Fig. 8. Comparison of Model and Hybrid Digital Twins
for Battery B0005

Fig. 9. Comparison of Model and Hybrid Digital Twins
for Battery B0018
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the Real versus Predicted Values plot, showing a very

accurate prediction for capacity values between cycle

100 and 170. Fig. 11 illustrates a similar result for

the Transformer variant. Ultimately, the best approach

depends on the specific priorities of the application―
balancing predictive accuracy, latency constraints, and

the need for explainability.

Results from Vir tual Module The GNN Hybrid

DT was deployed to the web server for instance-based

testing. In Fig. 12, a snapshot illustrates the user inter-

face of the web-based platform, providing insight into

the interactive experience with a monitored battery.

Ⅳ. Conclusions and Future Works

This study presented early results for a Web-based

battery digital twin. The main objective was to address

the complexities faced by battery models for develop-

ing digital twins. Since battery digital twins can be

created from either model-based approaches or da-

ta-driven approaches, each with its distinctive merit

and constraint, we adopt a hybrid approach. Our hy-

a) Menu for creation and customization of digital twin

b) Prediction and analysis using digital twin model

Fig. 12. Web-Based DT Platform for Battery Capacity
Estimation

Fig. 10. Explainability result for selected instance on
GNN Hybrid DT

Fig. 11. Explainability result for selected instance on
Transformer Hybrid DT
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brid digital twin approach fuses model-based and da-

ta-driven methods for precise battery capacity

estimation. Enhanced with XAI, our model demon-

strated appreciable accuracy and reliability.

Future studies will focus on improving prediction

accuracy and latency and exploring more complex

physics-based models and data-driven approaches.

Future efforts will also focus on ensuring security in

the DT space.
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