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Ⅰ. Introduction

Unmanned Aerial Vehicles (UAVs) are finding ap-

plications across diverse sectors, including agriculture,

surveillance, emergency response, and delivery

services. Their ability to perform tasks autonomously

in hard-to-reach areas has transformed industries, im-

proving operational efficiency and reducing human

risk[1]. However, UAVs face a significant hurdle in

terms of their acceptability in urban and densely popu-

lated areas due to the noise generated by their pro-

pellers[2,3]. This high-frequency, intrusive noise can be

disruptive, especially in settings where quiet is cru-

cial[2], such as residential neighborhoods, wildlife

monitoring sites, or medical facilities.

Building upon our prior work on noise reduction

for UAVs[4], where we developed an initial framework

to mitigate propeller noise, this study advances the

approach by enhancing model effectiveness, alongside

hardware implementation to improve noise cancella-

tion performance. As mentioned before Active Noise

Cancellation (ANC) techniques can tackle the per-

vasive issues of noise pollution associated with

UAVs[5] by employing sophisticated algorithms and

sensor arrays to detect and counteract the noise gen-

erated by propulsion systems and aerodynamic forces.
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ABSTRACT

This study presents a deep learning-based Active Noise Cancellation (ANC) system for reducing UAV

propeller noise using a Convolutional Neural Network (CNN) model. The proposed system effectively

minimizes noise in real-time by extracting key audio features such as amplitude, phase, and frequency

components, generating and calculating inverse feature values to construct precise anti-noise signals. This

approach enables destructive interference, significantly reducing the propeller noise. The model achieved

high-performance metrics, including 94.5% accuracy, 93.2% precision, 96.1% recall, and a loss value of 0.115,

demonstrating its efficacy in noise cancellation. Deployed on an Nvidia Jetson NX, the ANC system integrates

high-quality microphones and strategically placed speakers on a UAV platform, allowing for real- time noise

analysis and anti-noise generation. Indoor and outdoor tests validated a substantial reduction in propeller noise

up to 36 dB, highlighting the model’ s robustness and potential for quieter UAV operation in noise-sensitive

settings.
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ANC operates on the principle of “destructive interfer-

ence” where the systems capture sound through multi-

ple sensors, which then process the data to create an-

ti-noise signals that are equal in amplitude but pre-

cisely 180° out of phase[6]. As the two signals con-

verge, they undergo destructive interference, effec-

tively nullifying each other’ s effects. Fig. 1 illustrates

this fundamental concept, displaying how the primary

noise and antinoise interact to achieve a residual noise

level that is substantially lower than the original. This

noise reduction requires precise calibration: the an-

ti-noise must match the primary noise in both magni-

tude and phase for optimal cancellation[7].

In UAV applications, the effectiveness of ANC be-

comes even more impactful when combined with deep

learning (DL) models[8]. By training deep neural net

works on extensive datasets of UAV noise profiles,

the system learns to recognize specific noise sig-

natures generated by UAV propellers and aerody-

namic forces[7]. This training enables the neural net-

works to extract detailed audio features, such as fre-

quency components, amplitude variations, and noise

directionality, which contribute to a more precise an-

ti-noise generation process[9]. Additionally, the adap-

tive capabilities of deep learning enhance the ANC

system’ s response to changing conditions, such as

varying altitudes, wind patterns, and speed, which all

impact noise levels. Using an adaptive approach, the

system continuously adjusts anti-noise signals to

match the dynamic noise sources, ensuring higher can-

cellation effectiveness and faster response times com-

pared to traditional ANC systems. This data-driven

method allows the system to learn and adapt to new

noise patterns encountered during operation, improv-

ing its performance over time[10]. The synergy be-

tween ANC and deep learning enables UAVs to oper-

ate more quietly, facilitating their integration into en-

vironments where noise control is critical, such as ur-

ban areas, medical facilities, and wildlife monitoring

zones.

Ⅱ. Literature Review

While multiple studies have investigated traditional

Active Noise Cancellation (ANC) systems, these tech-

niques generally rely on adaptive filtering methods

that process incoming signals to cancel out noise. One

of the most widely used approaches is the Least Mean

Square (LMS) algorithm, which adapts the filter co-

efficients based on the error signal. However, LMS

has limitations, such as slow convergence rates and

its inability to handle non-stationary noise signals ef-

fectively[11,12]. Filtered-X LMS (FXLMS) improves

upon LMS by incorporating the reference noise signal

directly into the update process, which helps with sta-

bility in certain applications. Still, FXLMS struggles

with highly dynamic noise environments, such as

those encountered in UAV applications, and is compu-

tationally expensive when dealing with multiple fre-

quencies or complex interference patterns[13,14]. Other

traditional ANC techniques, such as the Wiener fil-

ter[15] and adaptive notch filtering[16], also exhibit per-

formance limitations in non-stationary environments.

While the Wiener filter can be highly effective in sta-

tionary noise environments, it suffers from poor adapt-

ability in rapidly changing conditions, like those en-

countered in UAV applications[17]. Similarly, adaptive

notch filtering performs well in filtering out specific

frequency bands but cannot adapt to complex and

varying noise patterns that are typical in real-time.

The limitations of these traditional ANC methods

underscore the need for more advanced techniques ca-

pable of handling complex, time-varying, and multi-

frequency noise signals. To address these challenges,

our proposed system introduces a deep learning-based

approach, utilizing Convolutional Neural Networks

(CNNs) for noise cancellation. CNNs are adaptive at

extracting complex features from high-dimensional in-

puts such as spectrograms, which represent time-

Fig. 1. Illustration of Destructive Interference: Combining
primary noise with anti-noise to reduce overall sound
through phase cancellation.
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frequency information from noisy audio signals. By

learning the intricate patterns within the noise data,

CNNs can generate highly accurate anti-noise signals

tailored to counteract the noise in real-time[18,19].

Unlike traditional ANC methods, which rely on pre-

defined models or manual feature extraction,

CNN-based ANC systems adapt to new, unseen noise

patterns through training on large datasets. This flexi-

bility allows the system to continuously learn and im-

prove its performance, making it more effective in dy-

namic environments[18]. Additionally, the reaction

time of CNN-based ANC systems is significantly fast-

er compared to traditional methods, as CNNs can

process and output noise-canceling signals almost in-

stantly once trained, reducing the delay commonly ob-

served in adaptive filtering methods like LMS and

FXLMS[20].

In contrast to traditional ANC systems, CNNs can

handle non-stationary and multi-frequency noise effi-

ciently, making them ideal for applications such as

UAVs, where the noise environment is highly dynam-

ic and complex[21]. Furthermore, as mentioned in [18],

the computational efficiency of deep learning ap-

proaches, particularly with advancements in hardware

acceleration (e.g., GPUs), allow real-time operation

even in complex scenarios. This study focuses on ex-

tracting relevant features from the UAV propeller

noise, such as amplitude, frequency, and phase in-

formation through CNN. Afterward, extracted features

are then used to generate inverse values, which are

translated into an anti-noise signal. This signal, when

played back through speakers directed toward the pro-

peller, results in a reduction of the primary noise due

to the phenomenon of destructive interference.

Deep Learning models, particularly Convolutional

Neural Networks (CNNs), are highly effective for

complex noise cancellation tasks, including reducing

propeller noise, which presents unique spectral pat-

terns and time-variant characteristics that challenge

traditional signal processing methods. In these models,

CNNs analyze time-frequency representations like

spectrograms derived from audio recordings[22], where

each frame serves as input to the network. Through

a series of convolutional and pooling layers,

CNN-based ANC systems extract essential audio fea-

tures-such as amplitude, frequency spectrum, and

phase information-by first converting the raw audio

into a spectrogram that captures both temporal and

frequency data[23]. Convolutional layers apply learn-

able filters across this spectrogram to detect relevant

patterns at different scales, while pooling layers down-

sample feature maps, preserving important character-

istics and optimizing computational efficiency[24].

Deeper layers within the network recognize complex

noise patterns, and fully connected layers map these

features to antinoise signals, effectively enabling tar-

geted noise cancellation.

Once extracted, these features pass to fully con-

nected layers, which produce an anti-noise signal tail-

ored to counteract the original propeller noise, thus

reducing the overall sound level. During training, the

CNN minimizes the difference between the generated

cancellation signal and the primary propeller noise,

learning how to cancel specific noise characteristics

effectively[22]. The model’ s generalization to various

noise scenarios is enhanced by regularization techni-

ques and extensive dataset training, equipping the sys-

tem to adapt to new audio environments and diverse

noise types, making it a robust solution for dynamic

noise reduction in UAV applications.

2.1 Proposed Model
The proposed system model, as illustrated in Fig.

2, outlines a Deep Learning-based Active Noise

Cancellation (ANC) architecture designed to mitigate

UAV propeller noise. This model uses a

Convolutional Neural Network (CNN) framework to

process the propeller noise signal, s(t), by extracting

crucial features that allow for the precise generation

of an anti-noise signal, ŝ(t), which destructively inter-

feres with the original noise giving residual noise as

a result.

The system begins by capturing the propeller noise

as an input, represented in the time domain as a con-

tinuous audio waveform. This input signal s(t) is then

converted into a time-frequency representation, specif-

ically a spectrogram, denoted as X(f, t), to capture both

temporal and spectral characteristics. The spectrogram

X(f, t), where f denotes frequency and t denotes time,

serves as the initial input to the CNN. Within the CNN
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, various audio features are extracted to facilitate ef-

fective ANC. These features include time-domain

characteristics (Td), which capture the temporal struc-

ture of the signal and provide insight into the perio-

dicity and transient properties of the propeller noise.

Frequency features (Fs), derived from the spectro-

gram, reveal dominant frequency components crucial

for identifying repetitive noise patterns from the pro-

peller[24]. Amplitude information (A) represents the in-

tensity of the signal at different points, which helps

in determining the energy profile of the noise. Phase

information (Φ) is also captured, allowing the model

to synchronize the anti-noise with the primary noise

accurately. Furthermore, the temporal-frequency rep-

resentation S(f, t) provides a holistic view of how

noise characteristics evolve over time, enabling adap-

tation to dynamic noise patterns.

Each frame of the spectrogram X(f, t) is fed into

the CNN, which consists of convolutional layers fol-

lowed by pooling layers. The convolutional layers ap-

ply a set of filters, represented by weights Wc, across

the spectrogram, extracting localized patterns and fea-

tures at various scales[7]. Pooling layers downsample

the feature maps, reducing dimensionality while pre-

serving essential characteristics.

The features extracted in this way are then passed

to fully connected layers, which act as a classification

and decision-making mechanism[25]. These layers map

the features to an anti-noise signal ŝ(t), carefully cali-

brated to mirror the amplitude and phase of the pri-

mary noise but precisely 180° out of phase. This anti-

noise signal achieves destructive interference with the

primary noise s(t), significantly reducing the overall

sound level. The anti-noise ŝ(t) is produced by com-

puting the inverse values of critical features, such as

amplitude A−1, frequency , and phase Φ−1. These

values are combined through the fully connected lay-

ers to form a continuous anti-noise signal that effec-

tively neutralizes the propeller noise when

superimposed. This dynamic and adaptive approach

enables precise and efficient noise cancellation, en-

hancing operational stealth and minimizing the envi-

ronmental impact of UAVs[8]. The algorithm detailed

in the following sections outlines the step-by-step

process for training the model, emphasizing the sys-

tematic feature extraction and integration that form the

foundation of deep learning-based ANC.

In summary, the proposed model begins with the

UAV propeller noise s(t), transforms it into a spectro-

gram X(f, t) for feature extraction, and processes this

data through convolutional and pooling layers to iden-

tify relevant features, including time-domain charac-

teristics, frequency, amplitude, phase, and tempo-

ral-frequency representation S(f, t). Fully connected

layers utilize these features to generate an anti-noise

signal ŝ(t), which aligns in magnitude but opposes the

primary noise in phase. The output anti-noise signal,

when combined with the original propeller noise, re-

duces the perceived sound through destructive

interference. This model effectively integrates deep

learning with traditional ANC principles, ensuring

precision and adaptability in complex and dynamic

UAV environments. The design ensures that the mod-

el can adjust to varying noise characteristics, making

it a robust solution for UAV noise reduction.

Fig. 2. Proposed Deep Learning model for Active Noise Cancellation of UAV Propeller Noise
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2.2 Algorithm
The proposed algorithm 1 for Active Noise Cancel-

lation (ANC) leverages a Deep Learning approach to

effectively reduce UAV propeller noise. Given an in-

put audio signal s(t), the system extracts essential fea-

tures for noise cancellation, including time-domain

characteristics Td, frequency components Fs, ampli-

tude A, phase Φ, and a temporal-frequency representa-

tion S(f, t). These features are then combined into a

feature vector X = [Td, Fs, S(f, t), A, Φ], which serves

as input to a Convolutional Neural Network (CNN)

model. To produce the anti-noise signal, the model

computes the inverse of these features, such as ,

, A−1, and Φ−1, creating a feature set that counter-

acts the primary noise. During training, the model op-

timizes its parameters W and β which are crucial for

the model’s learning process. W represents the weights

in the convolutional layers, which are learned during

training to detect patterns and features in the input

audio spectrograms. These weights enable the model

to capture the noise characteristics of the UAV pro-

peller sound. β represents the bias terms added to the

weighted sum of inputs, allowing the model to adjust

its output independently of the input. Together, W and

β help the model optimize the noise-canceling signal

by minimizing the loss function = MSE(s(t), ŝ(t))
+ λ 2, where MSE measures the difference be-

tween the generated anti-noise signal ŝ(t), while λ 2

acts as a regularization term to prevent overfitting.

In the real-time noise cancellation phase, the trained

model processes new input signals r(t) to generate the

anti-noise output ŝ(t), which is then combined to ach-

ieve destructive interference and reduce the overall

noise level.

2.3 Spectrogram Visualization
To facilitate feature extraction for noise cancella-

tion, the input audio signal s(t ) is transformed into

a timefrequency representation using the Short-Time

Fourier Transform (STFT) which is expressed as:

(1)
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where X ( f , t ) represents the spectrogram, f is the

frequency variable, t denotes time, s(τ) is the original

audio signal, and w(τ−t) is a window function that

localizes the Fourier transform within a specific

time frame. The STFT enables the decomposition of

s(t) into a sequence of time-dependent frequency com-

ponents, providing a comprehensive view of how the

signal’s frequency characteristics evolve over time.

Magnitude spectrogram |X(f, t)| is computed as:

(2)

where Re(X(f, t)) and Im(X(f, t)) represent the real and

imaginary parts of X(f, t), respectively. This magni-

tude spectrogram provides the amplitude of each fre-

quency component, allowing the model to focus on

prominent noise frequencies and their variations over

time, which is crucial for generating effective anti-

noise signals.

Time-frequency representation is crucial for identi-

fying key noise features associated with the UAV’s

propeller sounds. By visualizing the spectrogram, it

becomes easier to analyze the dominant frequency

bands and transient patterns that characterize the

noise[26], especially for propeller-driven UAVs, which

exhibit repetitive spectral patterns. The CNN model

subsequently processes these spectrograms, leveraging

the temporal and spectral data to enhance the accuracy

of anti-noise generation.

Furthermore, parameters such as the window func-

tion w(τ−t) and the window length influence the reso-

lution of the spectrogram. A shorter window length

provides higher temporal resolution, allowing for pre-

cise tracking of rapid changes in noise, while a longer

window length improves frequency resolution[27],

which is beneficial for capturing consistent noise pat-

terns over time. These parameters are selected based

on the specific characteristics of the UAV noise, en-

suring that the spectrogram accurately represents both

the time and frequency domains of the input signal.

This allows the model to capture crucial features in

both stable and dynamic noise environments.

2.4 Layered Architecture for Feature 
Extraction

The proposed system leverages a series of

Convolutional, Pooling, and Fully Connected layers

to process the spectrogram X(f, t) of the UAV pro-

peller noise signal, extracting and refining features es-

sential for noise cancellation. The Convolutional

Layer applies learnable filters Wc across the spectro-

gram, performing a convolution operation at each po-

sition (i, j) to produce output hc(i, j) based on local

frequency and time patterns. This operation is defined

as:

(3)

where M and N denote the filter dimensions. These

filters capture crucial noise characteristics, such as

prominent frequency peaks and temporal variations

tied to propeller noise. Following this, the Pooling

Layer reduces the spatial dimensions[28] of the feature

maps, capturing only the most prominent features

from each region by taking the maximum value within

a pooling window, represented by

(4)

This layer helps the model prioritize significant noise

components and reduces the impact of minor fluctua-

tions, thus enhancing the ANC system’s efficiency.

Finally, the Fully Connected Layer flattens the output

into a single feature vector z and computes a linear

combination[28] of these features, transforming them

into the anti-noise signal ŝ(t). This transformation is

represented by:

(5)

where wk and bfc are the layer’s weights and biases,

and σ is an activation function. This layer integrates

the extracted features, mapping them to an anti-noise

signal that mirrors the UAV noise in amplitude but

is precisely out of phase, thus enabling effective noise
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cancellation through destructive interference.

2.5 Generating Anti-Noise Sound Signal
Once the features have been extracted from the

UAV propeller noise spectrogram and their inverse

values calculated, the system generates an anti-noise

signal ŝ(t) designed to mirror the characteristics of the

primary noise s(t) but with an opposite phase. The

extracted features-including time-domain character-

istics, frequency components, amplitude, and phasea-

long with their respective inverse values, are com-

bined into a final feature vector that serves as input

for the anti-noise generation function. Using this vec-

tor of inverse features, anti-noise signal ŝ(t) is for-

mulated as:

ŝ(t) = A−1 cos(ωt + Φ−1) (6)

where A−1 and Φ−1 represent the inverse amplitude

and phase components of the primary noise, re-

spectively, while ω is the angular frequency of the

noise, which determines the rate of oscillation of both

the primary noise and anti-noise signals. Equation 6

ensures that ŝ(t) is aligned in both magnitude and

phase opposition to s(t). To achieve perfect cancel-

ation, both the inverse amplitude A−1 and inverse

phase Φ−1 must be precisely synchronized and trans-

mitted to overlap with the primary sound s(t) at the

exact same time slot, as illustrated in Fig. 3. The an-

ti-noise signal is further refined by minimizing the

Mean Squared Error (MSE) loss between ŝ(t) and the

target anti-noise, ensuring precise phase alignment for

effective noise cancellation.

Fig. 3. Primary audio waveform of propeller sound and
its Anti-Noise waveform.

Ⅲ. Experiment

The experimentation phase included preparing and

pre-processing the dataset, followed by model training

and testing. Simulations were first conducted to assess

initial model performance in controlled environments,

and the trained model was then integrated into the

UAV setup for real-time testing. These evaluations,

detailed in the following subsections, confirm the

model’s noise cancellation capabilities in both simu-

lated and physical environments.

3.1 Dataset Acquisition and Preprocessing
An extensive dataset, comprising over 2200+ audio

recordings, were carefully curated from two primary

sources: publicly available datasets obtained from reli-

able internet repositories and custom recordings cap-

tured in controlled environments. The publicly

sourced data provided a diverse range of propeller

noise profiles under various operational conditions,

while the custom recordings were specifically tailored

to mimic real-world scenarios, including noise varia-

tions introduced by different propeller types and

speeds. Each recording underwent preprocessing to

extract critical audio features such as frequency, pitch,

phase, amplitude envelope, and temporal

characteristics. These features were systematically

stored in a structured CSV format to streamline further

analysis and model training. The dataset was divided

into 70% for training, 15% for validation, and 15%

for testing, ensuring an even distribution across vari-

ous noise profiles and conditions. This comprehensive

approach ensured that the dataset effectively repre-

sented diverse propeller noise characteristics, enabling

the model to generalize well to new and unseen noise

scenarios.

3.2 Model Training
For model training, each audio sample was con-

verted into spectrogram representations using a frame

size of 2048 samples and a hop length of 512 samples,

with a sampling rate of 22050 Hz. These settings pro-

vided a balanced time-frequency resolution to capture

UAV noise characteristics effectively. The CNN ar-

chitecture employed in this study consisted of multiple
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convolutional layers, each followed by max-pooling

layers for efficient feature extraction. The convolu-

tional layers used filters to detect spatial patterns with-

in the spectrogram, leveraging cross-correlation to

capture variations in UAV noise characteristics.

Activation functions such as the Rectified Linear Unit

(ReLU) were applied after each convolutional and

fully connected layer to enhance the model’ s capacity

for learning complex noise patterns. In the deeper lay-

ers, the model learned intricate wave patterns charac-

teristic of UAV propeller noise, while the fully con-

nected layers generated noise cancellation signals

from these extracted features. The model’ s final layer

used a linear activation function to produce the ANC

signal output.

To optimize model performance, the mean squared

error (MSE) loss function with a regularization term

λ = 0.0001 was employed to minimize the difference

between the generated noise-canceling signal and the

primary UAV noise. The loss function is defined as:

(7)

where N is the number of training samples, yi denotes

the primary UAV propeller audio at ith sample which

serves as the input for the model. The corresponding

target ŷi, or the model’s ANC output, is generated to

be the inverse of the primary audio, such that when

combined with yi, it results in a reduction of the origi-

nal primary noise. To create ŷi, the model learns to

extract temporal and spectral patterns from yi and gen-

erate the anti-noise signal through a series of convolu-

tional layers. The labeling of the target ŷi is done by

taking the original UAV propeller audio, processing

it to obtain the exact inverse signal that will effec-

tively cancel out the noise. This process ensures that

during training, the model learns to minimize the error

between the generated ANC output and primary noise

signal, thereby effectively learning to cancel out the

noise. In equation 7, λ 2 represents the regulariza-

tion term to control overfitting. The training utilized

the Adam optimizer with a learning rate of 0.001, pro-

ceeding for 75 epochs with a batch size of 32. Early

stopping was implemented with patience of 5 epochs

based on validation loss, ensuring that the model

would generalize effectively across various noise

scenarios.

3.3 Evaluation
To assess the performance of our deep learning

model, rigorous evaluation was conducted, focusing

on both quantitative metrics and visual performance

indicators such as spectrograms. Once the model be-

gan receiving real-time propeller noise as input, it

generated corresponding spectrograms as shown in

Fig. 4, suitable for visualizing and identifying UAV

noise characteristics. The first plot in Fig. 4 represents

the Amplitude Spectrogram of the incoming UAV

propeller noise. In this plot, the x-axis shows time,

while the y-axis represents frequency. The color in-

tensity corresponds to the amplitude of the frequency

components at each time point. Brighter regions in-

dicate higher amplitude, while darker regions indicate

lower amplitude.

This spectrogram provides insight into the energy

distribution of the noise signal across time and

frequency. For UAV propeller noise, prominent fre-

quency bands are observed, particularly in the low-fre-

quency range (below 100 Hz) and high-frequency

range (between 1-10 kHz). For example, at around

60 seconds, a peak in the amplitude is observed at

approximately 2000 Hz, indicating a strong high-fre-

quency component associated with the UAV’ s pro-

peller dynamics. Similarly, at around 37 seconds, the

amplitude peaks around 500 Hz, where low-

er-frequency vibrations are most dominant. These fre-

Fig. 4. Spectrogram Analysis for UAV Propeller Noise.
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quency bands are significant as they provide insights

into the primary sources of noise, which the model

uses to focus its cancellation efforts. The second plot

shows the Phase Spectrogram of the incoming pro-

peller noise. The x and y-axis represent time and fre-

quency respectively. However, in this plot, the color

intensity is related to the phase of the frequency com-

ponents rather than their amplitude. Phase represents

the timing relationship between the different fre-

quency components, which is essential for under-

standing the signal’ s waveform structure.

In relation to UAV propeller noise, phase spectro-

gram reveals the phase shifts that occur across the

frequency components. This information is crucial for

the deep learning model in generating accurate an-

ti-noise signals. While phase alone may not provide

information about the energy or loudness of the noise,

it is vital for synchronizing the cancellation signal to

ensure effective destructive interference. A clear

alignment of phase information between the original

noise and the generated anti-noise signal can lead to

more efficient noise cancellation. The third plot in Fig.

4 illustrates the Pitch Spectrogram or Fundamental

Frequency of the incoming propeller noise. The pitch

corresponds to the perceived frequency of the sound,

primarily related to the fundamental frequency of the

noise signal.

At around 60 seconds, the pitch spectrogram shows

a strong peak around 2000 Hz, which is indicative

of the fundamental frequency associated with the

UAV’ s propeller noise. This periodic pattern is char-

acteristic of a constant rotational speed or a slight

fluctuation in the propeller’s rotation, which is peri-

odic in nature. Such observations help the deep learn-

ing model identify and cancel repetitive elements of

the noise. The model extracted critical features from

those spectrograms, such as temporal frequency varia-

tions, amplitude, and phase shifts, enabling it to gen-

erate precise anti-noise signals that aligned with the

primary noise. Through this alignment, the destructive

interference phenomenon helped significantly in re-

ducing the UAV noise.

The performance metrics further underscore the

model’s capability, achieving an impressive accuracy

of 94.5%, alongside precision of 93.2%, recall of

96.1%, and an F1-score of 94.6%, as illustrated in

Fig. 5. The achieved accuracy indicates a high level

of reliability in correctly identifying noise events, sug-

gesting that the model performs consistently across

various noise scenarios. With 93.2% precision, the

model successfully minimizes false positives, ensuring

that noise events are rarely misclassified. High recall

demonstrates the model’s sensitivity to noise, ensuring

that it detects nearly all noise events. This is partic-

ularly critical for real-world noise cancellation appli-

cations, where even subtle noise occurrences need to

be captured. Furthermore, the F1-score reflects a

well-balanced performance, combining high precision

and recall. This indicates that model strikes an optimal

balance between minimizing false positives and ensur-

ing comprehensive noise detection. Finally, the loss

value of 0.115 shows that the model generates anti-

noise signals that closely match the expected output,

reinforcing the effectiveness of the noise cancellation

process. These high scores highlight the model’ s ac-

curacy and responsiveness, emphasizing its potential

Fig. 5. Precision-Recall Curve for Deep-ANC Model.

Fig. 6. Waveform comparisons for Input signal (UAV
Propeller Noise) with Audio Signal Provided by Deep-ANC
model.



The Journal of Korean Institute of Communications and Information Sciences '25-04 Vol.50 No.04

544

for real-world applications. Additionally, Fig. 6 illus-

trates the amplitude reduction in UAV propeller noise

before and after processing, demonstrating the tangi-

ble effect of the model’s noise cancellation. The mod-

el achieved a 36 dB reduction in UAV propeller noise,

decreasing the noise level from 85 dB (pre-processed)

to 49 dB (post-processed). This significant reduction

corresponds to a perceptually noticeable decrease, re-

inforcing the model’s effectiveness in noise

cancellation.

3.4 Hardware Implementation
To further validate our approach, we implemented

real-time UAV noise cancellation using carefully se-

lected hardware and configurations, allowing us to an-

alyze the model’s effectiveness in realistic operational

conditions. This practical implementation showcased

the model’ s capability to mitigate propeller noise ef-

fectively during flights. Our setup included a quad-

copter UAV equipped with an Nvidia Jetson NX for

onboard processing, high-quality microphones (ReS-

peaker Mic Array v2.0) for precise noise capturing

from all directions, audio interface cards for sound

signal transmission, and strategically placed speakers.

The hardware setup of the UAV used for experimental

validation is illustrated in Fig. 7. This hardware se-

lection was meticulously curated to enable efficient

real-time noise reduction, ensuring that components

were not only compatible with each other but also

with our proposed model for active noise cancellation

as well.

The UAV setup process involved precisely integrat-

ing the microphones and speakers onto the drone plat-

form, ensuring strategic placement to maximize pro-

peller noise capture and efficient anti-noise

transmission. The CNN-based ANC model was de-

ployed on the Jetson NX, alongside essential audio

processing libraries and dependencies, enabling seam-

less real-time audio analysis and anti-noise generation.

To assess the ANC model’ s impact, we conducted

both indoor and outdoor UAV flight tests to evaluate

the system’ s effectiveness in different environments.

Initially, we performed standard UAV flights without

activating the ANC system, resulting in high noise

levels due to the propeller operation. In the subsequent

tests, we activated the ANC model and assessed its

noisecanceling performance. During these flights, the

propeller noise was captured by microphones and

transmitted to the Jetson NX board via the audio inter-

face cards. The model then processed this input to

generate anti-noise signals, which were emitted

through the speakers positioned towards each

propeller. The out door flight test results, shown in

Fig. 8, demonstrate the practical efficacy of the pro-

posed system in real-world conditions. Fig. 9 illus-

trates the waveform plots of the received UAV pro-

Fig. 7. UAV hardware setup for testing the Active Noise
Cancellation (ANC) system: The platform includes an
Nvidia Jetson NX for real-time processing, ReSpeaker Mic
Array for noise capture, and speakers for anti-noise
emission, enabling effective reduction of propeller noise.

Fig. 8. Outdoor flight test of the UAV equipped with the
Active Noise Cancellation (ANC) system.
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peller noise signal, which is then split across different

channels, along with the extracted features. Fig. 10

shows the inverse noise signal generated by the mod-

el, and the combined effect of the primary and inverse

signals, highlighting the significant noise reduction

achieved through destructive interference in outdoor

flight scenarios. This setup confirmed that the deep

learning-based ANC system effectively reduces noise,

facilitating quieter flights and proving its feasibility

for real-world UAV applications. Table 1 presents a

comparative analysis between traditional ANC ap-

proaches and our proposed Deep-ANC model. As

shown, the proposed Deep-ANC model outperforms

the other approaches in terms of accuracy, noise re-

duction, reaction time and overall performance.

Ⅳ. Conclusion

This study proposed a deep learning-based CNN

model for active noise cancellation (ANC) of UAV

propeller noise, demonstrating high effectiveness in

noise reduction by leveraging CNN capabilities. The

model underwent comprehensive training, testing, and

validation, achieving impressive performance metrics:

an accuracy of 94.5%, a precision of 93.2%, and a

recall of 96.1%. The noise reduction results were vali-

dated across various flight scenarios, with the success-

ful hardware implementation highlighting the model’

s capacity to perform in dynamic operational settings.

Overall the proposed system was able to achieve a

remarkable 36 dB reduction in UAV propeller noise.

This study underscores the potential of deep learning

approaches for tackling complex noise challenges in

UAV operations, offering a promising foundation for

future noise mitigation strategies.

Future work will focus on enhancing the system’

s efficiency and exploring much broader range of

UAV mobility scenarios. Practical implementation in

diverse conditions will serve as key performance in-

dicators (KPIs) for evaluating the system’ s robustness

and adaptability. By expanding the range of scenarios

and refining the ANC model, we aim to further im-

prove noise cancellation effectiveness and operational

efficiency in real-world applications.

Fig. 9. Outdoor flight test results demonstrating various
waveform-plots of received UAV Propeller Noise Signal,
splitting across different channels and extracted features.

Fig. 10. Experimental Results illustrates the inverse noise
signal generated by the model, and combined effect of the
primary and inverse signals, showing significant noise
reduction through destructive interference in outdoor flight
scenarios.

Model Accuracy Loss Amplitude Reduction Sound Reduction Reaction Time

LMS 83.63% 0.15 26% 14-18 dB 260-300 ms

FXLMS 88.07% 0.12 48% 20-24 dB 140-150 ms

DeepFilterNet2 92.48% 0.13 45% 18-20 dB 140-160 ms

Proposed Model 94.5% 0.115 56% 32-36 dB 50-70 ms

Table 1. Comparison of Traditional ANC Models and the Proposed Deep-ANC Model
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