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Suppressing the Acoustic Effects of UAV Propellers through
Deep Learning-Based Active Noise Cancellation

Faisal Ayub Khan®, Soo Young Shin’

ABSTRACT

This study presents a deep learning-based Active Noise Cancellation (ANC) system for reducing UAV
propeller noise using a Convolutional Neural Network (CNN) model. The proposed system effectively
minimizes noise in real-time by extracting key audio features such as amplitude, phase, and frequency
components, generating and calculating inverse feature values to construct precise anti-noise signals. This
approach enables destructive interference, significantly reducing the propeller noise. The model achieved
high-performance metrics, including 94.5% accuracy, 93.2% precision, 96.1% recall, and a loss value of 0.115,
demonstrating its efficacy in noise cancellation. Deployed on an Nvidia Jetson NX, the ANC system integrates
high-quality microphones and strategically placed speakers on a UAV platform, allowing for real- time noise
analysis and anti-noise generation. Indoor and outdoor tests validated a substantial reduction in propeller noise
up to 36 dB, highlighting the model’ s robustness and potential for quieter UAV operation in noise-sensitive

settings.

Key Words : Deep Learning, Unmanned Aerial Vehicles (UAVs), Convolutional Neural Network (CNN),
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1. Introduction cial®, such as residential neighborhoods, wildlife
monitoring sites, or medical facilities.

Unmanned Aerial Vehicles (UAVs) are finding ap- Building upon our prior work on noise reduction

L . . . . “ e
plications across diverse sectors, including agriculture, for UAVs™, where we developed an initial framework
surveillance, emergency response, and delivery to mitigate propeller noise, this study advances the
services. Their ability to perform tasks autonomously approach by enhancing model effectiveness, alongside
in hard-to-reach areas has transformed industries, im- hardware implementation to improve noise cancella-
proving operational efficiency and reducing human tion performance. As mentioned before Active Noise
risk[1]. However, UAVs face a significant hurdle in Cancellation (ANC) techniques can tackle the per-
terms of their acceptability in urban and densely popu- vasive issues of noise pollution associated with

. . (5] : - ;

lated areas due to the noise generated by their pro- UAVs™ by employing sophisticated algorithms and
pellers?). This high-frequency, intrusive noise can be sensor arrays to detect and counteract the noise gen-
disruptive, especially in settings where quiet is cru- erated by propulsion systems and aerodynamic forces.

% This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)
funded by the Min- istry of Education” (2018R1A6A1A03024003, 50%) and by the MSIT(Ministry of Science and ICT), Korea,
under the ITRC(Information Technology Research Center) support program(IITP-2024-RS-2024-00437190, 50%) supervised by the
IITP(Institute for Information Communications Technology Planning Evaluation).

¢ First Author : Kumoh National Institute of Technology, Department of IT Convergence Engineering, faisalayubkhan10@gmail.com

Corresponding Author : Kumoh National Institute of Technology, Department of IT Convergence Engineering, wdragon@kumoh.ac.kr,

434

T3 1 202411-271-A-RU, Received November 7, 2024; Revised December 3, 2024; Accepted December 8, 2024

535



The Journal of Korean Institute of Communications and Information Sciences '25-04 Vol.50 No.04

ANC operates on the principle of “destructive interfer-
ence” where the systems capture sound through multi-
ple sensors, which then process the data to create an-
ti-noise signals that are equal in amplitude but pre-
cisely 180° out of phase'®. As the two signals con-
verge, they undergo destructive interference, effec-
tively nullifying each other’ s effects. Fig. 1 illustrates
this fundamental concept, displaying how the primary
noise and antinoise interact to achieve a residual noise
level that is substantially lower than the original. This
noise reduction requires precise calibration: the an-
ti-noise must match the primary noise in both magni-
tude and phase for optimal cancellation!”.

In UAV applications, the effectiveness of ANC be-
comes even more impactful when combined with deep
learning (DL) models®. By training deep neural net
works on extensive datasets of UAV noise profiles,
the system learns to recognize specific noise sig-
natures generated by UAV propellers and aerody-
namic forces!”. This training enables the neural net-
works to extract detailed audio features, such as fre-
quency components, amplitude variations, and noise
directionality, which contribute to a more precise an-
ti-noise generation process’”. Additionally, the adap-
tive capabilities of deep learning enhance the ANC
system’ s response to changing conditions, such as
varying altitudes, wind patterns, and speed, which all
impact noise levels. Using an adaptive approach, the
system continuously adjusts anti-noise signals to
match the dynamic noise sources, ensuring higher can-
cellation effectiveness and faster response times com-
pared to traditional ANC systems. This data-driven
method allows the system to learn and adapt to new

noise patterns encountered during operation, improv-
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Fig. 1. Dlustration of Destructive Interference: Combining
primary noise with anti-noise to reduce overall sound
through phase cancellation.
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ing its performance over time!'”

. The synergy be-
tween ANC and deep learning enables UAVs to oper-
ate more quietly, facilitating their integration into en-
vironments where noise control is critical, such as ur-
ban areas, medical facilities, and wildlife monitoring

Zones.
II. Literature Review

While multiple studies have investigated traditional
Active Noise Cancellation (ANC) systems, these tech-
niques generally rely on adaptive filtering methods
that process incoming signals to cancel out noise. One
of the most widely used approaches is the Least Mean
Square (LMS) algorithm, which adapts the filter co-
efficients based on the error signal. However, LMS
has limitations, such as slow convergence rates and
its inability to handle non-stationary noise signals ef-
fectively' "2, Filtered-X LMS (FXLMS) improves
upon LMS by incorporating the reference noise signal
directly into the update process, which helps with sta-
bility in certain applications. Still, FXLMS struggles
with highly dynamic noise environments, such as
those encountered in UAV applications, and is compu-
tationally expensive when dealing with multiple fre-
quencies or complex interference patternst'>'*!. Other
traditional ANC techniques, such as the Wiener fil-

ter" and adaptive notch filtering!®

, also exhibit per-
formance limitations in non-stationary environments.
While the Wiener filter can be highly effective in sta-
tionary noise environments, it suffers from poor adapt-
ability in rapidly changing conditions, like those en-
countered in UAV applications'”). Similarly, adaptive
notch filtering performs well in filtering out specific
frequency bands but cannot adapt to complex and
varying noise patterns that are typical in real-time.

The limitations of these traditional ANC methods
underscore the need for more advanced techniques ca-
pable of handling complex, time-varying, and multi-
frequency noise signals. To address these challenges,
our proposed system introduces a deep learning-based
approach, utilizing Convolutional Neural Networks
(CNNs) for noise cancellation. CNNs are adaptive at
extracting complex features from high-dimensional in-

puts such as spectrograms, which represent time-
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frequency information from noisy audio signals. By
learning the intricate patterns within the noise data,
CNNs can generate highly accurate anti-noise signals
tailored to counteract the noise in real-time!®'",
Unlike traditional ANC methods, which rely on pre-
defined models or manual feature extraction,
CNN-based ANC systems adapt to new, unseen noise
patterns through training on large datasets. This flexi-
bility allows the system to continuously learn and im-
prove its performance, making it more effective in dy-

namic environments!®.

Additionally, the reaction
time of CNN-based ANC systems is significantly fast-
er compared to traditional methods, as CNNs can
process and output noise-canceling signals almost in-
stantly once trained, reducing the delay commonly ob-
served in adaptive filtering methods like LMS and
FXLMS"™".

In contrast to traditional ANC systems, CNNs can
handle non-stationary and multi-frequency noise effi-
ciently, making them ideal for applications such as
UAVs, where the noise environment is highly dynam-
ic and complexm]. Furthermore, as mentioned in [18],
the computational efficiency of deep learning ap-
proaches, particularly with advancements in hardware
acceleration (e.g., GPUs), allow real-time operation
even in complex scenarios. This study focuses on ex-
tracting relevant features from the UAV propeller
noise, such as amplitude, frequency, and phase in-
formation through CNN. Afterward, extracted features
are then used to generate inverse values, which are
translated into an anti-noise signal. This signal, when
played back through speakers directed toward the pro-
peller, results in a reduction of the primary noise due
to the phenomenon of destructive interference.

Deep Learning models, particularly Convolutional
Neural Networks (CNNs), are highly effective for
complex noise cancellation tasks, including reducing
propeller noise, which presents unique spectral pat-
terns and time-variant characteristics that challenge
traditional signal processing methods. In these models,
CNNs analyze time-frequency representations like
spectrograms derived from audio recordings™, where
each frame serves as input to the network. Through
a series of convolutional and pooling layers,

CNN-based ANC systems extract essential audio fea-

tures-such as amplitude, frequency spectrum, and
phase information-by first converting the raw audio
into a spectrogram that captures both temporal and

frequency data!

. Convolutional layers apply learn-
able filters across this spectrogram to detect relevant
patterns at different scales, while pooling layers down-
sample feature maps, preserving important character-
istics and optimizing computational efficiency*.
Deeper layers within the network recognize complex
noise patterns, and fully connected layers map these
features to antinoise signals, effectively enabling tar-
geted noise cancellation.

Once extracted, these features pass to fully con-
nected layers, which produce an anti-noise signal tail-
ored to counteract the original propeller noise, thus
reducing the overall sound level. During training, the
CNN minimizes the difference between the generated
cancellation signal and the primary propeller noise,
learning how to cancel specific noise characteristics
effectively®. The model’ s generalization to various
noise scenarios is enhanced by regularization techni-
ques and extensive dataset training, equipping the sys-
tem to adapt to new audio environments and diverse
noise types, making it a robust solution for dynamic

noise reduction in UAV applications.

2.1 Proposed Model

The proposed system model, as illustrated in Fig.
2, outlines a Deep Learning-based Active Noise
Cancellation (ANC) architecture designed to mitigate
UAV  propeller noise. This model wuses a
Convolutional Neural Network (CNN) framework to
process the propeller noise signal, s(#), by extracting
crucial features that allow for the precise generation
of an anti-noise signal, $(#), which destructively inter-
feres with the original noise giving residual noise as
a result.

The system begins by capturing the propeller noise
as an input, represented in the time domain as a con-
tinuous audio waveform. This input signal s(#) is then
converted into a time-frequency representation, specif-
ically a spectrogram, denoted as X£ 9, to capture both
temporal and spectral characteristics. The spectrogram
X1 9, where fdenotes frequency and ¢ denotes time,
serves as the initial input to the CNN. Within the CNN
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Fig. 2. Proposed Deep Learning model for Active Noise Cancellation of UAV Propeller Noise

, various audio features are extracted to facilitate ef-
fective ANC. These features include time-domain
characteristics (77, which capture the temporal struc-
ture of the signal and provide insight into the perio-
dicity and transient properties of the propeller noise.
Frequency features (Fj), derived from the spectro-
gram, reveal dominant frequency components crucial
for identifying repetitive noise patterns from the pro-
peller®. Amplitude information (4) represents the in-
tensity of the signal at different points, which helps
in determining the energy profile of the noise. Phase
information (®) is also captured, allowing the model
to synchronize the anti-noise with the primary noise
accurately. Furthermore, the temporal-frequency rep-
resentation £ #) provides a holistic view of how
noise characteristics evolve over time, enabling adap-
tation to dynamic noise patterns.

Each frame of the spectrogram X(£ 9 is fed into
the CNN, which consists of convolutional layers fol-
lowed by pooling layers. The convolutional layers ap-
ply a set of filters, represented by weights W/, across
the spectrogram, extracting localized patterns and fea-
tures at various scales!”’. Pooling layers downsample
the feature maps, reducing dimensionality while pre-
serving essential characteristics.

The features extracted in this way are then passed
to fully connected layers, which act as a classification
and decision-making mechanism'!. These layers map
the features to an anti-noise signal §(#), carefully cali-
brated to mirror the amplitude and phase of the pri-
mary noise but precisely 180° out of phase. This anti-
noise signal achieves destructive interference with the

primary noise s(#), significantly reducing the overall
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sound level. The anti-noise §(#) is produced by com-
puting the inverse values of critical features, such as
amplitude A ', frequency F !, and phase ® . These
values are combined through the fully connected lay-
ers to form a continuous anti-noise signal that effec-
tively neutralizes the propeller noise when
superimposed. This dynamic and adaptive approach
enables precise and efficient noise cancellation, en-
hancing operational stealth and minimizing the envi-
ronmental impact of UAVs®. The algorithm detailed
in the following sections outlines the step-by-step
process for training the model, emphasizing the sys-
tematic feature extraction and integration that form the
foundation of deep learning-based ANC.

In summary, the proposed model begins with the
UAYV propeller noise s(#), transforms it into a spectro-
gram X(£ 9 for feature extraction, and processes this
data through convolutional and pooling layers to iden-
tify relevant features, including time-domain charac-
teristics, frequency, amplitude, phase, and tempo-
ral-frequency representation £ 7). Fully connected
layers utilize these features to generate an anti-noise
signal §(#, which aligns in magnitude but opposes the
primary noise in phase. The output anti-noise signal,
when combined with the original propeller noise, re-
duces the perceived sound through destructive
interference. This model effectively integrates deep
learning with traditional ANC principles, ensuring
precision and adaptability in complex and dynamic
UAYV environments. The design ensures that the mod-
el can adjust to varying noise characteristics, making
it a robust solution for UAV noise reduction.
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2.2 Algorithm

The proposed algorithm 1 for Active Noise Cancel-
lation (ANC) leverages a Deep Learning approach to
effectively reduce UAV propeller noise. Given an in-
put audio signal s(#), the system extracts essential fea-
tures for noise cancellation, including time-domain
characteristics 7; frequency components F;, ampli-
tude A phase @, and a temporal-frequency representa-
tion &7 7). These features are then combined into a
feature vector X = [T F,, S£ 1), A O], which serves
as input to a Convolutional Neural Network (CNN)
model. To produce the anti-noise signal, the model
computes the inverse of these features, such as Tﬁl,
F;l, A and @7, creating a feature set that counter-
acts the primary noise. During training, the model op-
timizes its parameters Wand f which are crucial for
the model’s learning process. W represents the weights
in the convolutional layers, which are learned during
training to detect patterns and features in the input
audio spectrograms. These weights enable the model
to capture the noise characteristics of the UAV pro-
peller sound. f represents the bias terms added to the
weighted sum of inputs, allowing the model to adjust
its output independently of the input. Together, Wand
£ help the model optimize the noise-canceling signal
by minimizing the loss function ¥ = MSE(s(d), $(2))
+ 7»||WH2, where MSE measures the difference be-
tween the generated anti-noise signal §(#), while XHWH 2
acts as a regularization term to prevent overfitting.
In the real-time noise cancellation phase, the trained
model processes new input signals 7(?) to generate the
anti-noise output $§(#), which is then combined to ach-
ieve destructive interference and reduce the overall

noise level.

2.3 Spectrogram Visualization

To facilitate feature extraction for noise cancella-
tion, the input audio signal s(¢) is transformed into
a timefrequency representation using the Short-Time
Fourier Transform (STFT) which is expressed as:

X(f,1) = STET{s(t)}(f,1) = '/._g(f)w(f_t)e—ﬂnfrdr
(€Y)

Algorithm 1: ANC with Deep Learning - Feature extrac-
tion, inverse signal generation, and real-time anti-noise
synthesis for noise reduction

Require: Audio signals s(r) (training set), Y (labels
for training), §(¢) anti-noise signal, () (new input
signals), learning rate 7, batch size B, regulariza-
tion parameter A

Ensure: Trained model parameters W, and noise-
cancelled output

1. Stage 1: TRAIN(s(¢),Y)

W < initialize weights randomly

B < initialize model parameters

. for each batch B; C s(z) do

Stage 2: Extract features from input batch B;

T,; + time-domain characteristics from B;
Fy < frequency features from B;
S(f,t) + temporal-frequency from B;

R A A A

A < amplitude information from B;

10: & « phase information from B;

11:  Stage 3: Form feature vector X =
[Td7E§7S(f7t)7A7q)]

12 Generate inverse feature values (e.g.,

1 e — _

Td 7F:y I7A 1>q) I)

13:  Stage 4: Calculate the anti-noise signal $(¢) =

model(X, W, )
14:  Stage 5: Compute ¥ = MSE(s(¢)),8(r)) +
AwiP?

15:  Update W and f using backpropagation and op-
timization with learning rate n (SGD or Adam)

16: end for

17: return W,

18: Stage 6: ADAPTIVE NOISE RESPONSE (r(¢))

19: Stage 7: Extract features from new input audio r(r)

20: T < time-domain characteristics from r(¢)

21:  F] + frequency features from r(r)

22:  S'(f,r) + temporal-frequency from r(z)

23: A’ < amplitude information from r(z)

24: @' < phase information from r(t)

25: Stage 8: Form feature vector X' =
(1), FL S (£.0),A", @

26: Generate anti-noise signal using trained model

27. §(t) «+ model(X', W, B)

28: Stage 9: Combine primary audio with anti-noise
signal Output <— SIGN(r(z) + 8(¢))

29: return Output

539



The Journal of Korean Institute of Communications and Information Sciences "25-04 Vol.50 No.04

where X ( £, t) represents the spectrogram, fis the
frequency variable, ¢ denotes time, s(t) is the original

audio signal, and w(t— is a window function that

localizes the Fourier transform within a specific
time frame. The STFT enables the decomposition of
s(?) into a sequence of time-dependent frequency com-
ponents, providing a comprehensive view of how the
signal’s frequency characteristics evolve over time.

Magnitude spectrogram /X(£ 7/ is computed as:

X(£.0)] = \/Re(X (f.0)2 + Im(X(£.0) (@)

where Re(X£ 9) and Im(X£ 9) represent the real and
imaginary parts of X(£ #), respectively. This magni-
tude spectrogram provides the amplitude of each fre-
quency component, allowing the model to focus on
prominent noise frequencies and their variations over
time, which is crucial for generating effective anti-
noise signals.

Time-frequency representation is crucial for identi-
fying key noise features associated with the UAV’s
propeller sounds. By visualizing the spectrogram, it
becomes easier to analyze the dominant frequency
bands and transient patterns that characterize the
noise®, especially for propeller-driven UAVs, which
exhibit repetitive spectral patterns. The CNN model
subsequently processes these spectrograms, leveraging
the temporal and spectral data to enhance the accuracy
of anti-noise generation.

Furthermore, parameters such as the window func-
tion w(t—#) and the window length influence the reso-
lution of the spectrogram. A shorter window length
provides higher temporal resolution, allowing for pre-
cise tracking of rapid changes in noise, while a longer
window length improves frequency resolution®”,
which is beneficial for capturing consistent noise pat-
terns over time. These parameters are selected based
on the specific characteristics of the UAV noise, en-
suring that the spectrogram accurately represents both
the time and frequency domains of the input signal.
This allows the model to capture crucial features in

both stable and dynamic noise environments.
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2.4 Layered Architecture for Feature
Extraction

The proposed system leverages a series of
Convolutional, Pooling, and Fully Connected layers
to process the spectrogram X(£ #) of the UAV pro-
peller noise signal, extracting and refining features es-
sential for noise cancellation. The Convolutional
Layer applies learnable filters W, across the spectro-
gram, performing a convolution operation at each po-
sition (z, j) to produce output 47, j) based on local
frequency and time patterns. This operation is defined

as:
M—1N—1

he(iyj) =Y, Y, We(m,n)-X(i+m,j+n)+b. (3)
m=0 n=0

where M and N denote the filter dimensions. These
filters capture crucial noise characteristics, such as
prominent frequency peaks and temporal variations
tied to propeller noise. Following this, the Pooling

(281 of the feature

Layer reduces the spatial dimensions
maps, capturing only the most prominent features
from each region by taking the maximum value within

a pooling window, represented by

hy(i,j) = max he(i+m,j+n). 4)

This layer helps the model prioritize significant noise
components and reduces the impact of minor fluctua-
tions, thus enhancing the ANC system’s efficiency.
Finally, the Fully Connected Layer flattens the output
into a single feature vector z and computes a linear

combination®®

of these features, transforming them
into the anti-noise signal §(#. This transformation is

represented by:

K
hfe=0 <Z Wizg + b_fc> , 3)
=1

where wix and be are the layer’s weights and biases,
and o is an activation function. This layer integrates
the extracted features, mapping them to an anti-noise
signal that mirrors the UAV noise in amplitude but

is precisely out of phase, thus enabling effective noise
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cancellation through destructive interference.

2.5 Generating Anti-Noise Sound Signal

Once the features have been extracted from the
UAV propeller noise spectrogram and their inverse
values calculated, the system generates an anti-noise
signal §(# designed to mirror the characteristics of the
primary noise s(#) but with an opposite phase. The
extracted features-including time-domain character-
istics, frequency components, amplitude, and phasea-
long with their respective inverse values, are com-
bined into a final feature vector that serves as input
for the anti-noise generation function. Using this vec-
tor of inverse features, anti-noise signal §(#) is for-

mulated as:
§(d = A" cos(wt+ @Y (6)

where A and @' represent the inverse amplitude
and phase components of the primary noise, re-
spectively, while © is the angular frequency of the
noise, which determines the rate of oscillation of both
the primary noise and anti-noise signals. Equation 6
ensures that §(7) is aligned in both magnitude and
phase opposition to s(7). To achieve perfect cancel-
ation, both the inverse amplitude A" and inverse
phase @' must be precisely synchronized and trans-
mitted to overlap with the primary sound s(#) at the
exact same time slot, as illustrated in Fig. 3. The an-
ti-noise signal is further refined by minimizing the
Mean Squared Error (MSE) loss between §(#) and the
target anti-noise, ensuring precise phase alignment for
effective noise cancellation.

Original Sound Wave

2000

2000

Amplitude (d8)

4000

Time (seconds)

Anti-Noise Sound Wave

8 8

Amplitude (d8)

2000

0 20 ) 60 80 100 120
Time (seconds)

Fig. 3. Primary audio waveform of propeller sound and
its Anti-Noise waveform.

. Experiment

The experimentation phase included preparing and
pre-processing the dataset, followed by model training
and testing. Simulations were first conducted to assess
initial model performance in controlled environments,
and the trained model was then integrated into the
UAV setup for real-time testing. These evaluations,
detailed in the following subsections, confirm the
model’s noise cancellation capabilities in both simu-

lated and physical environments.

3.1 Dataset Acquisition and Preprocessing

An extensive dataset, comprising over 2200+ audio
recordings, were carefully curated from two primary
sources: publicly available datasets obtained from reli-
able internet repositories and custom recordings cap-
tured in controlled environments. The publicly
sourced data provided a diverse range of propeller
noise profiles under various operational conditions,
while the custom recordings were specifically tailored
to mimic real-world scenarios, including noise varia-
tions introduced by different propeller types and
speeds. Each recording underwent preprocessing to
extract critical audio features such as frequency, pitch,
phase, amplitude envelope, and temporal
characteristics. These features were systematically
stored in a structured CSV format to streamline further
analysis and model training. The dataset was divided
into 70% for training, 15% for validation, and 15%
for testing, ensuring an even distribution across vari-
ous noise profiles and conditions. This comprehensive
approach ensured that the dataset effectively repre-
sented diverse propeller noise characteristics, enabling
the model to generalize well to new and unseen noise

scenarios.

3.2 Model Training

For model training, each audio sample was con-
verted into spectrogram representations using a frame
size of 2048 samples and a hop length of 512 samples,
with a sampling rate of 22050 Hz. These settings pro-
vided a balanced time-frequency resolution to capture
UAV noise characteristics effectively. The CNN ar-
chitecture employed in this study consisted of multiple
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convolutional layers, each followed by max-pooling
layers for efficient feature extraction. The convolu-
tional layers used filters to detect spatial patterns with-
in the spectrogram, leveraging cross-correlation to
capture variations in UAV noise characteristics.
Activation functions such as the Rectified Linear Unit
(ReLU) were applied after each convolutional and
fully connected layer to enhance the model’ s capacity
for learning complex noise patterns. In the deeper lay-
ers, the model learned intricate wave patterns charac-
teristic of UAV propeller noise, while the fully con-
nected layers generated noise cancellation signals
from these extracted features. The model’ s final layer
used a linear activation function to produce the ANC
signal output.

To optimize model performance, the mean squared
error (MSE) loss function with a regularization term
A = 0.0001 was employed to minimize the difference
between the generated noise-canceling signal and the
primary UAV noise. The loss function is defined as:

Z = i—9)* + AW ©)

| =
™=

1

1

where Nis the number of training samples, y; denotes
the primary UAV propeller audio at ith sample which
serves as the input for the model. The corresponding
target y, or the model’s ANC output, is generated to
be the inverse of the primary audio, such that when
combined with y; it results in a reduction of the origi-
nal primary noise. To create y; the model learns to
extract temporal and spectral patterns from y; and gen-
erate the anti-noise signal through a series of convolu-
tional layers. The labeling of the target y; is done by
taking the original UAV propeller audio, processing
it to obtain the exact inverse signal that will effec-
tively cancel out the noise. This process ensures that
during training, the model learns to minimize the error
between the generated ANC output and primary noise
signal, thereby effectively learning to cancel out the
noise. In equation 7, A|[W||? represents the regulariza-
tion term to control overfitting. The training utilized
the Adam optimizer with a learning rate of 0.001, pro-
ceeding for 75 epochs with a batch size of 32. Early
stopping was implemented with patience of 5 epochs
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based on validation loss, ensuring that the model
would generalize effectively across various noise

scenarios.

3.3 Evaluation

To assess the performance of our deep learning
model, rigorous evaluation was conducted, focusing
on both quantitative metrics and visual performance
indicators such as spectrograms. Once the model be-
gan receiving real-time propeller noise as input, it
generated corresponding spectrograms as shown in
Fig. 4, suitable for visualizing and identifying UAV
noise characteristics. The first plot in Fig. 4 represents
the Amplitude Spectrogram of the incoming UAV
propeller noise. In this plot, the x-axis shows time,
while the y-axis represents frequency. The color in-
tensity corresponds to the amplitude of the frequency
components at each time point. Brighter regions in-
dicate higher amplitude, while darker regions indicate
lower amplitude.

This spectrogram provides insight into the energy
distribution of the noise signal across time and
frequency. For UAV propeller noise, prominent fre-
quency bands are observed, particularly in the low-fre-
quency range (below 100 Hz) and high-frequency
range (between 1-10 kHz). For example, at around
60 seconds, a peak in the amplitude is observed at
approximately 2000 Hz, indicating a strong high-fre-
quency component associated with the UAV’ s pro-
peller dynamics. Similarly, at around 37 seconds, the
amplitude peaks around 500 Hz, where low-
er-frequency vibrations are most dominant. These fre-

Amplitude Spectrogram

sods

2048

s0d8

508

048

)
(Fundamental Frequency)

Fig. 4. Spectrogram Analysis for UAV Propeller Noise.
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quency bands are significant as they provide insights
into the primary sources of noise, which the model
uses to focus its cancellation efforts. The second plot
shows the Phase Spectrogram of the incoming pro-
peller noise. The x and y-axis represent time and fre-
quency respectively. However, in this plot, the color
intensity is related to the phase of the frequency com-
ponents rather than their amplitude. Phase represents
the timing relationship between the different fre-
quency components, which is essential for under-
standing the signal’ s waveform structure.

In relation to UAV propeller noise, phase spectro-
gram reveals the phase shifts that occur across the
frequency components. This information is crucial for
the deep learning model in generating accurate an-
ti-noise signals. While phase alone may not provide
information about the energy or loudness of the noise,
it is vital for synchronizing the cancellation signal to
ensure effective destructive interference. A clear
alignment of phase information between the original
noise and the generated anti-noise signal can lead to
more efficient noise cancellation. The third plot in Fig.
4 illustrates the Pitch Spectrogram or Fundamental
Frequency of the incoming propeller noise. The pitch
corresponds to the perceived frequency of the sound,
primarily related to the fundamental frequency of the
noise signal.

At around 60 seconds, the pitch spectrogram shows
a strong peak around 2000 Hz, which is indicative
of the fundamental frequency associated with the
UAV’ s propeller noise. This periodic pattern is char-
acteristic of a constant rotational speed or a slight
fluctuation in the propeller’s rotation, which is peri-
odic in nature. Such observations help the deep learn-
ing model identify and cancel repetitive elements of
the noise. The model extracted critical features from
those spectrograms, such as temporal frequency varia-
tions, amplitude, and phase shifts, enabling it to gen-
erate precise anti-noise signals that aligned with the
primary noise. Through this alignment, the destructive
interference phenomenon helped significantly in re-
ducing the UAV noise.

The performance metrics further underscore the
model’s capability, achieving an impressive accuracy

of 94.5%, alongside precision of 93.2%, recall of

96.1%, and an Fl-score of 94.6%, as illustrated in
Fig. 5. The achieved accuracy indicates a high level
of reliability in correctly identifying noise events, sug-
gesting that the model performs consistently across
various noise scenarios. With 93.2% precision, the
model successfully minimizes false positives, ensuring
that noise events are rarely misclassified. High recall
demonstrates the model’s sensitivity to noise, ensuring
that it detects nearly all noise events. This is partic-
ularly critical for real-world noise cancellation appli-
cations, where even subtle noise occurrences need to
be captured. Furthermore, the Fl-score reflects a
well-balanced performance, combining high precision
and recall. This indicates that model strikes an optimal
balance between minimizing false positives and ensur-
ing comprehensive noise detection. Finally, the loss
value of 0.115 shows that the model generates anti-
noise signals that closely match the expected output,
reinforcing the effectiveness of the noise cancellation
process. These high scores highlight the model’ s ac-

curacy and responsiveness, emphasizing its potential

Precision-Recall Curve
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Fig. 5. Precision-Recall Curve for Deep-ANC Model.
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for real-world applications. Additionally, Fig. 6 illus-
trates the amplitude reduction in UAV propeller noise
before and after processing, demonstrating the tangi-
ble effect of the model’s noise cancellation. The mod-
el achieved a 36 dB reduction in UAV propeller noise,
decreasing the noise level from 85 dB (pre-processed)
to 49 dB (post-processed). This significant reduction
corresponds to a perceptually noticeable decrease, re-
inforcing the model’s effectiveness in noise

cancellation.

3.4 Hardware Implementation

To further validate our approach, we implemented
real-time UAV noise cancellation using carefully se-
lected hardware and configurations, allowing us to an-
alyze the model’s effectiveness in realistic operational
conditions. This practical implementation showcased
the model’ s capability to mitigate propeller noise ef-
fectively during flights. Our setup included a quad-
copter UAV equipped with an Nvidia Jetson NX for
onboard processing, high-quality microphones (ReS-
peaker Mic Array v2.0) for precise noise capturing
from all directions, audio interface cards for sound
signal transmission, and strategically placed speakers.
The hardware setup of the UAV used for experimental
validation is illustrated in Fig. 7. This hardware se-

Fig. 7. UAV hardware setup for testing the Active Noise
Cancellation (ANC) system: The platform includes an
Nvidia Jetson NX for real-time processing, ReSpeaker Mic
Array for noise capture, and speakers for anti-noise
emission, enabling effective reduction of propeller noise.
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lection was meticulously curated to enable efficient
real-time noise reduction, ensuring that components
were not only compatible with each other but also
with our proposed model for active noise cancellation
as well.

The UAV setup process involved precisely integrat-
ing the microphones and speakers onto the drone plat-
form, ensuring strategic placement to maximize pro-
peller noise capture and efficient anti-noise
transmission. The CNN-based ANC model was de-
ployed on the Jetson NX, alongside essential audio
processing libraries and dependencies, enabling seam-
less real-time audio analysis and anti-noise generation.

To assess the ANC model” s impact, we conducted
both indoor and outdoor UAV flight tests to evaluate
the system’ s effectiveness in different environments.
Initially, we performed standard UAYV flights without
activating the ANC system, resulting in high noise
levels due to the propeller operation. In the subsequent
tests, we activated the ANC model and assessed its
noisecanceling performance. During these flights, the
propeller noise was captured by microphones and
transmitted to the Jetson NX board via the audio inter-
face cards. The model then processed this input to
generate anti-noise signals, which were emitted
through the speakers positioned towards each
propeller. The out door flight test results, shown in
Fig. 8, demonstrate the practical efficacy of the pro-
posed system in real-world conditions. Fig. 9 illus-

trates the waveform plots of the received UAV pro-

Fig. 8. Outdoor flight test of the UAV equipped with the
Active Noise Cancellation (ANC) system.
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Table 1. Comparison of Traditional ANC Models and the Proposed Deep-ANC Model

Model Accuracy Loss Amplitude Reduction | Sound Reduction Reaction Time
LMS 83.63% 0.15 26% 14-18 dB 260-300 ms
FXLMS 88.07% 0.12 48% 20-24 dB 140-150 ms
DeepFilterNet2 92.48% 0.13 45% 18-20 dB 140-160 ms
Proposed Model 94.5% 0.115 56% 32-36 dB 50-70 ms

peller noise signal, which is then split across different
channels, along with the extracted features. Fig. 10
shows the inverse noise signal generated by the mod-
el, and the combined effect of the primary and inverse
signals, highlighting the significant noise reduction
achieved through destructive interference in outdoor
flight scenarios. This setup confirmed that the deep

learning-based ANC system effectively reduces noise,

Fig. 9. Outdoor flight test results demonstrating various
waveform-plots of received UAV Propeller Noise Signal,
splitting across different channels and extracted features.

Fig. 10. Experimental Results illustrates the inverse noise
signal generated by the model, and combined effect of the
primary and inverse signals, showing significant noise
reduction through destructive interference in outdoor flight
scenarios.

facilitating quieter flights and proving its feasibility
for real-world UAV applications. Table 1 presents a
comparative analysis between traditional ANC ap-
proaches and our proposed Deep-ANC model. As
shown, the proposed Deep-ANC model outperforms
the other approaches in terms of accuracy, noise re-

duction, reaction time and overall performance.

IV. Conclusion

This study proposed a deep learning-based CNN
model for active noise cancellation (ANC) of UAV
propeller noise, demonstrating high effectiveness in
noise reduction by leveraging CNN capabilities. The
model underwent comprehensive training, testing, and
validation, achieving impressive performance metrics:
an accuracy of 94.5%, a precision of 93.2%, and a
recall of 96.1%. The noise reduction results were vali-
dated across various flight scenarios, with the success-
ful hardware implementation highlighting the model’
s capacity to perform in dynamic operational settings.
Overall the proposed system was able to achieve a
remarkable 36 dB reduction in UAV propeller noise.
This study underscores the potential of deep learning
approaches for tackling complex noise challenges in
UAV operations, offering a promising foundation for
future noise mitigation strategies.

Future work will focus on enhancing the system’
s efficiency and exploring much broader range of
UAYV mobility scenarios. Practical implementation in
diverse conditions will serve as key performance in-
dicators (KPIs) for evaluating the system’ s robustness
and adaptability. By expanding the range of scenarios
and refining the ANC model, we aim to further im-
prove noise cancellation effectiveness and operational
efficiency in real-world applications.
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