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Ⅰ. Introduction

High-order modulation transmitting multiple bits

per symbol is widespread in digital communication

systems because it ensures fast data transfer.

Combined amplitude and phase modulation schemes

have been studied to find an efficient constellation in

a two-dimensional signal space[1-3]. Foschini et al.

used a gradient search algorithm in an attempt to find

an optimal constellation[4]. The constellation designed

on a triangular lattice has been investigated in a

previous study[5]. Design and analysis of other

high-order modulations can be found in the literature
[6-8]. Among all these constellations that enhance

spectral efficiency, square quadrature amplitude

modulation(SQAM)[3] is the most common

constellation. It is exclusively used in various

applications owing to its reasonable performance and

simple detection.

In this study, we focus on the modulation schemes

with a square lattice, where signal points are located

at the intersection of the lattice. From the motivation

to determine the best square-lattice constellation in

terms of maximizing the efficiency of energy use, a

quadrature amplitude modulation with a circular

boundary is naturally devised. Symbol selection and

bit mapping methods are investigated to complete the

proposed constellation. Further, the power gain and

the peak-to-average power ratio (PAPR) of the

proposed modulation are found by heuristic and

analytic methods and are compared with those of

SQAM.

Ⅱ. Signal constellation of circular QAM

2.1 Symbol Selection
Fig. 1 shows the signal constellation of the

conventional SQAM for the M-ary signal sets (M =

16, 64, 256, and 1024). The parameter d denotes half

the minimum Euclidean distance between adjacent

signal points. In general, SQAM is defined over M

= 22M, where m is an integer, and thus it has a

square-shaped boundary. For an arbitrary signal point

si, the symbol energy of si is defined as

(1)

where si,I and si,Q represent the real and imaginary
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values of si, respectively. Owing to the regular

structure of SQAM, the average symbol energy of

SQAM, Es, can be easily calculated as

(2)

Meanwhile, the efficiency of SQAM associated

with energy use is degraded by signal points near the

edge of the constellation. Since the constellation

having a circular envelope would be more efficient,

we propose a new constellation with a square lattice

that reduces the average energy per symbol. The

following procedure is applied for the acquisition of

this constellation:

[Step 1] Locate the first signal point at (d, d).

[Step 2] Among the remaining candidates placed

at the intersection of the square lattice, choose the

point with the minimum symbol energy as the second

signal point. If multiple points have the same

minimum energy, select one randomly.

[Step 3] Except for the signal points that are chosen

already, repeat the process given in Step 2 until M
signal points are all selected.

Fig. 2 illustrates the constellation obtained through

the above process for M = 16, 64, 256, and 1024.

In the case of the 16-ary signal set, there is no

difference between the conventional and proposed

constellations. However, as M increases, the boundary

of the proposed constellation approaches quickly the

shape of the circle. This is because the signal points

are selected based on the strategy of minimum energy.

For this reason, hereafter, we will call the

constellation circular SQAM (C-SQAM). It is noted

that C-SQAM can be defined for any positive integer

M, unlike SQAM.

2.2 Bits-to-Symbol Mapping
For binary data transmission, a unique bit string

should be assigned to a symbol in a constellation.

Since Gray mapping does not apply to the proposed

constellation, we should consider other bits-to-symbol

mapping methods.

In the sense of minimizing the Gray coding penalty

Gp, the average of the number of bit differences

between a symbol and its adjacent neighbors, the

optimum bit mapping of C-SQAM surely exists.

However, the finding of the optimum mapping

requires a full search of M! candidates, which is not

feasible for a large M.

Thus, we propose a more practical mapping method

Fig. 1. SQAM constellation: (a) 16-ary, (b) 64-ary, (c) 256-ary, (d) 1024-ary

Fig. 2. C-SQAM constellation: (a) 16-ary, (b) 64-ary, (c) 256-ary, (d) 1024-ary
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that keeps a low value of Gp. The following procedure

is applied for the bit mappings of symbols located

in the first quadrant of C-SQAM:

[Step 1] For the C-SQAM symbol located at the

same position as the SQAM symbol, allocate the

identical bit string.

[Step 2] For the remaining symbols, allocate as

many symbols as possible while maintaining the Gray

coding penalty at one.

[Step 3] For the symbols that are still unallocated,

find the best bit mapping through a brute-force search.

For example, Fig. 3 shows the proposed bit

mappings for the first quadrant symbols of the 256-ary

C-SQAM. The 58 black-colored symbols are placed

at the same position as SQAM, and they inherit the

bit strings of SQAM by step 1. Among the six

remaining symbols, the five red-colored symbols are

allocated by step 2. Note that the Gray coding penalty

is still 1 for the 63 bit-mapped symbols until now.

Since only one symbol is left, the remaining bit string,

10111011, is naturally assigned to the blue-colored

symbol.

Similarly, 233, 19, and 4 symbols out of 256

symbols in the first quadrant of the 1024-ary

C-SQAM are allocated by step 1, step 2, and step

3, respectively, which means that only 4! searches

complete the bit mappings of the first quadrant.

Further, once the bit mappings of the first quadrant

are completed, the other quadrants apply the same

method used in the first quadrant to map bit strings

to symbols located in their area.

Ⅲ. Performance Analysis

3.1 Error Probabilities
The probability of symbol error (SER) for an M

-ary signal set can be approximated in additive white

Gaussian noise (AWGN) channel as

(3)

where is the average number of the nearest

neighbors for a symbol in a constellation, Q(․) is

the Gaussian Q-function, and N0/2 is the double-sided

noise power spectral density. Further, the probability

of bit error (BER) is approximated as

(4)

Because most symbol errors are caused by

incorrectly detecting the transmitted symbol for one

of its adjacent symbols, Gp bit errors occur among

log2M bits allocated to a symbol.

For the M-ary C-SQAM, the values of , the

average symbol energy normalized by d2, and Gp

calculated from the proposed bit mapping method are

summarized in Table 1. For comparison, the

corresponding values for SQAM are also included,

i.e., , , and

Gp is always one. Note that and the average symbol

energy of C-SQAM are smaller than those of SQAM

owing to a circular boundary. Although Gp of 64-ary

Fig. 3. Bits-to-symbol mapping of 256-ary C-SQAM (first
quadrant)

SQAM C-SQAM

M Es/d2 Gp Es/d2 Gp

16 3 10 1 3 10 1

64 3.5 42 1 3.375 41 1

256 3.75 170 1 3.7188 162.75 1.0182

1024 3.875 682 1 3.8594 651.78 1.0244

Table 1. Parameters depending on constellation
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C-SQAM is still one, for a larger M, Gp of C-SQAM

exceeds one slightly due to the incomplete Gray

mapping. Since the symbol energy is the most

dominant parameter in SER and BER, C-SQAM is

expected to outperform SQAM.

3.2 Asymptotic Power Gain
To derive the asymptotic gain of C-SQAM over

SQAM, we consider a new normalized symbol

energy, (Es/d2)/M. Then, the limit of this normalized

energy for SQAM is given as

(5)

Since the closed-form expression for Es of the M
-ary C-SQAM does not exist due to the lack of

regularity, a different method is introduced for further

analysis. Let us consider that a constellation is formed

on a region and signal points are uniformly

distributed in the area of . If is sufficiently large,

the average symbol energy Es can be approximated

by the second moment of the region, ,

(6)

where S( ) represents the area of the region . Thus,

for a circle-shaped constellation centered at the origin

with radius r, is calculated as

(7)

Further, the total number of signal points placed

on the region converges to

(8)

because each signal point occupies an area of (2d)2

in the constellation based on a square lattice. By

substituting (8) into (7), we obtain

(9)

Therefore, the limit of the normalized energy for

C-SQAM becomes

(10)

The exact values of (Es/d2)/M of C-SQAM with

respect to M, ((Es/d2)/M)c, are calculated and listed

in Table 2. It is observed that they converge quickly

to the theoretical value, 2 /p (≈0.6366).

From (5) and (10), the asymptotic power gain of

C-SQAM over SQAM is given as

(11)

which means that the asymptotic gain in dB is equal

to 0.2003dB(= 10 log(p/3)). It is worth noting in Table

2 that the power gain approaches the asymptotic value

of 0.2003dB as M increases.

M PG [dB]

16 0.625 0.625 -

64 0.6563 0.6406 0.1047

256 0.6641 0.6357 0.1893

1024 0.6660 0.6365 0.1968

Table 2. Normalized energy and power gain

3.3 PAPR
The PAPR, defined as the ratio of peak power to

average power, is a crucial factor for evaluating a

constellation because it is closely related to the design

of a power amplifier. The PAPR of C-SQAM

(PAPRC) is calculated and listed in Table 3 along with

the PAPR of SQAM (PAPRS). The results show that

C-SQAM has a significantly lower PAPR than

SQAM, and the PAPR gain increases with the

increase of M. This is because the boundary of

C-SQAM gradually approaches a circle as M
increases.

An exact analysis of the asymptotic PAPR can be

performed as follows. For a circle-shaped

constellation centered at the origin with radius r,
is equal to r2/2 in (7). Since the maximum symbol
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energy Emax = r2 at the circumference of the circle, the

asymptotic PAPR of C-SQAM becomes

(12)

Similarly, for a square-shaped constellation

centered at the origin with a side length of 2r,

is calculated from (6) as

(13)

Since Emax = 2r2 at the edge of the square envelope,

(±r, ±r), the asymptotic PAPR of SQAM becomes

(14)

From (12) and (14), we infer that PAPRS and

PAPRC in Table 3 will converge to 3 and 2,

respectively, as M increases. This suggests that a 33%

reduction in PAPR, i.e., the PAPR gain of

1.7609dB(= 10 log(3/2), could be achieved using a

constellation with a circular boundary instead of a

square boundary. In addition, it is noteworthy that a

lattice type does not affect the analysis of PAPRC,asymp

and PAPRS,asymp.

Ⅳ. Numerical Results

This section evaluates the performance of the

proposed C-SQAM in the AWGN channel. Fig. 4 is

the plot of SER and BER as a function of Es/N0 for

the 1024-ary signal sets. From the results, it is

observed that the power gains provided by C-SQAM

over SQAM are 0.1982 dB at the target SER of 10-6

and 0.1888 dB at the target BER of 10-6. It is also

noted that there is a coincidence between analytical

and simulation results at a wide range of Es/N0.

Fig. 5 shows the power gains of C-SQAM over

SQAM against target error rates, which are calculated

from (3) and (4). According to the results, the gain

in SER and the gain in BER get closer with the

decrease in error rate. The two gains converge to

0.1968 dB for M = 1024 and 0.1893dB for M = 256

as expected in Table 2. In error-prone regions, the

SER gain is slightly higher than the limiting value

because of C-SQAM is smaller than of SQAM,

whereas the BER gain is lower than the limit because

Gp of C-SQAM is larger than Gp of SQAM, as shown

in Table 1.

Fig. 4. Error rates of C-SQAM: M=1024

Fig. 5. Power gains of C-SQAM over SQAM

M PAPRS PAPRC PAPR gain [dB]

16 1.8 1.8 -

64 2.3333 2 0.6695

256 2.6471 1.9293 1.3735

1024 2.8182 2.0037 1.4813

Table 3. PAPR gain
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Ⅴ. Conclusions

In this study, we investigated a square-lattice

quadrature amplitude modulation with a circular

boundary and proposed methods for symbol selection

and bits-to-symbol mapping. Performance analysis

established that the power gain of C-SQAM over

SQAM approaches 0.2003 dB and the PAPR of

C-SQAM is asymptotically reduced to two-thirds of

the PAPR of SQAM. We also confirmed that the

power gains of C-SQAM in SER and BER converge

fast to theoretical values.
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