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Comparative Performance Study of Intelligent Edge Devices
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ABSTRACT

Edge computing offers a promising solution to the latency issues inherent in centralized cloud processing,
particularly for industrial Internet of Things (IIoT) applications. However, the limited computational capabilities
of edge devices pose challenges to optimal artificial intelligence (AI) workload performance. This study
provides a comparative performance analysis of several edge devices, focusing on evaluating the impact of
hardware accelerators like graphics processing units (GPUs) on Al application processing. We employ
YOLOVS, a popular object detection model, to evaluate five tasks—image classification, object detection, pose
estimation, instance segmentation, and oriented bounding box detection—by measuring job completion time
(JCT), GPU utilization, and memory usage. Our findings indicate that expensive high-end devices do not
always provide a proportionate performance boost, with mid-range devices frequently offering comparable
inference performance for less computationally demanding tasks. These results underscore the need for a careful
balance between hardware specifications and application requirements to achieve efficient and cost-effective Al
deployment. Additionally, we observe that multi-threading does not consistently yield performance improvements
on edge devices due to Python’ s Global Interpreter Lock (GIL) overhead. This limitation highlights the need
for innovative solutions, such as simultaneous task management and GPU scheduling, to improve parallelism

and optimize resource utilization in edge environments.
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I. Introduction near IoT sensors.

Despite the advantages of reduced latency and

With the emergence of the industrial Internet of
Things (IIoT)™, Artificial Intelligence (AI) has been
increasingly deployed across various sectors, such as
healthcare, automotive, and smart manufacturing, to
enhance service quality and productivity™”.
Traditionally, data generated from IoT sensors were
transmitted to cloud data centers for processing, lever-
aging their substantial computational resources for Al
model training and inference. However, this central-
ized approach introduces significant latency, which
can be detrimental to time-sensitive applications. Edge

computing™® addresses this challenge by moving
computations closer to the data source, thereby allow-

ing Al inference and training to occur on edge devices

bandwidth usage, edge devices are typically con-
strained in terms of computational power, memory,
and graphics processing unit (GPU) resources com-
pared with cloud data centers”’. This study explores
the recent advancements in edge devices, particularly
adopting hardware accelerators such as GPUs for fast
Al application processing. First, we compare the hard-
ware specifications of different edge devices, such as
central processing unit (CPU), memory, input/output
I/O), and GPU, including the price. Thereafter, we
conduct performance evaluations on edge devices us-
ing one of the most popular Al applications, YOLO.
In particular, we utilize five object detection tasks of
YOLOvV8 and measure the job completion time (JCT)
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and resource usage, such as GPU and memory usage.
Our evaluation results demonstrate that devices
with expensive hardware specifications do not always
offer a comparatively high performance. Devices with
moderate hardware specifications also provide a high
inference performance for low-computation jobs. For
instance, the performance gap between two devices
is only 1% despite twice the difference in GPU cores.
In addition, we find that multi-threading does not con-
sistently yield performance improvements on edge de-
vices because of the global interpreter lock that pre-
vents concurrent execution of multiple threads.
This study aims to provide a comparative analysis
of the performance of various edge devices in Al in-
ference tasks, focusing on the trade-offs between hard-
ware specifications and application performance. By
benchmarking devices with different CPU, GPU, and
memory configurations, we explore the potential of
moderately priced edge devices to deliver competitive
performance for certain Al workloads. The results of-
fer valuable insights into selecting edge devices based
on specific computational requirements and cost con-
siderations, ultimately contributing to more efficient
deployment of Al applications in edge environments.

II. Background and motivation

This section presents the hardware specifications of
the recently developed edge devices that use hardware
accelerators to achieve high-performance inference
processing. In addition, we review recent studies that
have focused on inference processing in edge

environments.

2.1 Edge devices and hardware accelerators

Since the advent of edge computing, several re-
search groups have adopted Raspberry Pi for im-
plementation and experimentation®™®%, Raspberry Pi
is a single-board computer with an ARM processor,
memory, networking capabilities, storage, and other
components. Its ability to run general-purpose operat-
ing systems such as Linux allows legacy applications
to be executed on the Raspberry Pi without
modification. However, compared to the servers used

in cloud data centers, the hardware specifications of

Raspberry Pi are relatively limited. This is particularly
evident in tasks involving deep learning (DL) models,
such as inference or training, which require substantial
computational power and take considerable time to
complete!",

To accelerate DL tasks on edge devices, vendors
have introduced new types of hardware equipped with
specialized accelerators. For instance, Google devel-
oped the Coral Al board, a single-board computer fea-
turing a tensor-processing unit for faster inference!'?.
Similarly, Intel offers neural computing ticks that lev-
erage vision processing units to accelerate computer
vision workloads!"®. NVIDIA provides the most ex-
tensive range of edge computing products, including
GPUs and toolkits, with offerings such as Jetson
Nano, Orin Nano, and AGX Orin (as listed in Table
1). These are only a few examples of NVIDIA’ s com-
prehensive Jetson product line™!.

Table 1 summarizes a detailed comparison of the
hardware specifications for various NVIDIA Jetson
products, highlighting key components such as the
CPU, memory, I/O, and GPU. The Jetson Nano is
an entry-level device designed for low-power edge Al
applications, which can be ideal for lightweight Al
workloads, such as basic computer vision tasks. Orin
Nano is a more advanced edge device with a sig-
nificantly enhanced ability to handle complex Al
workloads, such as real-time inference for robotics
and autonomous systems. At the high end, the AGX
Orin boasts a 2048core (at maximum) NVIDIA
Ampere GPU, which provides server-grade perform-
ance for demanding Al applications and becomes suit-
able for industrial and research applications requiring
high performance and energy efficiency.

The key differences between these devices are in
the number of CPU and GPU cores, memory capacity,
and the GPU architecture used. The Jetson Nano is
based on the NVIDIA Maxwell architecture and is
designed to enhance power efficiency. By contrast,
Orin Nano and AGX Orin use a more advanced
NVIDIA Ampere architecture, which delivers higher
performance and efficiency through dedicated tensor
cores and a significantly larger memory bandwidth.
These variations in the hardware specifications result

in considerable pricing differences. For instance, the

461



The Journal of Korean Institute of Communications and Information Sciences "25-03 Vol.50 No.03

Table 1. Popular NVIDIA Jetson products and the hardware specifications, which are utilized for Edge-Al.

Device model Jetson Nano Orin Nano AGX Orin
CPU ARM Cortex-A57@1.43 GHz | ARM Cortex®-A78AE@1.5 GHz| ARM Cortex-A78AE@2.2 GHz
# of cores 4 6 12
Memory 2/4GB 4/8GB 32/64GB
Network 1GbE Up to 10GbE
Storage microSD card/16GB eMMC 5.1 Supports external NVMe 64GB eMMC 5.1
GPU 128 CUDA cores 512/1024-core GPU with 16/32 | 1792/2048-core GPU with 56/64
Tensor cores Tensor cores
GPU architecture NVIDIA Maxwell NVIDIA Ampere

AGX Orin is the most expensive device in the Jetson
lineup and offers the highest memory capacity and
server-grade CPU and GPU capabilities. In contrast,
the Jetson Nano is far more affordable, costing ap-
proximately 1/20th the price of the AGX Orin but
with fewer CPU and GPU cores and a smaller memo-

ry capacity.

2.2 Recent studies on Edge-Al

Although edge devices utilize hardware accel-
erators to accelerate Al application processing, they
still experience performance degradation compared to
powerful cloud servers because of their limited memo-
ry capacity and fewer GPU cores. Significant research
efforts have focused on optimizing the performance
of edge devices to address these performance limi-
tations while maintaining the benefits of edge
computing. They can be categorized into 1) task oft-
loading, 2) model partitioning and distribution, and
3) system optimization.

1) Task offloading (to cloud or hardware) to max-
imize the inference performance of DL models on
edge computing devices and hardware accelerators
such as GPUs are utilized"">'%. Traditional edge de-
vices, such as Raspberry Pi, do not support GPUs and
only include CPUs and memory, resulting in long
processing times for DL inference, which requires sig-
nificant computation. However, NVIDIA and Google
have recently released edge devices with hardware ac-
celerators such as GPUs and NPUs. These hardware
accelerators enable real-time inference with fast com-
putational performance, thereby enhancing the us-
ability of DL models in various edge applications!”.
In addition, studies on task offloading techniques
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that distribute computational tasks from edge devices
to the cloud or high-performance hardware are ac-
tively underway™®.. This helps overcome the resource
limitations of edge devices and maximizes the per-
formance of DL models by leveraging the powerful
computing capabilities of the cloud. In particular, dy-
namic offloading techniques that determine the opti-
mal offloading strategies by considering real-time
changes in network conditions and resource avail-
ability have been extensively studied"*?,

2) Lower the burden on DL models by partitioning
or distributing studies is also actively underway to
enhance computational performance on edge devices
by reducing the computational load required by DL
models themselves. These include distributed in-
ference methodology, which distributes computations

721221~ For instance,

across multiple edge devices
model partitioning divides a DL model into several
parts, each computed using different edge devices.
This approach improves overall system performance

[11]

by reducing memory usage' ", increasing computation

speed, or minimizing energy consumption®"’,

3) System optimization is another key research area
aimed at maximizing DL inference performance in
edge computing environments. This focuses on devel-
oping resource management and scheduling algo-
rithms to optimize resource usage in edge de-
vices’™?]. This is essential for satisfying the require-
ments of real-time applications and ensuring that in-
ference tasks are performed within a specified
time-frame to achieve the target performance®. For
instance, upon receiving an inference request from a

user, an appropriate edge device is selected to perform
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the task, and the necessary computing resources, such
as a GPU or memory, are allocated to achieve the
desired performance. This efficient utilization of the
limited computing resources on edge devices ensures

that the service quality demanded by users is satisfied.
ll. Performance evaluation

This section evaluates and compares the Al appli-
cation performance using the three Edge-Al devices.
The following subsections describe the experiment

setting and the results.

3.1 Experiment method

We evaluated the application performance of vari-
ous edge devices to analyze the impact of the hard-
ware specifications on the performance. YOLOv8™,
a widely used object detection application, was em-
ployed for the tests. Specifically, we executed five dis-
tinct tasks provided by YOLOv8 and measured the
JCT for processing 100 images. The five tasks in-
cluded image classification, object detection, pose es-
timation, instance segmentation, and oriented bound-
ing box (OBB) object detection. Image classification
assigns an image to one of the predefined classes,
whereas object detection identifies the location and
class of objects within an image. Pose estimation pin-
points the key points in an image, whereas instance
segmentation isolates individual objects by generating
masks that separate them from the background. OBB
object detection extends standard object detection by
introducing angular data, enabling more precise object
localization.

For each task, we utilize pre-trained YOLOv8 mod-
els without performing additional training, data pre-
processing, or hyperparameter tuning, allowing us to
concentrate exclusively on inference performance.
The models are provided in TensorRT™® format,
which optimizes them for use on NVIDIA GPUs, en-
abling fast and efficient inference. Different datasets
are employed for each task and aligned with the
pre-training dataset of each model. For example, the
model for OBB is pre-trained on the DOTA™! dataset,
the classification model on ImageNet[3°], and other
models on the COCOP! dataset. For each task, we

Table 2. Average and standard deviation of the image
sizes depending on the datasets in KB.

COCO DOTA ImageNet
AVG 147.9 6243.9 40.5
STD 53.1 8522.9 15.3

randomly select 100 images from the respective data-
set for evaluation. Table 2 presents the average and
standard deviation of image sizes based on the dataset.

In addition to the JCT, we measured GPU uti-
lization and memory usage over time using jet-

SOII-StatSBZ]

as the tasks were executed on edge
devices. All tasks were run within containerized envi-
ronments!) using Nvidia-docker (version 25.0.3) to en-
sure consistent execution environments, such as
matching versions of Python libraries. However, the
Linux kernel versions varied between devices because
NVIDIA no longer supports Jetson Nano beyond
Jetpack 4.6.1. Consequently, Jetson Nano operates on
kernel version 4.9.253, whereas Orin Nano and AGX

Orin use version 5.10.120.

3.2 Individual workload performance

Fig. 1a shows the average JCT and the standard
deviation for different tasks and devices where the
JCT indicates the time for inferencing an image. The
JCT increases depending on the computational com-
plexity of the tasks. For instance, image classification
(i.e., Classify) achieves the shortest JCT because it
is the most straightforward job among the five tasks.
In contrast, instance segmentation (i.e., Segment) and
OBB require relatively long JCT for complex tasks,
such as masking and locating. When we compare the
JCT of the devices, Jetson Nano (i.e., Nano) has the
longest JCT, followed by AGX Orin (i.e., AGX) and
Orin Nano (i.e., Orin). This is because the number
of GPU cores differs depending on the device, as list-
ed in Table 1. We measure the GPU utilization while
executing each task. As shown in Fig. 1b, Nano uti-
lizes almost all of the GPU cores except for Classify.
This differs from AGX and Orin, which utilize 60%
of GPU cores at maximum. Note that GPU utilization

varies over time, and we present the minimum and

1) We utilize a container image, ultralytics:latest-jetson.
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Fig. 1. Using Jetson Nano (Nano), Orin Nano (Orin), and AGX Orin (AGX), we evaluate the JCT of five tasks provided by

YOLOvV8 while measuring resource usage simultaneously.

maximum GPU utilization of each device when ex-
ecuting tasks.

In addition, Orin offers a high performance similar
to AGX except for OBB, despite the difference in the
number of GPU cores. For instance, Segment achieves
almost the same average JCT as AGX and Orin, where
the gap is only 0.2ms. This shows that Orin can be
a better option for achieving a low inference latency
for lightweight inference jobs than AGX, which costs
four times. Moreover, Fig. 1c illustrates that all tasks
do not fully utilize the memory capacity of the de-
vices, which is less than 4GB For Nano, the memory
usage of each task becomes limited by the saturated
GPU cores and does not exceed 3GB We can assume
that the impact of memory capacity is lower than that
of the number of GPU cores.

For OBB the most computation-intensive job
among the five tasks, AGX significantly outperforms
the other devices because of the large number of GPU
cores. AGX offers fast JCT by 5.4 x and 8.5 x com-
pared to Orin and Nano. However, this is the largest
performance improvement from running AGX com-
pared to Orin and Nano. The performance gains from
AGX compared with Orin and Nano for the other four
tasks were only 1.1 xand 5.2 X, respectively, on
average. This can lower the user’s expectation of high
performance when selecting AGX, considering the
high price of the device, which is more expensive than
Orin and Nano by 5 x and 20 x.

3.3 Multi-threading performance

Next, we evaluate the five YOLOVS tasks by in-
of threads
performance. This experiment is conducted on AGX

creasing the number to maximize
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to take full advantage of its superior hardware ca-
pacity compared to other devices while maintaining
the same experimental setup described in Section 3.2.
For the experiment, we create multiple threads, rang-
ing from one to eight, using Python’s Thread method,
allowing the threads to perform the same task on dif-
ferent sets of images simultaneously. We then calcu-
late the average job completion time (JCT) per image
and monitor overall GPU utilization. It is important
to note that we use Thread instead of Process be-
cause multi-processing requires separate memory allo-
cation for each task, which is inefficient for edge
devices.

When measuring GPU utilization (Fig. 2b), we ob-
serve that utilization does not consistently increase
with a higher number of threads. The limited parallel-
ism on AGX is primarily due to Python’s Global
Interpreter Lock (GIL), which ensures that only one
thread executes Python bytecode simultaneously.
Because the GIL prevents the concurrent execution
of multiple YOLOV8 threads, each thread must wait
for the completion of another, thereby limiting per-
formance gains from running multiple threads
concurrently. This constraint significantly hampers the
performance improvements achievable with YOLOvV8

through multithreaded execution.
IV. Implication

Fig. 1 depicts the application performance and re-
source usage depending on the task and devices. From
the experimental results, flagship devices, such as
AGX do not always offer outstanding performance in
image inferencing, such as YOLOvS8. For inference
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Fig. 2. Average inference time and GPU utilization with the increasing number of threads.

tasks with low computational overhead, cheaper de-
vices, such as Orin, exhibit almost similar perform-
ance to AGX. From this investigation, we can con-
clude that job placement, considering the computa-
tional overhead and hardware specifications (i.e., the
number of GPU cores) for inferring jobs in edge com-
puting, is necessary for efficient and high-perform-
ance inferencing. However, recent studies in Section
2.2 have mostly focused on offloading and lowering

the computation overhead. Other studies!™**!

, such as
job scheduling on heterogeneous devices, do not con-
sider the efficiency between performance gain and de-
vice prices. For instance, Zeng et al. proposed
CoEdge!"”, which orchestrates cooperative inference
jobs over heterogeneous edge devices. However,
CoEdge aims to minimize the energy consumption
within the latency requirement without considering
price efficiency. Similarly, Liang et. al introduces a
resource management technique for AI applications in
edge environments. Although they increase resource
utilization by 2.3x, heterogeneous hardware specifica-
tions for edge devices are not considered.

In addition, Fig. 2 demonstrates that multi-thread-
ing does not always lead to performance improve-
ments on edge devices due to GIL overhead. To lever-
age multithreaded inference without being constrained
by the GIL, application developers must manually
manage job queues to submit multiple tasks to the
GPU simultaneously, thus minimizing the impact of
the GIL. Additionally, we observed that running mul-
tiple containers concurrently on edge devices is not
feasible because these devices lack advanced function-
alities like multiprocess services and multi-instance
GPUs. This limitation hinders efficient GPU uti-

lization when multiple tasks need to be executed
simultaneously. Consequently, we believe that devel-
oping new system-level techniques—such as simulta-
neous task management, incorporating GPU schedul-
ing and GPU virtualization—is crucial for optimizing
the performance of legacy applications on edge

devices.

V. Conclusions

In this study, we comprehensively evaluated vari-
ous edge devices to assess their ability to handle AI
workloads, particularly object detection tasks using
YOLOVS. Our findings demonstrate that flagship de-
vices, such as AGX Orin offer superior performance
owing to their advanced GPU architecture and more
significant core counts. However, more affordable de-
vices, such as Orin Nano, can achieve comparable
performance for tasks that are less computationally
demanding. This underscores the importance of care-
fully selecting edge devices running Al applications
based on specific requirements to efficiently balance
cost and performance. Furthermore, the results high-
light the limitations of current edge devices in han-
dling computation-intensive tasks, such as OBB de-
tection, where high-performance devices, such as
AGX Orin, are necessary. As techniques for edge
computing continue to evolve, future studies should
focus on optimizing resource management, task
scheduling, and the deployment of edge-Al systems
to fully exploit the potential of hardware accelerators,
thereby overcoming the inherent resource constraints

of edge environments.
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