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Ⅰ. Introduction

With the emergence of the industrial Internet of

Things (IIoT)[1], Artificial Intelligence (AI) has been

increasingly deployed across various sectors, such as

healthcare, automotive, and smart manufacturing, to

enhance service quality and productivity[2,3].

Traditionally, data generated from IoT sensors were

transmitted to cloud data centers for processing, lever-

aging their substantial computational resources for AI

model training and inference. However, this central-

ized approach introduces significant latency, which

can be detrimental to time-sensitive applications. Edge

computing[4-6] addresses this challenge by moving

computations closer to the data source, thereby allow-

ing AI inference and training to occur on edge devices

near IoT sensors.

Despite the advantages of reduced latency and

bandwidth usage, edge devices are typically con-

strained in terms of computational power, memory,

and graphics processing unit (GPU) resources com-

pared with cloud data centers[7]. This study explores

the recent advancements in edge devices, particularly

adopting hardware accelerators such as GPUs for fast

AI application processing. First, we compare the hard-

ware specifications of different edge devices, such as

central processing unit (CPU), memory, input/output

(I/O), and GPU, including the price. Thereafter, we

conduct performance evaluations on edge devices us-

ing one of the most popular AI applications, YOLO.

In particular, we utilize five object detection tasks of

YOLOv8 and measure the job completion time (JCT)

※ This research was supported by Kyungpook National University Research Fund, 2022.
w° First and Corresponding Author : Kyungpook National University, School of Electronics Engineering, kwlee87@knu.ac.kr, 정회원
논문번호：202409-209-C-RE, Received September 13, 2024; Revised November 7, 2024; Accepted November 11, 2024

Comparative Performance Study of Intelligent Edge Devices

Kyungwoon Leew°

ABSTRACT

Edge computing offers a promising solution to the latency issues inherent in centralized cloud processing,

particularly for industrial Internet of Things (IIoT) applications. However, the limited computational capabilities

of edge devices pose challenges to optimal artificial intelligence (AI) workload performance. This study
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hardware accelerators like graphics processing units (GPUs) on AI application processing. We employ
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(JCT), GPU utilization, and memory usage. Our findings indicate that expensive high-end devices do not

always provide a proportionate performance boost, with mid-range devices frequently offering comparable

inference performance for less computationally demanding tasks. These results underscore the need for a careful

balance between hardware specifications and application requirements to achieve efficient and cost-effective AI

deployment. Additionally, we observe that multi-threading does not consistently yield performance improvements

on edge devices due to Python’ s Global Interpreter Lock (GIL) overhead. This limitation highlights the need

for innovative solutions, such as simultaneous task management and GPU scheduling, to improve parallelism

and optimize resource utilization in edge environments.
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and resource usage, such as GPU and memory usage.

Our evaluation results demonstrate that devices

with expensive hardware specifications do not always

offer a comparatively high performance. Devices with

moderate hardware specifications also provide a high

inference performance for low-computation jobs. For

instance, the performance gap between two devices

is only 1% despite twice the difference in GPU cores.

In addition, we find that multi-threading does not con-

sistently yield performance improvements on edge de-

vices because of the global interpreter lock that pre-

vents concurrent execution of multiple threads.

This study aims to provide a comparative analysis

of the performance of various edge devices in AI in-

ference tasks, focusing on the trade-offs between hard-

ware specifications and application performance. By

benchmarking devices with different CPU, GPU, and

memory configurations, we explore the potential of

moderately priced edge devices to deliver competitive

performance for certain AI workloads. The results of-

fer valuable insights into selecting edge devices based

on specific computational requirements and cost con-

siderations, ultimately contributing to more efficient

deployment of AI applications in edge environments.

Ⅱ. Background and motivation

This section presents the hardware specifications of

the recently developed edge devices that use hardware

accelerators to achieve high-performance inference

processing. In addition, we review recent studies that

have focused on inference processing in edge

environments.

2.1 Edge devices and hardware accelerators
Since the advent of edge computing, several re-

search groups have adopted Raspberry Pi for im-

plementation and experimentation[5,8-10]. Raspberry Pi

is a single-board computer with an ARM processor,

memory, networking capabilities, storage, and other

components. Its ability to run general-purpose operat-

ing systems such as Linux allows legacy applications

to be executed on the Raspberry Pi without

modification. However, compared to the servers used

in cloud data centers, the hardware specifications of

Raspberry Pi are relatively limited. This is particularly

evident in tasks involving deep learning (DL) models,

such as inference or training, which require substantial

computational power and take considerable time to

complete[11].

To accelerate DL tasks on edge devices, vendors

have introduced new types of hardware equipped with

specialized accelerators. For instance, Google devel-

oped the Coral AI board, a single-board computer fea-

turing a tensor-processing unit for faster inference[12].

Similarly, Intel offers neural computing ticks that lev-

erage vision processing units to accelerate computer

vision workloads[13]. NVIDIA provides the most ex-

tensive range of edge computing products, including

GPUs and toolkits, with offerings such as Jetson

Nano, Orin Nano, and AGX Orin (as listed in Table

1). These are only a few examples of NVIDIA’ s com-

prehensive Jetson product line[14].

Table 1 summarizes a detailed comparison of the

hardware specifications for various NVIDIA Jetson

products, highlighting key components such as the

CPU, memory, I/O, and GPU. The Jetson Nano is

an entry-level device designed for low-power edge AI

applications, which can be ideal for lightweight AI

workloads, such as basic computer vision tasks. Orin

Nano is a more advanced edge device with a sig-

nificantly enhanced ability to handle complex AI

workloads, such as real-time inference for robotics

and autonomous systems. At the high end, the AGX

Orin boasts a 2048core (at maximum) NVIDIA

Ampere GPU, which provides server-grade perform-

ance for demanding AI applications and becomes suit-

able for industrial and research applications requiring

high performance and energy efficiency.

The key differences between these devices are in

the number of CPU and GPU cores, memory capacity,

and the GPU architecture used. The Jetson Nano is

based on the NVIDIA Maxwell architecture and is

designed to enhance power efficiency. By contrast,

Orin Nano and AGX Orin use a more advanced

NVIDIA Ampere architecture, which delivers higher

performance and efficiency through dedicated tensor

cores and a significantly larger memory bandwidth.

These variations in the hardware specifications result

in considerable pricing differences. For instance, the
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AGX Orin is the most expensive device in the Jetson

lineup and offers the highest memory capacity and

server-grade CPU and GPU capabilities. In contrast,

the Jetson Nano is far more affordable, costing ap-

proximately 1/20th the price of the AGX Orin but

with fewer CPU and GPU cores and a smaller memo-

ry capacity.

2.2 Recent studies on Edge-AI
Although edge devices utilize hardware accel-

erators to accelerate AI application processing, they

still experience performance degradation compared to

powerful cloud servers because of their limited memo-

ry capacity and fewer GPU cores. Significant research

efforts have focused on optimizing the performance

of edge devices to address these performance limi-

tations while maintaining the benefits of edge

computing. They can be categorized into 1) task off-

loading, 2) model partitioning and distribution, and

3) system optimization.

1) Task offloading (to cloud or hardware) to max-

imize the inference performance of DL models on

edge computing devices and hardware accelerators

such as GPUs are utilized[15,16]. Traditional edge de-

vices, such as Raspberry Pi, do not support GPUs and

only include CPUs and memory, resulting in long

processing times for DL inference, which requires sig-

nificant computation. However, NVIDIA and Google

have recently released edge devices with hardware ac-

celerators such as GPUs and NPUs. These hardware

accelerators enable real-time inference with fast com-

putational performance, thereby enhancing the us-

ability of DL models in various edge applications[17].

In addition, studies on task offloading techniques

that distribute computational tasks from edge devices

to the cloud or high-performance hardware are ac-

tively underway[18]. This helps overcome the resource

limitations of edge devices and maximizes the per-

formance of DL models by leveraging the powerful

computing capabilities of the cloud. In particular, dy-

namic offloading techniques that determine the opti-

mal offloading strategies by considering real-time

changes in network conditions and resource avail-

ability have been extensively studied[19,20].

2) Lower the burden on DL models by partitioning
or distributing studies is also actively underway to

enhance computational performance on edge devices

by reducing the computational load required by DL

models themselves. These include distributed in-

ference methodology, which distributes computations

across multiple edge devices[17,21,22]. For instance,

model partitioning divides a DL model into several

parts, each computed using different edge devices.

This approach improves overall system performance

by reducing memory usage[11], increasing computation

speed, or minimizing energy consumption[21].

3) System optimization is another key research area

aimed at maximizing DL inference performance in

edge computing environments. This focuses on devel-

oping resource management and scheduling algo-

rithms to optimize resource usage in edge de-

vices[23-25]. This is essential for satisfying the require-

ments of real-time applications and ensuring that in-

ference tasks are performed within a specified

time-frame to achieve the target performance[26]. For

instance, upon receiving an inference request from a

user, an appropriate edge device is selected to perform

Device model Jetson Nano Orin Nano AGX Orin

CPU ARM Cortex-A57@1.43 GHz ARM Cortex®-A78AE@1.5 GHz ARM Cortex-A78AE@2.2 GHz

# of cores 4 6 12

Memory 2/4GB 4/8GB 32/64GB

Network 1GbE Up to 10GbE

Storage microSD card/16GB eMMC 5.1 Supports external NVMe 64GB eMMC 5.1

GPU 128 CUDA cores
512/1024-core GPU with 16/32

Tensor cores
1792/2048-core GPU with 56/64

Tensor cores

GPU architecture NVIDIA Maxwell NVIDIA Ampere

Table 1. Popular NVIDIA Jetson products and the hardware specifications, which are utilized for Edge-AI.
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the task, and the necessary computing resources, such

as a GPU or memory, are allocated to achieve the

desired performance. This efficient utilization of the

limited computing resources on edge devices ensures

that the service quality demanded by users is satisfied.

Ⅲ. Performance evaluation

This section evaluates and compares the AI appli-

cation performance using the three Edge-AI devices.

The following subsections describe the experiment

setting and the results.

3.1 Experiment method
We evaluated the application performance of vari-

ous edge devices to analyze the impact of the hard-

ware specifications on the performance. YOLOv8[27],

a widely used object detection application, was em-

ployed for the tests. Specifically, we executed five dis-

tinct tasks provided by YOLOv8 and measured the

JCT for processing 100 images. The five tasks in-

cluded image classification, object detection, pose es-

timation, instance segmentation, and oriented bound-

ing box (OBB) object detection. Image classification

assigns an image to one of the predefined classes,

whereas object detection identifies the location and

class of objects within an image. Pose estimation pin-

points the key points in an image, whereas instance

segmentation isolates individual objects by generating

masks that separate them from the background. OBB

object detection extends standard object detection by

introducing angular data, enabling more precise object

localization.

For each task, we utilize pre-trained YOLOv8 mod-

els without performing additional training, data pre-

processing, or hyperparameter tuning, allowing us to

concentrate exclusively on inference performance.

The models are provided in TensorRT[28] format,

which optimizes them for use on NVIDIA GPUs, en-

abling fast and efficient inference. Different datasets

are employed for each task and aligned with the

pre-training dataset of each model. For example, the

model for OBB is pre-trained on the DOTA[29] dataset,

the classification model on ImageNet[30], and other

models on the COCO[31] dataset. For each task, we

randomly select 100 images from the respective data-

set for evaluation. Table 2 presents the average and

standard deviation of image sizes based on the dataset.

In addition to the JCT, we measured GPU uti-

lization and memory usage over time using jet-

son-stats[32] as the tasks were executed on edge

devices. All tasks were run within containerized envi-

ronments1) using Nvidia-docker (version 25.0.3) to en-

sure consistent execution environments, such as

matching versions of Python libraries. However, the

Linux kernel versions varied between devices because

NVIDIA no longer supports Jetson Nano beyond

Jetpack 4.6.1. Consequently, Jetson Nano operates on

kernel version 4.9.253, whereas Orin Nano and AGX

Orin use version 5.10.120.

3.2 Individual workload performance
Fig. 1a shows the average JCT and the standard

deviation for different tasks and devices where the

JCT indicates the time for inferencing an image. The

JCT increases depending on the computational com-

plexity of the tasks. For instance, image classification

(i.e., Classify) achieves the shortest JCT because it

is the most straightforward job among the five tasks.

In contrast, instance segmentation (i.e., Segment) and

OBB require relatively long JCT for complex tasks,

such as masking and locating. When we compare the

JCT of the devices, Jetson Nano (i.e., Nano) has the

longest JCT, followed by AGX Orin (i.e., AGX) and

Orin Nano (i.e., Orin). This is because the number

of GPU cores differs depending on the device, as list-

ed in Table 1. We measure the GPU utilization while

executing each task. As shown in Fig. 1b, Nano uti-

lizes almost all of the GPU cores except for Classify.

This differs from AGX and Orin, which utilize 60%

of GPU cores at maximum. Note that GPU utilization

varies over time, and we present the minimum and

1) We utilize a container image, ultralytics:latest-jetson.

COCO DOTA ImageNet

AVG 147.9 6243.9 40.5

STD 53.1 8522.9 15.3

Table 2. Average and standard deviation of the image
sizes depending on the datasets in KB.



The Journal of Korean Institute of Communications and Information Sciences '25-03 Vol.50 No.03

464

maximum GPU utilization of each device when ex-

ecuting tasks.

In addition, Orin offers a high performance similar

to AGX except for OBB, despite the difference in the

number of GPU cores. For instance, Segment achieves

almost the same average JCT as AGX and Orin, where

the gap is only 0.2ms. This shows that Orin can be

a better option for achieving a low inference latency

for lightweight inference jobs than AGX, which costs

four times. Moreover, Fig. 1c illustrates that all tasks

do not fully utilize the memory capacity of the de-

vices, which is less than 4GB. For Nano, the memory

usage of each task becomes limited by the saturated

GPU cores and does not exceed 3GB. We can assume

that the impact of memory capacity is lower than that

of the number of GPU cores.

For OBB, the most computation-intensive job

among the five tasks, AGX significantly outperforms

the other devices because of the large number of GPU

cores. AGX offers fast JCT by 5.4 × and 8.5 × com-

pared to Orin and Nano. However, this is the largest

performance improvement from running AGX com-

pared to Orin and Nano. The performance gains from

AGX compared with Orin and Nano for the other four

tasks were only 1.1 × and 5.2 ×, respectively, on

average. This can lower the user’s expectation of high

performance when selecting AGX, considering the

high price of the device, which is more expensive than

Orin and Nano by 5 × and 20 ×.

3.3 Multi-threading performance
Next, we evaluate the five YOLOv8 tasks by in-

creasing the number of threads to maximize

performance. This experiment is conducted on AGX

to take full advantage of its superior hardware ca-

pacity compared to other devices while maintaining

the same experimental setup described in Section 3.2.

For the experiment, we create multiple threads, rang-

ing from one to eight, using Python’s Thread method,

allowing the threads to perform the same task on dif-

ferent sets of images simultaneously. We then calcu-

late the average job completion time (JCT) per image

and monitor overall GPU utilization. It is important

to note that we use Thread instead of Process be-

cause multi-processing requires separate memory allo-

cation for each task, which is inefficient for edge

devices.

When measuring GPU utilization (Fig. 2b), we ob-

serve that utilization does not consistently increase

with a higher number of threads. The limited parallel-

ism on AGX is primarily due to Python’s Global

Interpreter Lock (GIL), which ensures that only one

thread executes Python bytecode simultaneously.

Because the GIL prevents the concurrent execution

of multiple YOLOv8 threads, each thread must wait

for the completion of another, thereby limiting per-

formance gains from running multiple threads

concurrently. This constraint significantly hampers the

performance improvements achievable with YOLOv8

through multithreaded execution.

Ⅳ. Implication

Fig. 1 depicts the application performance and re-

source usage depending on the task and devices. From

the experimental results, flagship devices, such as

AGX do not always offer outstanding performance in

image inferencing, such as YOLOv8. For inference

(a) JCT per image. (b) GPU utilization. (c) Memory usage.

Fig. 1. Using Jetson Nano (Nano), Orin Nano (Orin), and AGX Orin (AGX), we evaluate the JCT of five tasks provided by
YOLOv8 while measuring resource usage simultaneously.
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tasks with low computational overhead, cheaper de-

vices, such as Orin, exhibit almost similar perform-

ance to AGX. From this investigation, we can con-

clude that job placement, considering the computa-

tional overhead and hardware specifications (i.e., the

number of GPU cores) for inferring jobs in edge com-

puting, is necessary for efficient and high-perform-

ance inferencing. However, recent studies in Section

2.2 have mostly focused on offloading and lowering

the computation overhead. Other studies[17,24], such as

job scheduling on heterogeneous devices, do not con-

sider the efficiency between performance gain and de-

vice prices. For instance, Zeng et al. proposed

CoEdge[17], which orchestrates cooperative inference

jobs over heterogeneous edge devices. However,

CoEdge aims to minimize the energy consumption

within the latency requirement without considering

price efficiency. Similarly, Liang et. al introduces a

resource management technique for AI applications in

edge environments. Although they increase resource

utilization by 2.3×, heterogeneous hardware specifica-

tions for edge devices are not considered.

In addition, Fig. 2 demonstrates that multi-thread-

ing does not always lead to performance improve-

ments on edge devices due to GIL overhead. To lever-

age multithreaded inference without being constrained

by the GIL, application developers must manually

manage job queues to submit multiple tasks to the

GPU simultaneously, thus minimizing the impact of

the GIL. Additionally, we observed that running mul-

tiple containers concurrently on edge devices is not

feasible because these devices lack advanced function-

alities like multiprocess services and multi-instance

GPUs. This limitation hinders efficient GPU uti-

lization when multiple tasks need to be executed

simultaneously. Consequently, we believe that devel-

oping new system-level techniques―such as simulta-

neous task management, incorporating GPU schedul-

ing and GPU virtualization―is crucial for optimizing

the performance of legacy applications on edge

devices.

Ⅴ. Conclusions

In this study, we comprehensively evaluated vari-

ous edge devices to assess their ability to handle AI

workloads, particularly object detection tasks using

YOLOv8. Our findings demonstrate that flagship de-

vices, such as AGX Orin offer superior performance

owing to their advanced GPU architecture and more

significant core counts. However, more affordable de-

vices, such as Orin Nano, can achieve comparable

performance for tasks that are less computationally

demanding. This underscores the importance of care-

fully selecting edge devices running AI applications

based on specific requirements to efficiently balance

cost and performance. Furthermore, the results high-

light the limitations of current edge devices in han-

dling computation-intensive tasks, such as OBB de-

tection, where high-performance devices, such as

AGX Orin, are necessary. As techniques for edge

computing continue to evolve, future studies should

focus on optimizing resource management, task

scheduling, and the deployment of edge-AI systems

to fully exploit the potential of hardware accelerators,

thereby overcoming the inherent resource constraints

of edge environments.

(a) JCT per image. (b) GPU utilization.

Fig. 2. Average inference time and GPU utilization with the increasing number of threads.
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