
논문 25-50-03-02 The Journal of Korean Institute of Communications and Information Sciences '25-03 Vol.50 No.03
https://doi.org/10.7840/kics.2025.50.3.406

406

w First Author : Sangmyung University, Department of Computer Science, 3suksw@gmail.com, 학생회원
° Corresponding Author : Sangmyung University, Department of Computer Science, ksshin@smu.ac.kr, 정회원
* Sangmyung University, Department of Game Design and Development, 2jh0926@naver.com
** Sangmyung University, Department of Computer Science, ghtkdrla321@naver.com; asdgqe1@gmail.com; wonmin98@naver.com;

wlsgur479@gmail.com, 학생회원
논문번호：202408-192-A-RN, Received August 29, 2024; Revised October 27, 2024; Accepted November 11, 2024

Optimal Power Allocation and Sub-Optimal Channel Assignment for
Downlink NOMA Systems Using Deep Reinforcement Learning

WooSeok Kimw, Jeonghoon Lee*, Sangho Kim**,
Taesun An**, WonMin Lee**, Dowon Kim**, Kyungseop Shin°

요 약

최근 몇 년 동안, 딥러닝의 발전에 따라 비직교 다중 접속(Non-Orthogonal Multiple Access, NOMA) 시스템에

딥러닝을 통합하고자 하는 노력으로써 NOMA 시스템은 다중 접속 프레임워크의 유망한 후보로 떠오르고 있다.

이러한 활발한 연구의 주된 동기로는, 사물인터넷(Internet of Things, IoT)의 확장으로 인한 네트워크 자원의 한

정성에 대응하고자 네트워크 자원의 활용을 최적화할 필요성이 증가하고 있기 때문이다. NOMA는 사용자들이 네

트워크에 동시다발적으로 접속하게 해주는 전력 다중화를 통해 이러한 요구를 해결한다. 그럼에도 불구하고,

NOMA 시스템은 몇 가지 한계점이 존재한다. 전력 할당 최적화를 하는 Joint Resource Allocation(JRA) 방법,

JRA 방법과 심층 강화학습(deep reinforcement learning, DRL)을 통합하는 JRA-DRL 방법 등을 포함한 다양한

방법들이 이러한 한계점들을 보완하고자 제안되었다. 그러나 채널 할당 문제는 여전히 불명확하며 추가적인 연구

가 필요 하다. 본 논문에서는, NOMA 시스템에서 네트워크 자원을 할당하는 심층 강화학습 프레임워크를 제안하

며, 이는 학습을 일반화시키기 위해 on-policy 알고리즘에 리플레이 메모리(replay memory)를 통합하는 방식이다.

또한 본 논문에서는, 학습률, 배치 사이즈, 모델의 종류, 그리고 상태 정보(state)의 특징 개수에 변화를 주었을 때

의 효과를 평가하기 위해 다양한 실험 결과들을 제공한다.

Key Words : Non-orthogonal multiple access (NOMA), deep reinforcement learning (DRL), wireless network,

resource allocation

ABSTRACT

In recent years, Non-Orthogonal Multiple Access (NOMA) system has emerged as a promising candidate for

multiple access frameworks due to the evolution of deep machine learning, trying to incorporate deep machine

learning into the NOMA system. The main motivation for such active studies is the growing need to optimize

the utilization of network resources as the expansion of the internet of things (IoT) caused a scarcity of

network resources. The NOMA addresses this need by power multiplexing, allowing multiple users to access

the network simultaneously. Nevertheless, the NOMA system has few limitations. Several works have proposed

to mitigate this, including the optimization of power allocation known as joint resource allocation(JRA) method,

and integration of the JRA method and deep reinforcement learning (JRA-DRL). Despite this, the channel

assignment problem remains unclear and requires further investigation. In this paper, we propose a deep

reinforcement learning framework incorporating replay memory with an on-policy algorithm, allocating network

resources in a NOMA system to generalize the learning. Also, we provide extensive simulations to evaluate

the effects of varying the learning rate, batch size, type of model, and the number of features in the state.
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Ⅰ. Introduction

Over the past few years, rapid development in

Internet of Things (IoT) has resulted in a drastical in-

crease in network demands, leading to the new chal-

lenge of guaranteeing massive connectivity and qual-

ity of service (QoS). To fulfill such demands and chal-

lenges, recents studies are focusing on integrating arti-

ficial intelligence (AI) to networking system[1,2]. For

instance, Yu et al.[3] used an AI to learn the optimal

wireless resource allocation method for MAC proto-

cols and Ye et al.[4] focused on packet delay and pow-

er efficiency.

To be specific, there have been multiple attempts

to use AI to fully use the advantages of

Non-Orthogonal Multiple Access (NOMA).

Compared to a conventional technique called

Orthogonal Multiple Access (OMA) which is to allo-

cate network resources orthogonally, NOMA mainly

utilizes the ability of successive interference cancella-

tion (SIC) which enables differentiation of users

through different power assignments even in the same

resource block. SIC is a technique which decodes re-

ceived signals sequentially, treating unrelated signals

as interference and then remove the signals[5]. NOMA

is a spectrum-efficient wireless networking technique,

allowing multiple users to share common resources

such that time and frequency and it is anticipated that

NOMA will play a pivotal role in

5G era and future wireless networking system as

the technological advance in AI.

Although, NOMA has some limitations in IoT

environments. Representatively, solution of assigning

channels and allocating powers is known to be NP-

hard[6] and the complexity of the system increases as

the nature of dynamic environment and the SIC.

Reinforcement learning is suggested as a potential sol-

ution to resolve such issues. Not only reinforcement

learning has the ability to process complex system,

but also it can learn the optimal policy off of dynamic

environmental systems, allocating channels and as-

signing powers. Furthermore, researchers propose var-

ious algorithms to enhance the performance for opti-

mal resource allocation problems. Solving a power al-

location and an assigning channel problems is the key

to the optimal resource allocation in NOMA system.

He et al.[5] suggested a power assignment method im-

proving channel gain, and also proposed a joint re-

source allocation (JRA) and channel allocation meth-

od to maximize the NOMA system using DRL

framework.

Ahsan et al.[7] utilized the potential of the NOMA

power domain. The following paper proposed an effi-

cient and optimized algorithm to enhance IoT con-

nectivity, utilizing DRL and State-Action-Reward-

State-Action (SARSA). SARSA is an on-policy algo-

rithm in which the agent selects an action based on

the current policy then evaluates and update the policy

based on the action taken. The paper shows that the

IoT networking utilizing NOMA outperforms the IoT

networking using OMA system in terms of the number

of processes agent can take in.

Under downlink NOMA system which is to esti-

mate imperfect channels, Wang et al.[8] proposed an

approach to allocate power. Considering the two in-

formation, channel estimation and Mean Squared

Error (MSE), the objective is to set the upper bound

of System Outage Probability (SOP) using two users’

throughput requirements. Afterwards, in order to make

the SOP minimized under overall power constraints,

outage power allocation solution for two users is

driven. The solution can be driven within few calcu-

lations for power allocation coefficient, by the MSE

of the channel estimation, and is way less complex

than the previous outage or repetitive solutions. The

simulation results are showing that the proposed meth-

od achieves great performance in various transmission

rate requirements resulting a SOP.

Zhang et al.[9] proposed a power allocation algo-

rithm for one BS and two user clusters assigned to

mmWave-NOMA system. To be specific, the pro-

posed algorithm meets the individual service quality

constraint requirements and maximizes achievable

sum rate (ASR) and energy efficiency (EE), in con-

sequence, it formulated the optimization problems. In

order to guarantee stability of SIC, the algorithm add-

ed power order constraint which is commonly dis-

missed from the previous related works. The algo-

rithm divides the formulated problem into sub-

problems as clustering problem to make the problem
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easier to solve, deriving the solutions for ASR

Maximization-based Power Allocation (ASRMax-PA)

algorithm and EE Maximizationbased PA

(EEMax-PA). The proposed ASRMax-PA (or

EEMax-PA) algorithm outperforms than the latest

methods in the aspect of ASR (or EE) and performs

great in EE (or ASR) as well. Not only that, the two

proposed methods can assure the stability of SIC

which is a critical factor for performance of NOMA

system.

Although aforementioned researches do not ex-

plicitly point out the limitations that they have, the

simulations took place were conducted in a specific,

restricted environment rather than a dynamic

environment. To address this issue, in this paper, we

propose an effective framework where a Deep

Reinforcement Learning (DRL) agent efficiently allo-

cates limited networking resources in a downlink

NOMA system. The main difference between the pro-

posed framework and previous works is that it uses

an experience replay memory to generalize learning,

rather than solving the onpolicy problem with tradi-

tional policy gradient methods. Policy gradient meth-

ods evaluate and update the policy every iteration and

experience replay is to save series of experiences that

agent had and sample the experiences with batch re-

sulting a generalized learning. See Section III for

more detailed explanation why experience replay

memory has been applied to this framework. The goal

of the agent is to learn a policy for a downlink NOMA

system under various profiles to enhance under-

standing of the generalized NOMA system attempting

for a maximum sum throughput (i.e., sum rate).

The verification of our proposed framework is con-

ducted through multiple simulations with varying con-

trols to assess its performance. In detail, changes in

the types of neural networks such that fully connected

neural network (FCNN), convolutional neural network

(CNN), and attention-based neural network (ANN),

batch sizes, learning rates, and number of NOMA

users are made. Also, the comparisons between the

frameworks such that Joint Resource Allocation

(JRA), JRA-DRL, the proposed framework, and

Exhaustive Search (ES) are conducted as well. The

paper will thoroughly analyze the experimental results

by inspecting loss, loss convergence speed and re-

sulted sum rate. Especially, since the environment of

networking is dynamic and ever-changing, the con-

vergence speed is crucial in networking system. The

problem addressed in this paper is maximizing data

throughput through efficient resource allocation.

Therefore, overall environmental definition will be

settled first.

Contr ibutions. Since the JRA-DRL method learns

the policy of the NOMA system directly from current

experience, it may lack generality and be unable to

handle various scenarios. To address this, we have in-

corporated a policy gradient method and replay mem-

ory to enhance the generality. Therefore, we have in-

corporated a policy gradient method and replay mem-

ory to enhance generality. Additionally, deep learning

techniques require extensive fine-tuning, such as

changing the model architecture, tuning hyper-

parameters, and, in DRL, the design of the state di-

rectly influences the training results. To demonstrate

the effectiveness of our method, we provide extensive

simulation results. We make the following con-

tributions:

∙ Incorporation of policy gradient method and replay

memory: This approach avoids biased training

since the experiences used for training are sampled

from a replay memory, unlike the conventional pol-

icy gradient method, which trains on current expe-

rience and may result in overfitting. The use of re-

play memory results in more balanced and general-

ized learning of the NOMA system, reducing the

variability in training outcomes while improving

the convergent stability and reliability.

∙Extensive simulation results: We observed that

small changes in hyperparameters, model archi-

tectures, or the design of the DRL state lead to

significant differences in simulation results.

Therefore, we carefully evaluated a range of set-

tings to identify the most robust configuration and

provided numerous simulation results. This thor-

ough analysis examines the impact of the DRL

state size, which gradually increases the number of

key features in the given NOMA system, con-

vergence speed when modifying model archi-
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tectures, and the fine-tuning of hyperparameters.

Ⅱ. System Model

In this paper, we assume a downlink NOMA sys-

tem where BS sends data to multiple users in wireless

channels. Given this environment, a comprehensive

definition of overall environment is necessary.

In a wireless channel, note that power and channel

information is required in order to describe the rela-

tionships between BS and users. The BS’s job is to

distribute limited joint resources (i.e., channel and

power) and multiplex signals, then transmit the multi-

plexed signals to users. After users receive multiple

signals which contain independent signals, users use

decoder to perform SIC and specify the signal for their

own. Additionally, there is an upper bound for power

allocation, as well as for channel bandwidth. Given

these constraints, by using two methods, JRA and

DRL, an optimal solution allocating joint resources

can be found.

Fig. 1 briefly illustrates the transmission and the

reception between BS and users in a downlink NOMA

system, where we assume there are N users and K
channels. The total bandwidth is Btot and since all

channels have the same bandwidth, the bandwidth for

each channel is represented as Bc = Btot / K. Also, the

number of users assigned to channel k is Nk . Consider

a user i’s signal as bi, then the BS will transmit multi-

ple signals as follows,

(1)

where 
 is a power of i-th user assigned to k-th chan-

nel,  is a multiplexed signal from k-th channel. As

receiver receives signal from transmitter, the signal

is corrupted by environmental noises. The receiver

will eventually receive a signal  and can be written

as,

(2)

where 
 is a k-th channel response between BS and

n-th user, 
 is user n’s Additive White Gaussian

Noise (AWGN) with zero mean and variance of 
 .

When the signals from multiple users are multiplexed

Fig. 1. Block diagram illustrating the transmission of BS and reception of users of the downlink NOMA system.
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as shown in (1) and the receiver’s noise-added final

received signal is given by (2), SIC is applied to de-

code each users’ signal, differentiating multiple

signals.

In order for SIC to successfully be performed,

channel-to-noise-ratio (CNR) should be considered

which can be represented as . Since the

greater power is assigned to users with lower CNR,

according to the NOMA protocol, powers and CNRs

on k-th channel can be ordered as such:

This behavior allows other weak signals to be treat-

ed as noises while the signal with greater power to

be decoded primarily. Also the corresponding data

rate is as follows,

.

(3)

As stated in Ding et al.[10,11], the number of users

allocated in channel k is fixed to two (i.e.,  = 2),

because the increase in  directly affects the hard-

ward implementation complexity and processing time.

Reflecting the mentioned change, the data rates for

two users allocated at channel k are represented as,

(4)

Note that the problem we are trying to solve is to

maximize the data rates of NOMA users. In other

words, in this paper, we focus on maximizing sum

rate (MSR) metric. To maximize the sum rate, it is

necessary to consider the data rates of all users. This

often means that it may be inevitable to sacrifice the

data rates of few users in order to achieve overall

higher sum rate.

As mentioned above, we assume two users can be

allocated to each channel (i.e., N = 2K), and the ob-

jective is to maximize the sum throughput of users.

We assumed that there is a limit of total power 
for BS which needs to be distributed to all users across

the channels. It is important to note that the sum of

users’ power 
 and 

 must not exceed  as fol-

lows,

(5)

For power assignment, the JRA method[12] will be

used which is an optimal power assignment solution

using mathametical derivation. Since JRA method is

able to find the optimal power given the channel allo-

cations and resources, we propose to apply JRA meth-

od alongside with DRL channel allocations. The prob-

lem for MSR metric formulation can be written as,

(6)

where is a minimum data rate requirement for

user n allocated to k-th channel. In order to solve the

(6), the optimization problem decomposes into the fol-

lowing subproblems for each channel k,

(7)

where  is a power budget for channel k.
As Zhu et al.[12] proposed, the solution for MSR

metric is given by solving the subproblems,

(8)
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where and . As noted from (8),

 plays a pivotal role to solve MSR metric.  is

given by the waterfilling form,

(9)

To derive power budget , Lagrangian multiplier
method and bisection method are used, and its upper

bound is set to infinity and lower bound is set to ,

meaning that if the derived power budget  is smaller

than ,  is set to , otherwise keep .
The optimal power allocation problem is solved

with the mathematical solution (i.e., JRA), channel al-

location problem remains to be solved. The optimal

channel allocation method can be driven by using ex-

haustive search (ES) method, however, it consumes

extraordinarily long time to find the optimal

allocation. Previous works focused on solving an opti-

mal power allocation problem, while leaving the chan-

nel allocation problem left with randomization, result-

ing an inefficient channel allocation. On the other

hand, we are integrating JRA, achieving optimal pow-

er assignment and applying our own DRL method to

find a sub-optimal solution for channel allocation with

more efficient way.

Ⅲ. Reinforcement Learning Algorithm

In this paper, we utilized reinforcement learning al-

gorithm to solve channel assignment problem by using

multiple neural networks. In this section, details of

how channels are assigned to users, using fully-con-

nected neural network (FCNN), convolutional neural

network (CNN), and attention-based neural network

(ANN) will be explained.

Exhaustive Search (ES) method is significantly

more inefficient compared to the approach we

propose. ES method explores all possible channel allo-

cations, represented by where N

users are allocated and Nk = 2, in a given environment

and calculates the sum rate for each case. However,

as the number of users increases, the number of possi-

ble channel allocations grows exponentially.

Therefore, in realistic scenarios with many users, find-

ing the maximum sum rate through optimal channel

allocation by using ES method is highly inefficient

and nearly impossible. On the other hand, our pro-

posed channel allocation method using DRL with re-

play memory utilizes previously learned experiences

to train the model for near-optimal channel allocations

demonstrating results close to the maximum sum rate,

as shown in the Section Ⅳ. After training, our method

consumes near-linear time complexity, typically with-

in a second, compared to the ES method.

The fundamental of DRL formulation is to define

state, action, and reward. Each component is repre-

sented as , , and  at time step t, corresponding

to the state, action and reward, respectively.

A state is defined as a pair of user and channel

information. The state space is N × K × F, where N
is the number of users, K is the number of channels,

and F is the number of features. By forming the state

with the space of N × K, every possible combination

of user and channel information can be represented.

The feature of the state represents the user and chan-

nel information itself and the number of features F
vary from one to three; a state with F = 1 contains

CNR information, a state with F = 2 contains CNR

and distance information between users and the BS,

and a state with F = 3 contains CNR, distance, and

channel assignment status information. A CNR value

of channel k is represented as CNRk, a distance be-

tween user n and the BS is represented as dn, and

channel k’s assignment status is represented as Ck. The

value of the channel assignment status Ck is equal to

the number of users assigned to the following channel.

For instance, if the channel k has zero user assign-

ment, then the channel status is Ck = 0. When the user

n is assigned to channel k, then the status changes

to Ck = 1. The channel status information allows the

agent to be aware of assignable channels. It is im-

portant to know which channel is assignable, due to

each channel can hold fixed number of users. In this

case, since the Nk is set to 2, Ck ranges from 0 to 2.
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Under NOMA system, to solve the channel assign-

ment problem, action is assigning a user to a channel.

Therefore, the action can be represented with one user

and one channel as at = (n, k). The selected state can

also be interpreted as an action taken.

Reward is defined as a data rate (throughput) of

each user. The reward for channel k at time step t
can be expressed in two cases as follow,

(10)

due to the constraint Nk = 2. The objective of the

downlink NOMA system is to maximize the sum of

all users’ data rates (rewards) as follows,

(11)

To solve the channel assignment problem, let’s say

the set of actions taken is . Given

some state set S, the conditional probability of  is
as follows,

(12)

where  is a policy parameter, used to update the poli-
cy using loss function. Variation of the reinforcement

estimator[13] is used for the loss function, stabilizing

the training by using the baseline model. The loss

function is defined as the average rewards correspond-

ing to the state set  as below,

(13)

and the parameter  from policy p(‧) is updated via
policy gradient method, utilizing the difference be-

tween the loss of online model and baseline model:

(14)

The algorithm used for training is as Algorithm.

1. The training is performed on an episode basis, and

performed until it reaches stopping criteria (line 1).

Each episode creates a user with randomized location

(line 3). Based on the coordinate of the corresponding

user, the algorithm calculates the corresponding user’s

CNR.

After initializing the user information, the channel

allocation for every user is excuted. Every time step,

the online model samples a user to allocate to a chan-

nel based on the model’s probability distribution (line

6). On the other hand, baseline model selects an

user-channel pair with a highest probability (line 7).

Because selected user and channel can not be selected

once again, the process of masking selected pairs is

required, leading a more efficient calculation. After

repeating the mentioned steps, every user is allocated

to all channels, then by using JRA method, powers

are assigned, leading a sum rate.

When the actions are all taken, the result is saved

into a replay memory (, R, Rbl) (line 9). Sum rate
of the online model R and the baseline model Rbl is

calculated using the state sets  and , by performing
the JRA method. Then, batch sized experiences are

randomly sampled from replay memory (line 10), rep-

resented as  and is as,

(15)

 is used for calculating loss and the loss is derived
using the gradient from (14) (line 11).

The used optimizer in this paper for updating the

policy gradient is the Adam optimizer[14]. With the

optimizer, online model updates its own parameter 

as below,

(16)

The update of the baseline model’s parameter 

is performed when the loss of the online model ex-

ceeds the loss of the baseline model as  ←  (i.e.,
online model’s sum of rewards exceeds baseline mod-

el’s sum of rewards) (line 13, 14).

By following the steps of (15) and (16), it is indeed

true that the computational complexity increases, due
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to the use of replay memory despite the problem being

an on-policy problem. The inefficiency of incorporat-

ing replay memory into an on-policy method arises

from the nature of on-policy learnig. On-policy meth-

ods involve iterative evaluation and updating of the

policy based on the most recent experiences.

However, the experience replay memory contains past

experiences that may not be representative of the cur-

rent policy. This mismatch means that experiences

stored in the memory are more likely to be irrelevant

to the updated current policy. Still, the reason behind

we incorporated the experience replay memory with

REINFORCE algorithm is that we have noticed that

utilizing the REINFORCE algorithm results in a nar-

row learning, unable to respond to generalized data.

On the other hand, the incorporation improves the

model to be able to optimally allocate joint resources

within various generalized data, although consumes

more time on learning the policy.

After each episode is completed, validation is

performed. A validation set is created at the beginning

of the training, when the NOMA environment is

created. The number of validation performed is equal

to the number of validation seeds. When the validation

set is decided, maximum sum rate Rmax and minimum

sum rate Rmin of each validation seed is calculated

by using exhaustive search. The deriven sum rates are

used to calculate the error rate. In order to calculate

the error rate for each seed number, a sum rate from

the baseline model Rbl is used. The error rate from

the baseline model for validation seed is defined as

(line 18),

(17)

If the error rate is below the predefined threshold,

the validation is considered passed (line 23, 24). When

every validation is passed for all seeds, the validation

set is passed.

The stopping criteria for the training process are

determined by whether the validation set passes and

the loss threshold. At the end of every episode, stop-

ping criteria are evaluated. When the validation set

is passed and the loss between the online and baseline

model is below the threshold, the stopping criteria are

met. Then the parameters from baseline model are

saved and the training process terminates.

Ⅳ. Evaluations

The simulations were conducted in the following

simulation settings. We assumed that there is a single

BS which is an agent allocating and assigning chan-

nels and powers. Around the BS, there are N users

scattered randomly from 50m to 300m which their

minimum data rate is set to

Since Nk = 2, the number

of channels is K = N/2. The total bandwidth for the

agent BS can use is Btot = 5MHz.
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The noise power spectral density for the environ-

ment is N0 = -170dBm / Hz. The channel response of

n-th user assigned to k-th channel is represented as


 and it is defined as follows,

(18)

where 
 is a Rayleigh fading distribution corresponds

to user n and channel k, and is a distance loss

between user n and BS. Here,  is a path loss co-

efficient which is set to  = 2.
The validation set was predefined before the train-

ing so that the maximum sum rate and minimum rate

can be searched beforehand by exhaustive search.

Every training episode utilized an unique instance by

using a seed number enabling the model to learn more

generalized knowledge about the NOMA policy. The

validation was performed every 200 episodes of train-

ing to determine whether the loss and error rate from

(14) and (17) met the stopping criteria.

In this section, to evaluate the performance of the

proposed JRA-DRL method, various simulations ef-

fects of changes in learning rate, batch size, number

of features, models and comparisons between

JRADRL, JRA, and exhaustive search― are analyzed.

Experimental parameters for evaluation of the frame-

work were set as follows: learning rates vary by 0.001,

0.0005, and 0.0001, and batch sizes are 20, 40, and

80. The simulations are conducted observing the ac-

tual sum rates and convergence speeds to assess the

performance of the proposed framework.

Fig. 2 illustrates achievable sum rates in different

learning rates; 0.001, 0.0005, 0.0001. The largest

learning rate (0.001) converged the fastest, completing

training in just 280 seconds; however, resulted in the

lowest overall sum rate. On the other hand, the small-

est learning rate (0.0001) took the longest to converge,

requiring 3,990 seconds to meet the stopping criteria,

leading to the highest sum rate. The learning rate of

0.0005 would be a great alternative to achieve the rea-

sonable results, as it significantly reduces the time

took for the training compared to the learning rate

of 0.0001, while still achieving high sum rates.

However, the variance of the sum rates is large, there-

fore the fluctuations of sum rates were resulted.

Fig. 3 shows the sum rates in different batch sizes; 

20, 40, and 80. As the comparison of different learn-

ing rates from Fig. 2 did, the results for different batch

sizes were very similiar. The smallest batch size of

20 was able to finish the training the fastest, never-

theless it yielded the lowest overall performance.

Compared to this, the sum rate of the largest batch

size of 80 was the highest, taking the longest time

to complete the training. Similarly with the compar-

ison of different learning rates, the intermediate batch

size of 40 completed the training relatively quickly

compared to the larger batch size of 80, while yielding

high sum rates.

Fig. 4 represents the comparison of loss con-

vergences when using different number of features for

the state; (CNRk), (CNRk, dn), and (CNRk, dk, Ck) for

Fig. 2. Sum rate comparison of different learning rates
with N × K × F = 6 × 3 × 3, batch size = 40 model = FCNN
and PT = 12W .

Fig. 3. Sum rate comparison of different batch sizes with
N × K × F = 6 × 3 × 3, learning rate = 0.005, model = FCNN
and PT = 12W .
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all k = 1, …, K and n = 1, …, N. At the beginning

of the training, all three agents with different state

spaces have high loss values. Then as the number of

training episodes increases, the loss converges to-

wards zero. The agent with three features requires the

most training time to converge, meaning that it took

the longest to figure out the meaning of the state. In

contrast, the agents with one feature and two features

require much less training time to converge.

Nevertheless, in the middle of the training, the agent

with one feature’s loss value abruptly increases, in-

dicating unstable learning.

Fig. 5 represents the comparison of loss con-

vergences when using different models; FCNN, ANN,

and CNN. The loss values for the agents using the

FCNN and CNN models decrease gradually and con-

verge towards zero, while the CNN model requires

the longest training episodes. However, although the

ANN model required the fewest episodes to converge

among the three models, its loss oscillates constantly.

This means that learning the NOMA policy from the

baseline model is not sufficiently stable, leading to

consistent changes in the sign of the loss values. The

reason for implementing a baseline model to policy

gradient methods is to stabilize training and reduces

the variance of the gradient estimates. Since the base-

line model provides a stable reference value, monitor-

ing the sign of the loss value enables the agent to

stabilize the learning and reduce the variance.

However, for the ANN model, frequent changes in

the baseline model resulted in unstable training and

learning. Furthermore, despite the fact that the number

of episodes required for training the ANN and the

FCNN models is nearly identical, the actual time con-

sumed by the ANN model significantly exceeded the

time when using the FCNN model.

Fig. 6 illustrates the performance comparison be-

tween three methods: the exhaustive search (ES)

method, the JRA method, and the proposed JRA-DRL

method. The methods are evaluated using the trained

model and the evaluation is based on the resulting

sum rates in four different NOMA environments

(seeds). The four different NOMA environments used

for the validation (or evaluation) are entirely different

with the environments used for the training. The key

difference is that the validation set comprised more

generalized environmental settings, which makes it

challenging for the standard policy gradient method

to adapt effectively. Obviously, the exhaustive search

Fig. 5. Loss comparison of different models with N × K
× F = 6 × 3 × 3, learning rate = 0.005, batch size = 40 and PT
= 12W.

Fig. 6. Sum rate performance comparison of different
training algorithms.

Fig. 4. Loss comparison of different number features with
N × K = 6 × 3, learning rate = 0.005, batch size = 40, model
= FCNN and PT = 12W .
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method achieves the maximum attainable sum rates

across all seed numbers. The JRA method achieves

high sum rates, though not the highest. The proposed

method, JRA-DRL method, achieves sum rates that

are very close to the maximum attainable sum rates

in all four simulations. This shows that implementing

experience replay into the policy gradient method

stimulates the agent to adapt effectively to generalized

environment.

Fig. 7 illustrates the sum rate comparison of differ-

ent training algorithm with different total power PT

for BS; 2W , 4W , 8W and 12W. The above shows

that as the total power for BS PT increases, the attain-

able sum rate also increases. As the JRA-DRL method

yields higher sum rates near to maximum attainable

sum rates from exhaustive search than the JRA meth-

od, the JRA-DRL method is proven to be able to ach-

ieve superior performance in all power levels.

Fig. 8 illustrates the sum rate comparison of differ-

ent training algorithms with different number of

NOMA users N; 4, 6 and 8. As the number of the

NOMA users increases, the attainable sum rates de-

crease, because the users are forced to shared limited

joint resources, resulting in a lower sum rates. In all

simulation results, the JRA-DRL method achieves

higher sum rates than the JRA method, which are very

close to the sum rates of exhaustive search method.

Additionally, the sum rate performance of applying

larger state sizes was evaluated with respect to mini-

mum data rate Rmin for all users, and the result is

shown in Fig. 9. As mentioned in Section Ⅲ, the num-

ber of possible channel allocations grows ex-

ponentially when the number of users and channels

increases. Due to this nature, the calculation of the

error rate from Algorithm 1 was omitted in this

simulation. As the minimum data rate Rmin increases,

the sum rate gradually decreases for all different states

sizes of N × K = 10 × 5, N × K = 20 × 10, and N × K
= 30 × 15. However, compared to Fig. 8, the simu-

lation for smaller state sizes, increasing the state size

leads to an improvement in sum rate performance.

Finally, Fig. 9 also illustrates the performance com-

parison between JRA-DRL method with replay mem-

ory and without replay memory. The proposed

JRADRL method with replay memory shows the

higher sum rate performance over the JRA-DRL

method without replay memory for all state sizes and

Fig. 7. Sum rate comparison of different training
algorithms with different total power for base station.

Fig. 8. Sum rate comparison of different training
algorithms with different number of NOMA users.

Fig. 9. Sum rate comparison for JRA-DRL method with
and without replay memory of different state sizes when
requiring different minimum data rate (Rmin).
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minimum data rates Rmin . This not only demonstrates

that our proposed method can handle large input

spaces, but also shows that the incorporation of the

policy gradient method with replay memory ensures

the generalization of policy learning, leading to higher

sum rate performance.

As demonstrated by the simulations shown in this

section, the proposed JRA-DRL method exhibits su-

perb performance. The JRA method is capable of allo-

cating users with optimal powers but lacks the ability

to assign users to adequate channels. Due to this, the

JRA method performs above average but is incapable

to reach near to the highest performance. In contrast,

the proposed JRA-DRL method reaches nearmax-

imum performance with reasonable training time, also

showing the ability to adapt to completely new (or

generalized) environments by using the experience

replay.

Ⅴ. Conclusions

In this paper, we propose a reinforcement learning-

based framework to solve channel and power alloca-

tion problem in a downlink NOMA system, and pro-

vide various simulation results. The framework takes

two steps which are channel allocation and power

assignment. At each time step, the model considers

the current channel allocation status of users and de-

cides which user should be allocated to which

channel. The channel allocation is performed by in-

tegration of replay memory and the REINFORCE al-

gorithm which enables more generalized learning of

the NOMA policy. After the initial channel allocation

step is completed, the subsequent power assignment

step is carried out using the JRA method, which has

been proven to be an effective solution for the power

optimization problem.

The simulations were conducted with respect to the

number of state features, batch sizes, types of models,

and learning rates. Overall, the simulations demon-

strates that the proposed framework can successfully

learn policy from NOMA system with fast con-

vergence and has the ability to handle comprehensive

data.
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