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Real-Time 3D LiDAR-Based Obstacle Avoidance for UAV
Using Sector-Filtering Algorithm

Krisma Asmoro®, Silvirianti, Ryan Febriansyah™, Soo Young Shin’

ABSTRACT

Unmanned aerial vehicle (UAV) gained a lot of attention because of its maneuverability in 3-dimensional
(3D) and resulting in faster travel time to a certain destination. Therefore, UAV can be integrated to various
human needs, especially in delivery service, search and rescue (SAR) mission, and utilized as military defense
system. However, the fundamental problem of UAV is the need of proper navigation and obstacle avoidance to
reach a destination safely. Diverse research of integrating 3D LiDAR for UAV navigation has been done to
reduce complexity due to the high number of point cloud. This paper proposed a sector-filtering algorithm to
improve existing real-time obstacle avoidance of UAVs using 3D LiDAR. The current proposed sector-filtering
is proposed to take the advantages of 360° field of view (FoV) of 3D LiDAR, without sacrificing the
computational resources. In addition, this paper implements 3D LiDAR avoidance with real-world experiment
mounted on UAV. The results show that the obstacles have been successfully detected, and the avoidance

maneuver is performed for the UAV in real time.

Key Words : 3D LiDAR, avoidance maneuver, obstacle detection, real-time, sector-filtering, Unmanned aerial
vehicle(UAV)

I. Introduction

Thanks to their flexibility and high mobility, un-
manned aerial vehicles (UAVs) have gained enormous
popularity in recent years for real-world applications,
i.e., military missions, search-and-rescue, and deliv-
ery™). In line with the growth of its popularity, the
autonomous navigation of UAVs has rapidly been un-
der development and urging the system to be more
applicable and efficient over time!®®. Obstacle avoid-

ance is one of the main challenges in UAV autono-

mous navigation. Therefore, providing the best possi-
ble solutions for efficient obstacle detection is needed
since it is inseparable from obstacle avoidance.
Based on the type of sensors, generally, obstacle
detection techniques can be divided into two catego-
ries: two-dimensional (2D) perception and three-di-
mensional (3D) perception. Some existing works pro-
posed obstacle detection and avoidance techniques
employing 2D-perception sensors"'®*?. In [10], a re-
al-time obstacle avoidance in dynamic environments

where the mobile robot and the obstacle are moving
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was proposed by utilizing 2D LiDAR. In [11], a 2D
LiDAR was employed to detect obstacles and translate
online the essential geometric information of the ob-
stacle-dense environments. In [12], a combination of
mono-camera and 2D LiDAR was proposed for pre-
dicting the velocities and positions of surrounding ob-
stacles through optical flow estimation, object de-
tection, and sensor fusion. Although the techniques
above that utilized 2D-perception sensors offered low
computational complexity, which directly affects a
short computational time, it has a significantly limited
perspective that is only in 2D planes and thus results
in one-sided field-of-view (FoV)!*!4, Unfortunately,
the real environment is in 3D, which makes 2D-per-
ception solutions insufficient, thus forcing solutions
for obstacle detection from a 3D perspective to be
provided.

Several works have proposed obstacle detection
and avoidance employing depth cameras as 3D-per-

U191 1p [15], a stereo frame-based

ception sensors
camera was employed to avoid obstacles and safely
navigate through an unknown cluttered environment.
In [16], an active-sensing-based obstacle avoidance
paradigm was proposed utilizing a stereo camera with
an independent rotational degree of freedom to sense
the obstacles actively. In [17], the ZED depth camera
was utilized to detect and extract obstacles for robot
navigation. In [18], a stereo camera system provided
a point cloud of the environment to detect obstacles
through time. In [19], a convex optimization frame-
work was proposed utilizing a depth camera for ob-
stacle detection that is vital for real-time autonomous
vehicle operations. However, existing works that uti-
lized depth cameras have limited detection range, lim-
ited FoV with less than 360 degrees, and environ-
mental constraints, i.e., illumination, wind, temper-
ature, atmospheric condition, environmental, and
density. The limitations above notably contribute to
lowering the detection accuracy. Dissimilar to depth
camera characteristics, 3D LiDAR enables a broader
range and FoV with its 360-degree view coverage®..
Moreover, the 3D LiDAR is keenly robust to environ-
mental obstructions that improve detection accuracy
due to the advantage of laser light compared to an
image frame™®. By considering such conditions, em-

ploying 3D LiDAR can be one of the best solutions
to improve the accuracy and FoV of obstacle avoid-
ance in the real environment.

Some of the existing works employed 3D LiDAR
for obstacle avoidance®?. In [20], a 3D LiDAR was
employed to detect dynamic obstacles using an
end-to-end sparse tensor-based deep neural network.
In [21], a fully autonomous UAV system was pro-
posed that enables flying safely in cluttered environ-
ments while avoiding dynamic obstacles using 3D
LiDAR. In [22], a real point cloud from 3D LiDAR
was augmented with synthetic obstacles for autono-
mous navigation. In [23], the utilization of 3D LiDAR
for high-accuracy and high-efficiency 3D sensing was
investigated and applied to intelligent transportation
systems. In [24], an obstacle detection that addressed
a partial scanning data availability issue was proposed
employing 3D LiDAR. However, processing high-res-
olution and massive point cloud data from 3D LiDAR
contributes to exponentially escalating computational
burden.In consequence, computational time also rises
exponentially. Considering the conditions above, those
techniques can be challenging to apply in the UAV
obstacle avoidance system where low computational
time is required because of its high mobility™”.

This study introduces a sector-filtering algorithm
to reduce processing point clouds for obstacle de-
tection using 3D LiDAR. To summarize the con-
tribution of current study, Table 1 illustrated a com-
parison between existing 3D LiDAR literature. To be
specified, the point clouds in three-dimensional space
from 3D LiDAR are sectorized into eight zones. In
this manner, all the point clouds in the 3D space can
be mapped into the eight zones according to their lo-
cation in degrees. Subsequently, an angular filter and

Table 1. Comparison with existing studies of 3D LiDAR
in [20-24].

Reference Avoid. UAV 360° SLAM Training

[20] X X v X v
[21] v v X X X
[22] X X v X v
[23] X X v X v
[24] X X X X v
Proposed v v 4 X X
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Fig. 1. Estimated LiDAR orientation (red arrow) and 3D
point cloud (colored dots)

intensity filter are employed in each sector to reduce
the dimension of point clouds from 3D to 2D points.

Thus, smaller data dimensions that affect lower
computational complexity and computational time can

be achieved.

1.1 Contributions

To the best of the authors’ knowledge, few works
employ 3D LiDAR and reduce its computational com-
plexity for real-time UAV obstacle avoidance. Table
1 shows that current proposed system includes avoid-
ance system with 360° degree LiDAR. In comparison
with existing reference, the current approach does not
require any training method in order to detect an
object. Therefore, the main contributions are specified

as follows:

* To highlight our contribution, this study considers
a summary of existing algorithms with prox-
imity-based UAV avoidance in Table 2. Based
on the table, this study proposed sector filtering
algorithm for 3D LiDAR because existing avoid-
ance systems are limited to 2D point cloud.
Moreover, 3D LiDAR serves a higher resolution
and accuracy in terms of detecting object (up to
100 meters).

Due to the large number of 3D point clouds com-

pared to the 2D ones, this study proposed sector
filtering algorithm®. In comparison with related
works of 3D LiDAR, the proposed algorithm

could reduce computational time because of less
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Table 2. Existing sensor available for Real-time obstacle
avoidance [31].

Range Res. Acc. PCL PCL

Proximity Sensor Gl () | Gay| 75 5D

+/-

TRanger Evo 600Hz 8 0.5 2 v X
TRanger Evo 60m 60 052 +-6 V X
RPLidar C1 12 015 5/5 VR
RPLidar A2M8 2 05 (‘;/; VP
RPLidar S1 0 3 +45 v X
Proposed VLP16 100 3 g:g W43 v v

number of point cloud. However, the tradeoff is
that the trajectory will be longer than 3D-based
SLAM because there is no mapping process. In
exchange, UAV could react faster to avoid in-
coming obstacle.

* The proposed algorithm is integrated with 3D tra-
jectory planning for UAVs.

¢ Performance of the proposed algorithm is vali-
dated through experiments in the real

environment.

1.2 Paper Organization

The rest of this paper is organized as follows. The
idea of the sector-filtering algorithm for real-time ob-
stacle detection is introduced and described in Section
II. Section III presents obstacle detection and avoid-
ance using 3D LiDAR for UAVs. The proposed algo-
rithm’s experimental results and performance analysis
are discussed in Section IV. Finally, this paper is con-
cluded in Section V.

1.3 Notations

Matrices and vectors are denoted by upper-case and
lower-case bold letters, respectively. The notations
B)" and (B)" denote transpose and matrix inversion
of B, respectively. The notation R denotes a real
number.
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II. Sector-filtering Algorithm for Real-time
Obstacle Detection

This section presents the proposed sector-filtering
algorithm for real-time obstacle detection. The ob-
jective of the algorithm is to reduce the computational
complexity of processing massive and high-resolution
point cloud data from 3D LiDAR. The algorithm con-
sists of data acquisition, point cloud conversion, point

cloud filtering, and obstacle mapping.

2.1 Data Acquisition

The initial phase of the proposed scheme involves
collecting detailed point cloud information of the envi-
ronment employing the Velodyne VLP-16 3D LiDAR
sensor, which is affixed to the UAV. This sensor scans
the surroundings in a full 360-degree range, capturing
a multitude of points every second. The amassed point
cloud offers an intricate depiction of the UAV’s sur-
roundings, encompassing potential obstacles.

Without loss of generality, this study consider a
similar approach with [25], where each LiDAR points
is repre-sented as 3-Dimensional Cartesian coor-
dinates (x, y; 2. Then, the overall coordinates of point

k is expressed as follows

X =Kk cosfsing,
y=kcosfcose, (1)

z=kKsinb,

Angular Filter Intensity Filter

Sector 1 Sector 1
Angular Filter Intensity Filter

Sector 2 Sector 2
Angular Filter Intensity Filter

Sector 3 Sector 3
Angular Filter Intensity Filter

Sector 4 Sector 4

3D LiDAR sensor

Angular Filter Intensity Filter

3D Point Cloud Sector 5 Sector 5

x,y,z € R®

Angular Filter Intensity Filter

Sector 6 Sector 6
Angular Filter Intensity Filter

Sector 7 Sector 7
Angular Filter Intensity Filter

Sector 8 Sector 8

Fig. 2. Diagram flow of 3D LiDAR avoidance.

where k, 6, and ¢ denote distance of a point from
the origin, elevation angle, and azimuth angle of the
3D LiDAR, respectively.

Let us consider an object detected, where every part
of the detected object is marked as a point cloud.
Moreover, all the point clouds of the detected object
can be denoted as P & R®. Assumed K point clouds
formed as detected objects, a single point cloud P
€ P, where k= {1, ...

in a 3D environment W € R>. Due to the limitation

, K}, is located at xi i 2

of LiDAR based detection to laser misalignment,
some of the laser points did not bounce back from
environment, resulting in zero value of Ath point
cloud®!. Let P; be the variable to store a cartesian
value whether an object is successfully detected or
not™. A point cloud is considered to be filled as a
representative of the detected object when the P;=
1, V k€ K and considered to be empty when the P
=0, Vk€E K, which can be expressed as

X0, ¥1,2;  if Xp, v zi € 0,
P = . (@)
0; otherwise.

The generated point clouds P from the detected ob-
ject in the environment W at time # can be expressed

as

MAVROS

2D Points
x,y €R?

MAVLINK

ARDUPILOT

Flight Controller
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XLYLZ X, Y,Z XK, V1,2
P= xl’%’z’z xzu‘Vsz XK"J’z’Z . B
X1, VKsZ X, VK2 Xk VK2
Z
2=, 4
Zk

where xx, Jk, and zg denote the length, width, and
height of the detected object, respectively. The data
format of each returned LiDAR point is a 4-tuple
formed by its coordinate with respect to the LiDAR
coordinate frame P(x, y; 2 as well as its intensity de-
noted by p.

2.2 Point Cloud Conversion

The raw point cloud data, denoted by P(x, y, 2,
collected from the 3D LiDAR sensor, as mentioned
in the previous subsection, is in a binary file format.
Unfortunately, data formed in binary format is not
compatible with the Ardupilot robot operating system
(ROS) message. Since this study employs ROS as a
bridge for software control systems and hardware ac-
tuators, directly utilizing raw 3D point cloud data is
unfeasible. Consequently, the raw point cloud data is
required to be converted to a format compatible with
the ROS message. In practice, the Point Cloud Library
(PCL) software is employed in the conversion process
to convert the raw Point Cloud data that is in binary
format into a Point Cloud Data ROS format™. At
each time step, the raw point cloud data P(x, y, 2
are published in the format of PCL ROS message as
pcl © : Point XYZ®

2.3 Obstacles Mapping

After the point cloud data have been successfully
converted, all the detected obstacles are mapped and
unified to acknowledge the location of the detected
obstacles in the environment W. First, all the detected
obstacles at time ¢ are mapped and gathered in the
environment, denoted by C. Assume the 3D LiDAR
has successfully detected NV obstacles; the obstacles

map then can be expressed as

160

C={P,P,,....P\}, (®)]

where P,, n=1, 2, ..., Ndenotes the generated point
clouds P of each detected obstacle at time ¢ The gen-
erated point clouds of a single detected obstacle P,
are formed by K point clouds, which can be expressed

as
P,={P,P,,...,Px}, 6)

where P, k=1, 2, ... , K denotes the &th point cloud
of the single detected obstacle. All the generated point
clouds can then be represented as unified point clouds
from the detected obstacles. It is important to note
that each generated point clouds P, is not overlapped
with other point clouds P#,, which can be expressed

as

P,UP,U...UPy,
)
P,NP,.,=0.

Finally, all detected obstacles in the environment
at time ¢ can be expressed

N
c=Jp. ®

where N denotes the number of detected obstacles at
time £

2.4 Point Cloud Filtering

In order to improve the detection accuracy, noise,
and unwanted point clouds that are irrelevant to the
detected obstacles must be removed through the point
cloud filtering process. The filtration procedure in-
cludes utilizing statistical filters like outlier elimi-
nation and voxel grid down-sampling. These filters
aid in eliminating undesired data points and diminish-
ing the overall size of the point cloud data, simplifying
the processing task. The filtering process generally
consists of an angular filter and an intensity filter.
However, a pre-processing filter is introduced to
sharply reduce the noise in horizontal and vertical
planes of the point clouds P. The pre-processing for
the horizontal plane is done by setting a threshold
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based on the distance from each point to the origin,

which can be expressed as follows
P+ 427 <6, ©)

where d, denotes the threshold distance in horizontal.
Moreover, the pre-processing for the vertical plane
can be done by setting a threshold based on the verti-
cal location of each point, which can be expressed
as follows

|z] <6, (10)

where 8, denotes the maximum vertical distance be-
tween the origin and each point. In addition, the noises
and data outliers can be removed by employing a me-
dian filter, which can be expressed as follows

2(x;,z;) =Med, ,er{z(x;y)}, (11)

where £(X;,Z;) denotes new vertical coordinate of the
point at (x j’yj), the Med{ - } operator is employed
to calculate the median of a set of data, 2(X;,¥;) repre-
sents the vertical point at coordinate (xj’yj) coor-
dinate, and I" denotes the neighbourhood centered on

the point at coordinate (x;,7)).

Angular Filter: The angular filter is designed to re-
move the noises and data outliers concerning the ele-
vation angle (6) and azimuth angle (¢) of the 3D
LiDAR. Specifically, the minimum elevation angle is
filtered by setting a threshold on the azimuth angle,
which should be in the range of minimum and max-
imum azimuth angle, which can be expressed as fol-

lows

Hmin + U, if(I)min > ¢ > (Dmax
amin = . (12)
0.nins otherwise,

where Ghuin, Omin, Pmax and x denote the minimum ele-
vation angle, minimum azimuth angle, maximum azi-
muth angle, and constant parameter, respectively, sim-
ilarly, the maximum elevation angle is filtered by set-

ting a threshold on the azimuth angle, which should
be in the range of minimum and maximum azimuth
angle, which can be expressed as follows

Opax + 1, Dy > >D
Omax = . (13)
0 maxs otherwise,

where 6. denotes maximum elevation angle and u

is the constant parameter.

Intensity Filter: The intensity filter is designed to re-
move the noises and data outliers based on distance
from each point to the intensity of the point clouds
that should be in the range of minimum and maximum

intensity, which can be expressed as follows

(x2+y2+z2)'/2= On+p, if Ain 2 ¥ 2 Apay
(x2+y2+ 282, otherwise,

14)

where the term (x% 4 y? + z2)"/? tefers to distance from
each point, dy is the threshold distance in horizontal,
4 is the constant parameter, ¥ denotes the intensity
of point clouds P, Ani, is the minimum intensity
threshold for point clouds, and Ay is the maximum
intensity threshold for point clouds. Furthermore, the
intensity of point clouds in the vertical location can
be filtered by setting a threshold with minimum and
maximum intensity, which can be expressed as fol-

lows

Iz] Oy + i, ifAminZlIJZAmax
z|l =

15)
|z|, otherwise, (

where |4 refers to the vertical location of each point,
Ov denotes the vertical distance threshold, and y is

the constant parameter.

2.5 Remapping based on Point Cloud
Filtering
The filtered point cloud data is subsequently uti-
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lized as inputs of a sectoring process, each delineating
a distinct section of the environment. The sector is
generated by applying a threshold to the point cloud
data, where points falling within the threshold are as-
signed a value of 1, while those outside it are assigned
a value of 0. The classified obstacle maps are com-
bined to create a single map representing the entire

environment.

2.6 Sectorization of Obstacles

Following the filtering stage, all the detected ob-
stacles C are sectorized in order to classify their loca-
tions in the environment W from the FoV of UAV
at time £ As previously mentioned in Section I, the
leverage of employing 3D LiDAR is the 3600 FoV
that enables wider detection for the UAV. By utilizing
the benefits mentioned earlier of the 3D LiDAR, the
information about the detected obstacles can be more
specified. In this study, the FoV of 3D LiDAR is sec-
torized into 8 sectors, which implies Sector 1 can be
determined as S € [0°, 45°], Sector 2 as S € [46°,
90°], Sector 3 as S € [91°, 135°], Sector 4 as S} €
[136°, 180°], Sector 5 as S5 € [181°, 225°], Sector
6 as & € [226°, 270°], Sector 7 as & € [271°, 315°],
and Sector 8 as & € [316°, 360°].

A single obstacle P,(x, y;, 2 can be categorized as
located in Sector 1,2,3,4,5,6,7, or 8 if its azimuth an-
gle (¢), from the spherical coordinates (x, 6, ¢ which
can be obtained by converting its cartesian coordinates
(% ¥ 2), that is the angle in the x-y plane with respect
to the positive direction of the x-axis, is in the range
of [0°, 45°], [46°, 90°], [91°, 135°], [136°, 180°],
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Fig. 3. Hardware configuration of the proposed 3D LiDAR UAV avoidance.

[181°, 225°], [226°, 270°], [271°, 315°], or [316°,
360°], respectively. Moreover, the location of ob-
stacles can be detected, whether in the upper or below
of the UAYV, based on the elevation angle (6), which

is the angle to the positive direction of the z-axis.

II. Real-time Obstacle Avoidance and
Navigation for UAV using 3D LiDAR

Following the obstacle detection employing the
proposed sector-filtering algorithm with the 3D
LiDAR, the UAV executes an avoidance maneuver
in real time and continues navigating toward a target
location. In order for the UAV to successfully navi-
gate to the target location while avoiding obstacles
along the way, the UAV navigation is divided into
an obstacle avoidance stage and a navigation stage,

which can be described as follows

3.1 UAV Real-time Obstacle Avoidance

Let us consider a scenario where a UAV equipped
with a 3D LiDAR flies to a target location and meets
obstacles along the way. The UAV detects the ob-
stacles employing the proposed sector-filtering algo-
rithm with the 3D LiDAR mentioned in Section II
and avoids the detected obstacles in real time by em-
ploying a Kalman filter algorithm. The Kalman filter
is employed because of its well-known ability to pre-
dict position accurately by minimizing error measure-
ment from the noises, thus increasing navigation
accuracy. In the Kalman filter algorithm, there are two
phases which can be referred to as a prediction phase
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and an update phase.

Prediction Phase: In the prediction phase, the
Kalman filter assists the UAV in predicting its next
position in the environment while acknowledging the
surrounding obstacles at time ¢ In other words, the
prediction phase is to estimate the avoidance maneu-
ver for the UAV at each time « The next position
of UAV at time ¢ can be predicted by

() _ (=1 (1)

S( )= S( )FUAV + UUA\/Cctn (16)
where 5 denotes a predicted state at #th time, s¢—1
denotes the estimated state at - 1-th time, Fyav de-

notes state transition matrix representing motion mod-

el of the UAYV, US)AV denotes velocity of the UAV

at #th time, and C., denotes control-input matrix i.e.,
velocity or acceleration command input. Moreover,

the prediction of state covariance matrix at #th time,

denoted by l_’it), can be expressed as

51 -1 T
P =P VFyavFl v + Waoise: (17
where Pﬁr_l) is the predicted state covariance matrix
at 7- 1-th time and W denotes the process noise

covariance matrix.

Update Phase: Following the prediction phase, the
update phase is designated to update the position of
the UAV at each time ¢ after the avoidance maneuver.
The position of the UAV at time ¢ can be updated
by

s =350 4 K(’)/_\(t), (18)

where s denotes estimated update state at #th time.
A® is the estimation of avoidance variable at #th

time, which can be expressed as
AD = Q(f) _ Mg(f)’ (19)

where @ represents the 3D LiDAR measurement at
tth time and M denotes the predicted measurement
matrix of the generated 3D map from 3D LiDAR. K

represents the Kalman gain at #th time, which can

be formulated as
KO =p OMTLO-1, (20)

where I denotes residual covariance, which can be
expressed as

LO=MP M +Z (¢3))

noise’
where Zise iS the measurement of noise covariance
matrix. Finally, the state covariance at #th time can
be updated by

PO =(1-KOM)P,", (22)

where I denotes an identity matrix.

3.2 UAV Navigation

Let us assume the location of the UAV, which is
denoted by g in the W environment, is estimated using
the aforementioned Kalman filter algorithm. The
UAV is located at (x, y, 2 = W at time ¢ and can

be expressed as
& = (X y,2), V1 €[0,T]. (23)

At the initial time ¢= 0, the location of the UAV
in an unknown environment W is initialized at (O,
0, 0) which can be expressed as

80 =1(0,0,0). (24)

In the navigation process, the UAV moves from
the initial point X; to the goal point Xz The displace-
ment of the UAV generates a trajectory. The trajectory

of the UAV in the map of environment W can be

expressed as
GO:T : {go,gl,gg,-..,gr}. (25)

Meanwhile, the motion of the UAV r; during the
flight maneuver at time ¢ is given by
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Fig. 4. Hardware implementation of UAV 3D LiDAR
avoidance.

rOzT . {ro,rl,rz,...,r-r}. (26)

As the environment condition W and location g
of the UAV are updated over time, the environment
Wis observed from the initial time % to time 7. It

can be expressed as
0o:7 - 109,01,07,...,07}. )

Subsequently, the trajectory of the UAV and map
are estimated by

p(Go.7>Wloy.p,r.7), (28)

where p denotes the probability distribution of the
trajectory of the UAV G, V¢ & [0, T] and the envi-
ronment W based on the motion control (o, , 1) at
the next time step 7+ 1.

The UAV moves from the initial point X to a goal
point Xr through an obstacle in environment W. The
path planning for navigation is generated based on the
estimated map environment W and location g; of the
UAV.

To generate a path, the environmental condition W
C R? should acknowledge the free and occupied
space in the map. A point in the 3D space fi(xi, Vi
2z) € R? is defined as occupied if the point is filled
with a point cloud Pyx;, y 20 € C Otherwise, it
is defined as an accessible point. This can be ex-

pressed as

164

Table 3. Avoidance success-rate experimental setup.

Parameter Value
Weather Sunny, Outdoor
Temperature (° C) 28 - 32
Wind speed (m/s) 2-3
Trial (count) 10
Distance (count) 9
Observation time each distance (s) 10
Observation time each trial (s) 90
Distance GCS - UAV (m) 5
UAV altitude (m) 3.5

1, iff,, =P,

S Vs 24) =
0, otherwise.

A set of occupied and free points £, V k&< K is
called an occupied and accessible space, respectively.
An occupied space implies that an obstacle is located
in that area, whereas a free space indicates that the
area is free from obstacles. The occupied and free

spaces are presented as occupancy grids.
IV. Experimental Results and Analysis

The performance of the proposed algorithm is vali-
dated through experiments conducted in real
environments. The experimental setup can be seen in
Fig. 3, where an Nvidia Jetson NX was utilized as
an onboard PC to process the point cloud data from
the Velodyne 3D LiDAR in real time. In order to min-
imize delay during data transmission, the onboard PC
and the 3D LiDAR were connected using ethernet.
The 3D LiDAR point cloud data processing and re-
al-time generated UAV trajectory on the onboard PC
were monitored using a laptop on the ground. This
study employs a WiFi router connection to maintain
a stable connection between ROS in the onboard PC
and the ground control station. Fig. 4 depicts a config-
uration of sensors, onboard PC, and the UAV setup.
A hexacopter tarot X6 was employed to enable carry-
ing the loads. The 3D LiDAR, GPS sensor, onboard
PC, and Pixhawk flight controller unit were loaded
on the UAV. The proposed algorithm was im-
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plemented in Python. To be specified, the whole pro-
posed algorithm was built and implemented in the
Ardupilot and robot operating system (ROS) Melodic
environment.

Figure 5(a) depicts an average detection time in
milliseconds (ms) obtained from real time 3D LiDAR
mapping from [31], current proposed system, and ex-
isting 2D LiDAR avoidance in [32]. The experiment
was conducted by deploying an obstacle at random
different angle of 8 sector and 20 meters distance with
10 times repetition. Based on obtained result, the pro-
posed system is outperformed™!! in term of average
detection rate, since the proposed sector filtering algo-
rithm reduces the total number of PCL. However, the
trade-off of using the 3D LiDAR caused a higher de-
tection time compared with existing 2D LiDAR avoid-
ance in [32]. This is due to the lower resolution of
2D LiDAR scan; thus, the existing 2D based avoid-
ance requires a lower computational complexity.

Figure 5(b) presents the obstacle detection employ-
ing a sector-filtering algorithm and the results are
compared with the real distance measurement. The ex-

perimental setup is described as follows:

* Consider low altitude UAV to calculate the error
between measured and real distance;

* The experiment conducted by moving an obstacle
at a fixed distance from one sector to another sec-
tor generated by proposed algorithm, therefore,
the time elapsed for one distance and varying sec-
tor is 10 seconds;

To validate the observation, this study consider
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10 trials (random 8 sectors selection) for each
fixed distance and approximate measurement by
taking mean value;

» This experiment considers 9 variable distances
which are [100, 98, 97, 96, 92, 90, 82, 80, 77]
meters away from LiDAR.

As shown in the figure, the maximum error of ob-
stacle detection employing the sector-filtering algo-
rithm is below 4% in all the cases. The results show
that the proposed sector-filtering algorithm could de-
tect obstacles correctly in real-time.

Fig. 6(a) depicts the real-world experiment of fil-
tered 3D LiDAR point cloud. It can be seen that the
red dot indicates a laser scan ROS message that is
obtained from the proposed algorithm. In contrast with
Fig. 1, the obtained laser scan is less populated with
a 3D point cloud. Therefore, it can reduce the compu-
tational burden of UAV while estimating the path that
has to be taken to reach the destination. Fig. 6(b) de-
picts an experiment visualization of obstacle detection
through the proposed algorithm. It can be seen that
the algorithm will filter the 3D point cloud and divide
it into 8 sectors. The red curve indicates the drone’s
distance from the closest point cloud, and every sector
will move dynamically according to the filtered point
cloud. Moreover, for ease of use, the obtained distance
is measured in meters and the sector angle in degrees.
Fig. 6(c) shows that the maximum distance of a de-
tected obstacle can go up to 100 meters. Therefore,
UAVs can efficiently estimate and calculate the path
from start to destination. In addition, with the re-

® Measurement ® Real Distance

(b)

Fig. 5. (a) Average detection time obtained from 10 trials for different scheme. (b) Average accuracy obtained from 20 trials

for each trial distance.
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(a)

(c)

Fig. 6. (a) Detected object/obstacle from 8 sectors of point cloud. (b) RVIZ visualization of 360° of 2D laser scan ROS
message. (c) The detection range of the proposed system can work up to 100 meters.

Fig. 7. The real-world implementation of the proposed system. The experimental results of UAV trajectory which (a) avoiding
an obstacle, (b) finding a new path, (c) and continuing path to the end waypoint.

al-time 8-sector estimation, the UAV can easily evade
an incoming obstacle due to its long-range detection
capability.

Fig. 7 shows the real-world implementation of the
proposed system in the hexacopter UAV. As can be
seen from the figure, the UAV detects an obstacle
after flying from the initial location, successfully
avoids the obstacle, and then continues heading to-
ward the target location. For ease of understanding,
Fig. 7(a) shows the UAV successfully detects an ob-
stacle after flying from the initial location marked as
an orange dot. In addition, a red curve that appears
in this follows Fig. 6(b) behavior, where each red
curve represents generated sector filtering and dis-
tance from UAV to obstacle. Fig. 7(b) shows the UAV
changed its flight directions to avoid the detected ob-
stacle marked by a red triangle and red path as the
trajectory of the UAV. Moreover, as shown in the
figure, the UAV continuously senses obstacles around
its position. Furthermore, Fig. 7(c) shows the UAV
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flies toward the target location marked as a green dot
after successfully avoiding the obstacle while sensing
the other obstacles.

V. Conclusion

This paper employed a sector-filtering algorithm to
improve real-time obstacle avoidance of UAV using
3D LiDAR. The sector-filtering algorithm mitigated
the high-computational complexity issue of processing
high-resolution and massive point cloud data from 3D
LiDAR at a time by employing sectoring and filtering
processes. Therefore, the computational time for dy-
namic obstacle detection in the 360-degree FoV was
significantly reduced, and real-time obstacle avoid-
ance was performed. The proposed algorithm was va-
lidated through experiments conducted in a real
environment. The results show that the obstacles have
been successfully detected within the 100-meter

range, and the UAV avoidance maneuver is performed
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in real time. The future research directions are de-

scribed as follows:

(1]

2]

(3]

[4]

[5]

[6]

Due to the limitation of the current system that
there is no mapping process, it will be difficult
the UAV

environments. The integration of mapping and

for to maneuver in complex
optimized pathplanning is considered as an ap-
pealing future research direction.

A larger number of UAVs with a cooperative
scheme such as multi-cooperative UAVs has po-
tentially integrated with the proposed sector-fil-

tering algorithm in each UAV.
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