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Ⅰ. Introduction

Thanks to their flexibility and high mobility, un-

manned aerial vehicles (UAVs) have gained enormous

popularity in recent years for real-world applications,

i.e., military missions, search-and-rescue, and deliv-

ery[1-5]. In line with the growth of its popularity, the

autonomous navigation of UAVs has rapidly been un-

der development and urging the system to be more

applicable and efficient over time[6-9]. Obstacle avoid-

ance is one of the main challenges in UAV autono-

mous navigation. Therefore, providing the best possi-

ble solutions for efficient obstacle detection is needed

since it is inseparable from obstacle avoidance.

Based on the type of sensors, generally, obstacle

detection techniques can be divided into two catego-

ries: two-dimensional (2D) perception and three-di-

mensional (3D) perception. Some existing works pro-

posed obstacle detection and avoidance techniques

employing 2D-perception sensors[10-12]. In [10], a re-

al-time obstacle avoidance in dynamic environments

where the mobile robot and the obstacle are moving
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was proposed by utilizing 2D LiDAR. In [11], a 2D

LiDAR was employed to detect obstacles and translate

online the essential geometric information of the ob-

stacle-dense environments. In [12], a combination of

mono-camera and 2D LiDAR was proposed for pre-

dicting the velocities and positions of surrounding ob-

stacles through optical flow estimation, object de-

tection, and sensor fusion. Although the techniques

above that utilized 2D-perception sensors offered low

computational complexity, which directly affects a

short computational time, it has a significantly limited

perspective that is only in 2D planes and thus results

in one-sided field-of-view (FoV)[13,14]. Unfortunately,

the real environment is in 3D, which makes 2D-per-

ception solutions insufficient, thus forcing solutions

for obstacle detection from a 3D perspective to be

provided.

Several works have proposed obstacle detection

and avoidance employing depth cameras as 3D-per-

ception sensors[15-19]. In [15], a stereo frame-based

camera was employed to avoid obstacles and safely

navigate through an unknown cluttered environment.

In [16], an active-sensing-based obstacle avoidance

paradigm was proposed utilizing a stereo camera with

an independent rotational degree of freedom to sense

the obstacles actively. In [17], the ZED depth camera

was utilized to detect and extract obstacles for robot

navigation. In [18], a stereo camera system provided

a point cloud of the environment to detect obstacles

through time. In [19], a convex optimization frame-

work was proposed utilizing a depth camera for ob-

stacle detection that is vital for real-time autonomous

vehicle operations. However, existing works that uti-

lized depth cameras have limited detection range, lim-

ited FoV with less than 360 degrees, and environ-

mental constraints, i.e., illumination, wind, temper-

ature, atmospheric condition, environmental, and

density. The limitations above notably contribute to

lowering the detection accuracy. Dissimilar to depth

camera characteristics, 3D LiDAR enables a broader

range and FoV with its 360-degree view coverage[25].

Moreover, the 3D LiDAR is keenly robust to environ-

mental obstructions that improve detection accuracy

due to the advantage of laser light compared to an

image frame[26]. By considering such conditions, em-

ploying 3D LiDAR can be one of the best solutions

to improve the accuracy and FoV of obstacle avoid-

ance in the real environment.

Some of the existing works employed 3D LiDAR

for obstacle avoidance[20-24]. In [20], a 3D LiDAR was

employed to detect dynamic obstacles using an

end-to-end sparse tensor-based deep neural network.

In [21], a fully autonomous UAV system was pro-

posed that enables flying safely in cluttered environ-

ments while avoiding dynamic obstacles using 3D

LiDAR. In [22], a real point cloud from 3D LiDAR

was augmented with synthetic obstacles for autono-

mous navigation. In [23], the utilization of 3D LiDAR

for high-accuracy and high-efficiency 3D sensing was

investigated and applied to intelligent transportation

systems. In [24], an obstacle detection that addressed

a partial scanning data availability issue was proposed

employing 3D LiDAR. However, processing high-res-

olution and massive point cloud data from 3D LiDAR

contributes to exponentially escalating computational

burden.In consequence, computational time also rises

exponentially. Considering the conditions above, those

techniques can be challenging to apply in the UAV

obstacle avoidance system where low computational

time is required because of its high mobility[27].

This study introduces a sector-filtering algorithm

to reduce processing point clouds for obstacle de-

tection using 3D LiDAR. To summarize the con-

tribution of current study, Table 1 illustrated a com-

parison between existing 3D LiDAR literature. To be

specified, the point clouds in three-dimensional space

from 3D LiDAR are sectorized into eight zones. In

this manner, all the point clouds in the 3D space can

be mapped into the eight zones according to their lo-

cation in degrees. Subsequently, an angular filter and

Reference Avoid. UAV 360° SLAM Training

[20] ✗ ✗ ✓ ✗ ✓
[21] ✓ ✓ ✗ ✗ ✗

[22] ✗ ✗ ✓ ✗ ✓
[23] ✗ ✗ ✓ ✗ ✓
[24] ✗ ✗ ✗ ✗ ✓

Proposed ✓ ✓ ✓ ✗ ✗

Table 1. Comparison with existing studies of 3D LiDAR
in [20-24].
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intensity filter are employed in each sector to reduce

the dimension of point clouds from 3D to 2D points.

Thus, smaller data dimensions that affect lower

computational complexity and computational time can

be achieved.

1.1 Contributions
To the best of the authors’ knowledge, few works

employ 3D LiDAR and reduce its computational com-

plexity for real-time UAV obstacle avoidance. Table

1 shows that current proposed system includes avoid-

ance system with 360° degree LiDAR. In comparison

with existing reference, the current approach does not

require any training method in order to detect an

object. Therefore, the main contributions are specified

as follows:

• To highlight our contribution, this study considers

a summary of existing algorithms with prox-

imity-based UAV avoidance in Table 2. Based

on the table, this study proposed sector filtering

algorithm for 3D LiDAR because existing avoid-

ance systems are limited to 2D point cloud.

Moreover, 3D LiDAR serves a higher resolution

and accuracy in terms of detecting object (up to

100 meters).

• Due to the large number of 3D point clouds com-

pared to the 2D ones, this study proposed sector

filtering algorithm[28]. In comparison with related

works of 3D LiDAR, the proposed algorithm

could reduce computational time because of less

number of point cloud. However, the tradeoff is

that the trajectory will be longer than 3D-based

SLAM because there is no mapping process. In

exchange, UAV could react faster to avoid in-

coming obstacle.

• The proposed algorithm is integrated with 3D tra-

jectory planning for UAVs.

• Performance of the proposed algorithm is vali-

dated through experiments in the real

environment.

1.2 Paper Organization
The rest of this paper is organized as follows. The

idea of the sector-filtering algorithm for real-time ob-

stacle detection is introduced and described in Section

II. Section III presents obstacle detection and avoid-

ance using 3D LiDAR for UAVs. The proposed algo-

rithm’s experimental results and performance analysis

are discussed in Section IV. Finally, this paper is con-

cluded in Section V.

1.3 Notations
Matrices and vectors are denoted by upper-case and

lower-case bold letters, respectively. The notations

()T and ()-1 denote transpose and matrix inversion

of , respectively. The notation ℝ denotes a real

number.

Fig. 1. Estimated LiDAR orientation (red arrow) and 3D
point cloud (colored dots)

Proximity Sensor
Range

(m)
Res.
(cm)

Acc.
(cm)

PCL
2D

PCL
3D

TRanger Evo 600Hz 8 0.5
+/-
12

✓ ✗

TRanger Evo 60m 60 0.5-2 +/- 6 ✓ ✗

RPLidar C1 12 0.15
+/-
0.5

✓ ✗

RPLidar A2M8 12 0.5
+/-
0.5

✓ ✗

RPLidar S1 40 3 +/- 5 ✓ ✗

Proposed VLP16 100
H: 0.4
V: 2.0

+/- 3 ✓ ✓

Table 2. Existing sensor available for Real-time obstacle
avoidance [31].
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Ⅱ. Sector-filtering Algorithm for Real-time
Obstacle Detection

This section presents the proposed sector-filtering

algorithm for real-time obstacle detection. The ob-

jective of the algorithm is to reduce the computational

complexity of processing massive and high-resolution

point cloud data from 3D LiDAR. The algorithm con-

sists of data acquisition, point cloud conversion, point

cloud filtering, and obstacle mapping.

2.1 Data Acquisition
The initial phase of the proposed scheme involves

collecting detailed point cloud information of the envi-

ronment employing the Velodyne VLP-16 3D LiDAR

sensor, which is affixed to the UAV. This sensor scans

the surroundings in a full 360-degree range, capturing

a multitude of points every second. The amassed point

cloud offers an intricate depiction of the UAV’s sur-

roundings, encompassing potential obstacles.

Without loss of generality, this study consider a

similar approach with [25], where each LiDAR points

is repre-sented as 3-Dimensional Cartesian coor-

dinates (x, y, z). Then, the overall coordinates of point

k is expressed as follows

(1)

where , q, and f denote distance of a point from

the origin, elevation angle, and azimuth angle of the

3D LiDAR, respectively.

Let us consider an object detected, where every part

of the detected object is marked as a point cloud.

Moreover, all the point clouds of the detected object

can be denoted as  ∈ ℝ3. Assumed K point clouds

formed as detected objects, a single point cloud Pk

∈ , where k = {1, … , K}, is located at xk, yk, zk

in a 3D environment  ∈ ℝ3. Due to the limitation

of LiDAR based detection to laser misalignment,

some of the laser points did not bounce back from

environment, resulting in zero value of k-th point

cloud[24]. Let Pk be the variable to store a cartesian

value whether an object is successfully detected or

not[29]. A point cloud is considered to be filled as a

representative of the detected object when the Pk =

1, ∀k ∈ K and considered to be empty when the Pk

= 0, ∀k ∈ K, which can be expressed as

(2)

The generated point clouds  from the detected ob-

ject in the environment  at time t can be expressed

as

Fig. 2. Diagram flow of 3D LiDAR avoidance.
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(3)

(4)

where xK, yK, and zK denote the length, width, and

height of the detected object, respectively. The data

format of each returned LiDAR point is a 4-tuple

formed by its coordinate with respect to the LiDAR

coordinate frame (x, y, z) as well as its intensity de-

noted by .

2.2 Point Cloud Conversion
The raw point cloud data, denoted by (x, y, z),

collected from the 3D LiDAR sensor, as mentioned

in the previous subsection, is in a binary file format.

Unfortunately, data formed in binary format is not

compatible with the Ardupilot robot operating system

(ROS) message. Since this study employs ROS as a

bridge for software control systems and hardware ac-

tuators, directly utilizing raw 3D point cloud data is

unfeasible. Consequently, the raw point cloud data is

required to be converted to a format compatible with

the ROS message. In practice, the Point Cloud Library

(PCL) software is employed in the conversion process

to convert the raw Point Cloud data that is in binary

format into a Point Cloud Data ROS format[30]. At

each time step, the raw point cloud data (x, y, z)

are published in the format of PCL ROS message as

pcl∶∶Point XYZ[29]

2.3 Obstacles Mapping
After the point cloud data have been successfully

converted, all the detected obstacles are mapped and

unified to acknowledge the location of the detected

obstacles in the environment . First, all the detected

obstacles at time t are mapped and gathered in the

environment, denoted by . Assume the 3D LiDAR

has successfully detected N obstacles; the obstacles

map then can be expressed as

(5)

where n, n = 1, 2, …, N denotes the generated point

clouds  of each detected obstacle at time t. The gen-

erated point clouds of a single detected obstacle n

are formed by K point clouds, which can be expressed

as

(6)

where Pk, k = 1, 2, … , K denotes the k-th point cloud

of the single detected obstacle. All the generated point

clouds can then be represented as unified point clouds

from the detected obstacles. It is important to note

that each generated point clouds n is not overlapped

with other point clouds j≠n which can be expressed

as

(7)

Finally, all detected obstacles in the environment

at time t can be expressed

(8)

where N denotes the number of detected obstacles at

time t.

2.4 Point Cloud Filtering
In order to improve the detection accuracy, noise,

and unwanted point clouds that are irrelevant to the

detected obstacles must be removed through the point

cloud filtering process. The filtration procedure in-

cludes utilizing statistical filters like outlier elimi-

nation and voxel grid down-sampling. These filters

aid in eliminating undesired data points and diminish-

ing the overall size of the point cloud data, simplifying

the processing task. The filtering process generally

consists of an angular filter and an intensity filter.

However, a pre-processing filter is introduced to

sharply reduce the noise in horizontal and vertical

planes of the point clouds . The pre-processing for

the horizontal plane is done by setting a threshold
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based on the distance from each point to the origin,

which can be expressed as follows

(9)

where dh denotes the threshold distance in horizontal.

Moreover, the pre-processing for the vertical plane

can be done by setting a threshold based on the verti-

cal location of each point, which can be expressed

as follows

(10)

where dv denotes the maximum vertical distance be-

tween the origin and each point. In addition, the noises

and data outliers can be removed by employing a me-

dian filter, which can be expressed as follows

(11)

where denotes new vertical coordinate of the

point at , the Med{⋅} operator is employed

to calculate the median of a set of data, repre-

sents the vertical point at coordinate coor-

dinate, and Γ denotes the neighbourhood centered on

the point at coordinate .

Angular Filter : The angular filter is designed to re-

move the noises and data outliers concerning the ele-

vation angle (q) and azimuth angle (f) of the 3D

LiDAR. Specifically, the minimum elevation angle is

filtered by setting a threshold on the azimuth angle,

which should be in the range of minimum and max-

imum azimuth angle, which can be expressed as fol-

lows

(12)

where qmin, Φmin, Φmax and m denote the minimum ele-

vation angle, minimum azimuth angle, maximum azi-

muth angle, and constant parameter, respectively, sim-

ilarly, the maximum elevation angle is filtered by set-

ting a threshold on the azimuth angle, which should

be in the range of minimum and maximum azimuth

angle, which can be expressed as follows

(13)

where qmax denotes maximum elevation angle and m
is the constant parameter.

Intensity Filter : The intensity filter is designed to re-

move the noises and data outliers based on distance

from each point to the intensity of the point clouds

that should be in the range of minimum and maximum

intensity, which can be expressed as follows

(14)

where the term refers to distance from

each point, dh is the threshold distance in horizontal,

m is the constant parameter, Ψ denotes the intensity

of point clouds , Λmin is the minimum intensity

threshold for point clouds, and Λmax is the maximum

intensity threshold for point clouds. Furthermore, the

intensity of point clouds in the vertical location can

be filtered by setting a threshold with minimum and

maximum intensity, which can be expressed as fol-

lows

(15)

where |z| refers to the vertical location of each point,

v denotes the vertical distance threshold, and  is

the constant parameter.

2.5 Remapping based on Point Cloud 
Filtering

The filtered point cloud data is subsequently uti-
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lized as inputs of a sectoring process, each delineating

a distinct section of the environment. The sector is

generated by applying a threshold to the point cloud

data, where points falling within the threshold are as-

signed a value of 1, while those outside it are assigned

a value of 0. The classified obstacle maps are com-

bined to create a single map representing the entire

environment.

2.6 Sectorization of Obstacles
Following the filtering stage, all the detected ob-

stacles  are sectorized in order to classify their loca-

tions in the environment  from the FoV of UAV

at time t. As previously mentioned in Section I, the

leverage of employing 3D LiDAR is the 360o FoV

that enables wider detection for the UAV. By utilizing

the benefits mentioned earlier of the 3D LiDAR, the

information about the detected obstacles can be more

specified. In this study, the FoV of 3D LiDAR is sec-

torized into 8 sectors, which implies Sector 1 can be

determined as S1 ∈ [0°, 45°], Sector 2 as S2 ∈ [46°,
90°], Sector 3 as S3 ∈ [91°, 135°], Sector 4 as S4 ∈ 
[136°, 180°], Sector 5 as S5 ∈ [181°, 225°], Sector

6 as S6 ∈ [226°, 270°], Sector 7 as S7 ∈ [271°, 315°],
and Sector 8 as S8 ∈ [316°, 360°].

A single obstacle n(x, y, z) can be categorized as

located in Sector 1,2,3,4,5,6,7, or 8 if its azimuth an-

gle (f), from the spherical coordinates ( , q, f) which

can be obtained by converting its cartesian coordinates

(x, y, z), that is the angle in the x-y plane with respect

to the positive direction of the x-axis, is in the range

of [0°, 45°], [46°, 90°], [91°, 135°], [136°, 180°],

[181°, 225°], [226°, 270°], [271°, 315°], or [316°,
360°], respectively. Moreover, the location of ob-

stacles can be detected, whether in the upper or below

of the UAV, based on the elevation angle (q), which

is the angle to the positive direction of the z-axis.

Ⅲ. Real-time Obstacle Avoidance and 
Navigation for UAV using 3D LiDAR

Following the obstacle detection employing the

proposed sector-filtering algorithm with the 3D

LiDAR, the UAV executes an avoidance maneuver

in real time and continues navigating toward a target

location. In order for the UAV to successfully navi-

gate to the target location while avoiding obstacles

along the way, the UAV navigation is divided into

an obstacle avoidance stage and a navigation stage,

which can be described as follows

3.1 UAV Real-time Obstacle Avoidance
Let us consider a scenario where a UAV equipped

with a 3D LiDAR flies to a target location and meets

obstacles along the way. The UAV detects the ob-

stacles employing the proposed sector-filtering algo-

rithm with the 3D LiDAR mentioned in Section II

and avoids the detected obstacles in real time by em-

ploying a Kalman filter algorithm. The Kalman filter

is employed because of its well-known ability to pre-

dict position accurately by minimizing error measure-

ment from the noises, thus increasing navigation

accuracy. In the Kalman filter algorithm, there are two

phases which can be referred to as a prediction phase

Fig. 3. Hardware configuration of the proposed 3D LiDAR UAV avoidance.
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and an update phase.

Prediction Phase: In the prediction phase, the

Kalman filter assists the UAV in predicting its next

position in the environment while acknowledging the

surrounding obstacles at time t. In other words, the

prediction phase is to estimate the avoidance maneu-

ver for the UAV at each time t. The next position

of UAV at time t can be predicted by

(16)

where denotes a predicted state at t-th time,

denotes the estimated state at t - 1-th time, FUAV de-

notes state transition matrix representing motion mod-

el of the UAV, denotes velocity of the UAV

at t-th time, and Cctr denotes control-input matrix i.e.,

velocity or acceleration command input. Moreover,

the prediction of state covariance matrix at t-th time,

denoted by , can be expressed as

(17)

where is the predicted state covariance matrix

at t - 1-th time and Wnoise denotes the process noise

covariance matrix.

Update Phase: Following the prediction phase, the

update phase is designated to update the position of

the UAV at each time t after the avoidance maneuver.

The position of the UAV at time t can be updated

by

(18)

where s(t) denotes estimated update state at t-th time.

is the estimation of avoidance variable at t-th
time, which can be expressed as

(19)

where Q(t) represents the 3D LiDAR measurement at

t-th time and M denotes the predicted measurement

matrix of the generated 3D map from 3D LiDAR. K(t)

represents the Kalman gain at t-th time, which can

be formulated as

(20)

where L(t) denotes residual covariance, which can be

expressed as

(21)

where Znoise is the measurement of noise covariance

matrix. Finally, the state covariance at t-th time can

be updated by

(22)

where I denotes an identity matrix.

3.2 UAV Navigation

Let us assume the location of the UAV, which is

denoted by g in the  environment, is estimated using

the aforementioned Kalman filter algorithm. The

UAV is located at (x, y, z) ∈  at time t, and can

be expressed as

(23)

At the initial time t = 0, the location of the UAV

in an unknown environment  is initialized at (0,

0, 0) which can be expressed as

(24)

In the navigation process, the UAV moves from

the initial point X0 to the goal point XF. The displace-

ment of the UAV generates a trajectory. The trajectory

of the UAV in the map of environment  can be

expressed as

(25)

Meanwhile, the motion of the UAV r t during the

flight maneuver at time t is given by
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(26)

As the environment condition  and location gt

of the UAV are updated over time, the environment

W is observed from the initial time t0 to time T. It

can be expressed as

(27)

Subsequently, the trajectory of the UAV and map

are estimated by

(28)

where p denotes the probability distribution of the

trajectory of the UAV Gt, ∀t ∈ [0, ] and the envi-

ronment  based on the motion control (o1 , r1) at

the next time step t + 1.

The UAV moves from the initial point X0 to a goal

point XF through an obstacle in environment . The

path planning for navigation is generated based on the

estimated map environment  and location gt of the

UAV.

To generate a path, the environmental condition  

⊂ ℝ3 should acknowledge the free and occupied

space in the map. A point in the 3D space fk(xk, yk,

zk) ∈ ℝ3 is defined as occupied if the point is filled

with a point cloud k(xk, yk, zk) ∈ C. Otherwise, it

is defined as an accessible point. This can be ex-

pressed as

A set of occupied and free points fk, ∀k ∈ K is

called an occupied and accessible space, respectively.

An occupied space implies that an obstacle is located

in that area, whereas a free space indicates that the

area is free from obstacles. The occupied and free

spaces are presented as occupancy grids.

Ⅳ. Experimental Results and Analysis

The performance of the proposed algorithm is vali-

dated through experiments conducted in real

environments. The experimental setup can be seen in

Fig. 3, where an Nvidia Jetson NX was utilized as

an onboard PC to process the point cloud data from

the Velodyne 3D LiDAR in real time. In order to min-

imize delay during data transmission, the onboard PC

and the 3D LiDAR were connected using ethernet.

The 3D LiDAR point cloud data processing and re-

al-time generated UAV trajectory on the onboard PC

were monitored using a laptop on the ground. This

study employs a WiFi router connection to maintain

a stable connection between ROS in the onboard PC

and the ground control station. Fig. 4 depicts a config-

uration of sensors, onboard PC, and the UAV setup.

A hexacopter tarot X6 was employed to enable carry-

ing the loads. The 3D LiDAR, GPS sensor, onboard

PC, and Pixhawk flight controller unit were loaded

on the UAV. The proposed algorithm was im-

Fig. 4. Hardware implementation of UAV 3D LiDAR
avoidance.

Parameter Value

Weather Sunny, Outdoor

Temperature (° C) 28 - 32

Wind speed (m/s) 2 - 3

Trial (count) 10

Distance (count) 9

Observation time each distance (s) 10

Observation time each trial (s) 90

Distance GCS - UAV (m) 5

UAV altitude (m) 3.5

Table 3. Avoidance success-rate experimental setup.
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plemented in Python. To be specified, the whole pro-

posed algorithm was built and implemented in the

Ardupilot and robot operating system (ROS) Melodic

environment.

Figure 5(a) depicts an average detection time in

milliseconds (ms) obtained from real time 3D LiDAR

mapping from [31], current proposed system, and ex-

isting 2D LiDAR avoidance in [32]. The experiment

was conducted by deploying an obstacle at random

different angle of 8 sector and 20 meters distance with

10 times repetition. Based on obtained result, the pro-

posed system is outperformed[31] in term of average

detection rate, since the proposed sector filtering algo-

rithm reduces the total number of PCL. However, the

trade-off of using the 3D LiDAR caused a higher de-

tection time compared with existing 2D LiDAR avoid-

ance in [32]. This is due to the lower resolution of

2D LiDAR scan; thus, the existing 2D based avoid-

ance requires a lower computational complexity.

Figure 5(b) presents the obstacle detection employ-

ing a sector-filtering algorithm and the results are

compared with the real distance measurement. The ex-

perimental setup is described as follows:

• Consider low altitude UAV to calculate the error

between measured and real distance;
• The experiment conducted by moving an obstacle

at a fixed distance from one sector to another sec-

tor generated by proposed algorithm, therefore,

the time elapsed for one distance and varying sec-

tor is 10 seconds;
• To validate the observation, this study consider

10 trials (random 8 sectors selection) for each

fixed distance and approximate measurement by

taking mean value;
• This experiment considers 9 variable distances

which are [100, 98, 97, 96, 92, 90, 82, 80, 77]

meters away from LiDAR.

As shown in the figure, the maximum error of ob-

stacle detection employing the sector-filtering algo-

rithm is below 4% in all the cases. The results show

that the proposed sector-filtering algorithm could de-

tect obstacles correctly in real-time.

Fig. 6(a) depicts the real-world experiment of fil-

tered 3D LiDAR point cloud. It can be seen that the

red dot indicates a laser scan ROS message that is

obtained from the proposed algorithm. In contrast with

Fig. 1, the obtained laser scan is less populated with

a 3D point cloud. Therefore, it can reduce the compu-

tational burden of UAV while estimating the path that

has to be taken to reach the destination. Fig. 6(b) de-

picts an experiment visualization of obstacle detection

through the proposed algorithm. It can be seen that

the algorithm will filter the 3D point cloud and divide

it into 8 sectors. The red curve indicates the drone’s

distance from the closest point cloud, and every sector

will move dynamically according to the filtered point

cloud. Moreover, for ease of use, the obtained distance

is measured in meters and the sector angle in degrees.

Fig. 6(c) shows that the maximum distance of a de-

tected obstacle can go up to 100 meters. Therefore,

UAVs can efficiently estimate and calculate the path

from start to destination. In addition, with the re-

(a) (b)

Fig. 5. (a) Average detection time obtained from 10 trials for different scheme. (b) Average accuracy obtained from 20 trials
for each trial distance.



The Journal of Korean Institute of Communications and Information Sciences '25-01 Vol.50 No.01

166

al-time 8-sector estimation, the UAV can easily evade

an incoming obstacle due to its long-range detection

capability.

Fig. 7 shows the real-world implementation of the

proposed system in the hexacopter UAV. As can be

seen from the figure, the UAV detects an obstacle

after flying from the initial location, successfully

avoids the obstacle, and then continues heading to-

ward the target location. For ease of understanding,

Fig. 7(a) shows the UAV successfully detects an ob-

stacle after flying from the initial location marked as

an orange dot. In addition, a red curve that appears

in this follows Fig. 6(b) behavior, where each red

curve represents generated sector filtering and dis-

tance from UAV to obstacle. Fig. 7(b) shows the UAV

changed its flight directions to avoid the detected ob-

stacle marked by a red triangle and red path as the

trajectory of the UAV. Moreover, as shown in the

figure, the UAV continuously senses obstacles around

its position. Furthermore, Fig. 7(c) shows the UAV

flies toward the target location marked as a green dot

after successfully avoiding the obstacle while sensing

the other obstacles.

Ⅴ. Conclusion

This paper employed a sector-filtering algorithm to

improve real-time obstacle avoidance of UAV using

3D LiDAR. The sector-filtering algorithm mitigated

the high-computational complexity issue of processing

high-resolution and massive point cloud data from 3D

LiDAR at a time by employing sectoring and filtering

processes. Therefore, the computational time for dy-

namic obstacle detection in the 360-degree FoV was

significantly reduced, and real-time obstacle avoid-

ance was performed. The proposed algorithm was va-

lidated through experiments conducted in a real

environment. The results show that the obstacles have

been successfully detected within the 100-meter

range, and the UAV avoidance maneuver is performed

(a) (b) (c)
Fig. 6. (a) Detected object/obstacle from 8 sectors of point cloud. (b) RVIZ visualization of 360° of 2D laser scan ROS
message. (c) The detection range of the proposed system can work up to 100 meters.

(a) (b) (c)
Fig. 7. The real-world implementation of the proposed system. The experimental results of UAV trajectory which (a) avoiding
an obstacle, (b) finding a new path, (c) and continuing path to the end waypoint.
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in real time. The future research directions are de-

scribed as follows:

• Due to the limitation of the current system that

there is no mapping process, it will be difficult

for the UAV to maneuver in complex

environments. The integration of mapping and

optimized pathplanning is considered as an ap-

pealing future research direction.

• A larger number of UAVs with a cooperative

scheme such as multi-cooperative UAVs has po-

tentially integrated with the proposed sector-fil-

tering algorithm in each UAV.
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