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Ⅰ. Introduction

Radio frequency identification (RFID) is a technol-

ogy which enables a reader to attain information stor-

ed at a tag by using radio frequency (RF) waves in

a contactless fashion[1]. RFID networks, which consist

of readers and neighboring tags, have been deployed

in various places, e.g., food industry for tracing the

history of food, healthcare field for controlling blood

transfusion, manufacturing industry for tracking the

position of a component in the manufacturing chain,

and construction industry for monitoring a con-

struction process[2]. Whatever an RFID network is

used for, a basic mission of a reader is to cognize

nearby tags, i.e., to collect identification numbers of

them, since the reader usually has no information

about the surrounding tags a priori[3]. In order to cog-

nize neighboring tags, a reader broadcasts a packet

that inquires about the identification numbers of the

tags lying in the vicinity of the reader. Once a tag

receives the inquiry packet, the tag responds to the

reader by sending a packet that contains the identity

of the tag.

An RFID network often consists of a single reader
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and multiple tags sojourning in the environs of the

reader. Then, a medium access control (MAC) scheme

is needed to support numerous tags, which are geo-

graphically scattered and mutually incommunicable,

to successfully deliver their packets to the common

reader in a wireless fashion. Furthermore, two or more

tags may almost simultaneously respond to the reader

in such an star-configured RFID network. Then, a col-

lision inevitably occurs among the packets bearing the

identities of the tags[4]. Consequently, the reader may

not be able to cognize any tag involved in the

collision. Thus, the MAC scheme, which is adopted

for supporting many tags to be able to successfully

deliver their packets in an RFID network, should also

be equipped with the function of arbitrating collisions

among the packets sent by some tags. Many efforts

have been made to arbitrate a collision that happens

between the packets simultaneously sent by some tags

in an RFID network. Such efforts brought a large

number of collision arbitration methods[5-13]. These

methods are categorized into two groups; one is the

group of collision arbitration methods rooted in

framed slotted ALOHA[14] and the other is the group

of collision arbitration methods based on tree

scheme[15-17]. In a MAC scheme that employ a colli-

sion arbitration method rooted in framed slotted

ALOHA, time is divided into frames and each frame

is again partitioned into a number of slots. First, the

number of slots provided in each frame can be either

identically fixed or dynamically varied. According to

whether a constant number of slots are provided in

each frame or not, MAC schemes adopting collision

arbitration methods rooted in framed slotted ALOHA

are classified into static and dynamic classes.

Secondly, the reader can announce the list of the tags

that the reader has cognized in the previous frame.

According to whether the reader announces the pre-

viously cognized tags or not, MAC schemes using col-

lision arbitration methods based on framed slotted

ALOHA are also stratified into naive and sophisti-

cated classes[3].

A single-reader multiple-tag RFID network is typi-

cally deployed to gather the information about the

items on each of which a tag is attached. For example,

a single-reader multiple-tag RFID network can be

used for automatic check-out at supermarkets[18]. In

such an application, the reader should be able to cog-

nize all the neighboring tags in a limited time. Thus,

it should be possible to expect the time elapsed until

the reader completely cognizes all the nearby tags.

Therefore, it is of utmost importance to analyze the

cognition completion time, i.e., the time elapsed until

the reader finishes cognizing all the tags. Note that

the cognition completion time is random since colli-

sions occur in a random fashion. Thus, it is of neces-

sity to investigate distributional characteristics of the

cognition completion time. Despite the importance of

such an analysis, however, only a few research works

have been reported. In [19], a single-reader multi-

ple-tag RFID network which adopted a MAC scheme

belonging to the static naive class was considered.

Then, the probability that the reader finishes cognizing

all the tags in a finite number of frames were

formulated. Also, closed-form expressions of cogni-

tion completion probabilities were yielded for short

cognition completion times. In [20], a single-reader

multiple-tag RFID network was assumed to employ

a static naive MAC scheme. Then, an approximate

value of the mean cognition completion time was

derived.

In this paper, we consider an RFID network that

consists of single reader and multiple tags near the

reader. The RFID network is also assumed to employ

a MAC scheme rooted in framed slotted ALOHA

which belongs to the static naive class. In the RFID

network, we analyze the cognition completion time,

i.e., the time elapsed until the reader completely cog-

nizes all the tags. Specifically, a discrete-time homo-

geneous non-decreasing Markov chain is constructed

on a finite space so that the cognition completion time

is represented by a hitting time of the Markov chain.

Unfortunately, even the expected value of the hitting

time is not yielded in a tractable form, hence the ex-

pected cognition completion time is not either. As an

alternative, we develop lower and upper bounds on

the expected cognition completion time by taking

steps below. To attain a lower bound, we create

first-order stochastically dominating random varia-

bles[21] and build a fast-converging Markov chain[22]

by using them. Then, a lower bound on the expected
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cognition completion time is yielded by the expected

value of a hitting time of the Markov chain. On the

contrary, to obtain an upper bound, we devise first-or-

der stochastically dominated random variables[21] and

construct a slow-converging Markov chain[22] with

such random variables. Then, an upper bound on the

expected cognition completion time is yielded by the

expected value of a hitting time of the Markov chain.

In order to investigate the properties of the lower and

upper bounds, we also provide numerical examples

which compare lower and upper bounds with exact

value of the expected cognition completion time over

a wide range of key parameters. The numerical exam-

ples disclose that the exact value of the expected cog-

nition completion time is tightly bounded above by

the upper bound in case a relatively small number of

slots comprise each response interval. In addition, the

numerical examples reveal that the lower and upper

bounds exhibit a parametric characteristic of con-

vexity as similarly as the exact value of the expected

cognition completion time does.

The main contributions of this paper are as follows.

• We construct a discrete-time homogeneous

non-deceasing Markov chain to represent the

cognition completion time as a hitting time of

the Markov chain.

• We attain a lower bound on the expected cogni-

tion completion time by building a fast-converg-

ing Markov chain with first-order stochastically

dominating random variables.

• We develop an upper bound on the expected cog-

nition completion time by setting up a slow-con-

verging Markov chain with first-order stochasti-

cally dominated random variables.

• From numerical examples, we reveal that the ex-

act value of the expected cognition completion

time is tightly bounded above by the upper bound

in case each response interval consists of a rela-

tively small number of slots. In addition, we dis-

close that the exact value of the expected cogni-

tion completion time shows higher propinquity

toward the upper bound as the number of tags

increases.

• From numerical examples, we also corroborate

that the lower and upper bounds exhibit a para-

metric characteristic of convexity as similarly as

the exact value of the expected cognition com-

pletion time does.

The paper is organized as follows. In Section 2,

we describe a single-reader multiple-tag RFID net-

work that we discuss in this paper. Also, we depict

the static naive MAC scheme employed by the RFID

network. In Section 3, we construct a discrete-time

homogeneous non-decreasing Markov chain and rep-

resent the cognition completion time as a hitting time

of the Markov chain. In Section 4, we build fast-con-

verging and slow-converging Markov chains, re-

spectively, with first-order stochastically dominating

and dominated random variables. Then, we attain ex-

act lower and upper bounds on the expected cognition

completion time from the Markov chains. Section 5

is devoted to the numerical examples which compares

the upper and lower bounds with the exact value of

the expected cognition completion time.

Ⅱ. RFID Network

In this paper, we consider an RFID network, which

consists of a single reader and multiple tags lying in

the vicinity of the reader, as depicted in Figure 1. In

the network, the reader does not know about neighbor-

ing tags a priori. Thus, the reader should necessarily

cognize nearby tags, i.e., be aware of the identification

numbers of them, first of all. In order to cognize ad-

Fig. 1. Configuration of RFID network.
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jacent tags in the RFID network, the reader sends data,

which contain the information about the time structure

for cognizing tags through the forward physical

channel. Meanwhile, each tag sends data, which typi-

cally include the identification number of the tag,

through the reverse physical channel. All the tags that

comprise the RFID network can be either active or

passive, i.e., operated by battery (capacitor) or not.

If tags are passive, the reader delivers energy to the

tags by transmitting an electrical signal to them. Then,

each tag reflects (or backscatters) the signal to the

reader while letting its data modulate the signal[23].

In the RFID network, a medium access control

(MAC) scheme is mandatory to support many tags

to send their data to the reader so that the reader is

able to receive and also identify all the data.

Furthermore, the MAC scheme should be capable of

arbitrating a collision between data packets since two

or more tags can send their packets almost simulta-

neously[4].

Assume that the RFID network employs a MAC

scheme rooted in framed slotted ALOHA[14], which

belongs to the category of static naive MAC schemes

according to the classification rule addressed in the

introduction. In the MAC scheme, time is divided into

frames and a frame is again partitioned into announce-

ment interval and response interval. A response inter-

val is further divided into a number of slots. (The

duration of every slot is set to be fixed and identical

as well.) Figure 2 shows the time structure adopted

in the MAC scheme.

On the time structure illustrated in Figure 2, the

MAC scheme behaves as follows.

• During the announcement interval of a frame, the

reader broadcasts a packet which contains the in-

formation about the upcoming response interval,

e.g., the number of slots in the response interval

through the forward physical channel

• During the announcement interval, each tag lis-

tens to the forward physical channel. At the end

of the announcement interval, a tag chooses a slot

among the slots belonging to the upcoming re-

sponse interval independently as well as equally

likely. Then, the tag sends a packet that contains

its identification number to the reader during the

selected slot through the reverse physical

channel.

• During each slot of the response interval, the

reader listens to the reverse physical channel.

Then, the reader receives and identifies a packet,

if any. Two or more tags can incidentally choose

a same slot. Then, they send their packets during

the same slot and consequently a collision takes

place among the packets. As a result, the reader

is able to identify none of the packets involved

in the collision. (In practice, the reader may cog-

nize a tag due to the capture phenomenon even

if a collision occurs among some packets[4]. In

this paper, however, we ignore the possibility that

the reader cognizes a tag in spite of the collision

of its packet.) On the other hand, if only one

tag chooses a slot, the tag solely sends a packet

during the slot. Thus, the reader receives the

packet and correctly identifies it. (In this paper,

we assume that the effect of the channel noise

on the tag cognition is negligible.)

• Once the reader receives a packet and correctly

identifies it, the reader cognizes the tag that sent

the packet by reading the identification number.

• During the announcement interval of the next

frame, the reader broadcasts a packet to notify

nearby tags of the structure of the upcoming re-

sponse interval as it did in the previous frame.

However, the reader does not let a tag know

whether the reader cognized it or not in the pre-

vious frame.

• In the next frame, every tag, regardless of wheth-

er it has been cognized by the reader or not, re-

peats as it did in the previous frame since a tag

does not know whether it was cognized by the

reader or not.Fig. 2. Time structure employed by MAC scheme.
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Ⅲ. Cognition Completion Time

Consider a star-configured RFID network, which

consists of a single reader and M neighboring tags,

as described in Section 2. Suppose that the static naive

MAC scheme based on framed slotted ALOHA,

which is presented in Section 2, is employed for the

reader to cognize all the nearby tags. In the MAC

scheme, time is divided into frames and a frame is

again partitioned into announcement interval and re-

sponse interval. Assume that each response interval

is further divided into L slots. Define the cognition

completion time to be the time that the reader spends

for completely cognizing all the neighboring tags, or

more precisely, the time elapsed from the start of the

frame in which the reader begins the cognition process

to the end of frame in which the reader cognizes the

last tag. Since the number of slots in a frame is defi-

nitely finite, it is not guaranteed that the reader cog-

nizes all the tags in a frame. Also, due to the proba-

bilistic nature of packet delivery attempts by tags, the

cognition completion time is inevitably random. In

this section, to analyze the cognition completion time,

we construct a Markov chain which represents a time-

wise collection of cumulative numbers of the tags that

the reader has cognized. Then, we investigate the

properties of the time that the Markov chain hits at

state M, which is equivalent to the cognition com-

pletion time.

For n∈ , let Wn denote the number of tags that

the reader cognizes during the nth frame. Such a num-

ber of tags is equivalent to the number of tags that

respond to the reader without collision in the nth

frame, which is equal to the number of slots in which

only one tag responds during the nth frame. Note that

these Wn tags can include some tags that the reader

has already cognized before the nth frame. In each

frame, every tag independently and equally likely se-

lects a slot among the L slots. Thus, W1, W2, … are

mutually independent and identically distributed.

Consider a random experiment in which M balls are

equally likely put into L boxes[23]. Let B represent the

number of boxes with only one ball in the random

experiment. Let fB : {0, …, min{L, M}} → [0,1] de-

note the mass function of B. Then, we have[24]

(1)

for r ∈ {0, …, min{L, M}}. Note that Wn is equiv-

alent to the number of slots in which only one tag

responds when each of the M tags equally likely se-

lects a slot among the L slots. Thus, Wn = B in dis-

tribution for all n∈ , i.e.,

(2)

for all r ∈ {0, …, min{L, M}}.

For all n∈ , let Vn denote the number of tags

that the reader newly cognizes during the nth frame,

i.e., the number of tags that the reader has never cog-

nized until the end of the (n - 1)st frame and cognizes

for the first time in the nth frame. For n∈ , let

Yn denote the cumulative number of tags that the read-

er newly cognizes until the end of the nth frame. Set

Y0 = 0 almost surely. Then, Yn is related to Yn-1 in a

recursive fashion as follows.

(3)

for n∈ . Note that the Wn tags, which are cognized

by the reader during the nth frame, are composed of

the Vn tags that the reader newly cognizes in the nth

frame and the Wn - Vn tags that the reader has already

cognized in previous frames and cognizes again in the

nth frame. Since each tag selects a slot independently

as well as equally likely, we have

(4)

for r ∈ {0, …, M - x} and x, xn-2, …, x0∈{0, …, M}.

Then, stochastic process {Yn : n∈ {0}∪ } is a dis-

crete-time homogeneous Markov chain on state space

S = {0, …, M} since given Yn-1, Vn is independent of
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Y0, …, Yn-2 for all n∈ . Let m0 denote the initial

distribution for Markov chain {Yn : n∈ {0}∪ }.

Then,

(5)

Also, let gY : S×S→[0,1] denote the transition proba-

bility function of Markov chain {Yn : n∈ {0}∪ }.

Then,

(6)

for y∈ {x, …, M} and x∈ {0, …, M}.

For m∈ {0, …, M - 1}, state m leads to any state

m′∈ {m, …, M} while state m never leads to any

state m′∈ {0, …, M - 1}. On the other hand, state

M leads only to state M itself, i.e., state M is an ab-

sorbing state. Thus, Markov chain {Yn : n∈ {0}∪ }

converges to absorbing state M and there exists a

steady state distribution for {Yn : n∈ {0}∪ }. For

n∈ , let mn denote the distribution for Yn, i.e.,

(7)

for A⊂S[25]. Then, there exists steady state dis-

tribution p for {Yn : n∈ {0}∪ } such that

(8)

as n → ∞ for all A⊂S. Note that

(9)

since M is the unique absorbing state.

Let HY denote the time that Markov chain {Yn : n
∈ {0}∪ } hits at state M, i.e., the time that {Yn :

n∈ {0}∪ } visits state M for the first time. Then,

hitting time HY can be expressed by

(10)

Recall that the cognition completion time is the time

elapsed until the reader cognizes all the tags residing

in the coverage. Since there are M tags in the RFID

network, the cognition completion time is equal to the

time elapsed until Markov chain {Yn : n∈ {0}∪ }

visits state M for the first time. Therefore, the cogni-

tion completion time is equivalent to hitting time HY.

Let fHY denote the mass function of HY. Then, mass

fHY(k) can be calculated by

(11)

for k∈ . Also, the expected value of the hitting time

at state M, i.e., the expected cognition completion time

can be yielded by

(12)

However, multi-step transition probabilities are hard

to express in handy forms and hence the mass of the

hitting time at state M cannot be easily yielded in a

tractable form. Consequently, the expected cognition

completion time is hardly obtainable in a handy form.

Ⅳ. Bounds on Expected Cognition 
Completion Time

As addressed in Section 3, the exact value of the

expected cognition completion time is hardly obtain-

able in a tractable form. As alternatives to the exact

value, we find lower and upper bounds on the ex-

pected cognition completion time in this section.

Let f and y be two distributions on state space

S = {0, …, M}. Then, the total variation distance be-

tween distributions f and y, which is denoted by

d(f,y), is defined as follows[26].

(13)

Recall Markov chain {Yn : n∈ {0}∪ } on state

space S, which is defined by initial distribution and

transition probability function in (5) and (6). Using the

total variation distance, the similarity between transient

state distribution mn in (7) and steady state distribution
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p in (9) can be expressed by d(mn,p)[22,27-29]. Consider

Markov chain {Ŷn : n∈ {0}∪ } on state space S.

For n∈ , set for A⊂ S.

Suppose that {Ŷn : n∈ {0}∪ } has the same steady

state distribution as {Yn : n∈ {0}∪ }. If

(14)

Markov chain {Ŷn : n∈ {0}∪ } is said to converge

to steady state distribution p faster than {Yn : n∈ {0}

∪ }. Otherwise, {Ŷn : n∈ {0}∪ } is said to con-

verge to steady state distribution p slower than {Yn

: n∈ {0}∪ }.

In this section, we construct a Markov chain that

converges faster than {Yn : n∈ {0}∪ } to obtain a

lower bound on the expected cognition completion

time. Also, we build a Markov chain that converge

slower than {Yn : n∈ {0}∪ } to develop an upper

bound on the expected cognition completion time.

4.1 Lower Bound on Expected Cognition 
Completion Time

In this section, we construct a Markov chain that

converges faster than {Yn : n∈ {0}∪ }. Using the

Markov chain, we then derive a lower bound on the

expected cognition completion time.

Recall that Wn denotes the total number of tags that

the reader cognizes during the nth frame while Vn rep-

resents the number of tags that the reader newly cog-

nizes in the nth frame. Then, Wn and Vn are stochasti-

cally ordered as shown in the lemma below.

Lemma 1 For each n∈ , Wn has first-order sto-

chastic dominance over Vn
[21], i.e.,

(15)

for all r ∈ [0, ∞).

Proof: A proof of Lemma 1 is given in the appendix.

Using the property of first-order stochastic domi-

nance, we will construct a fast-converging Markov

chain and then derive a lower bound on the expected

cognition completion time henceforth.

Set Z0 = 0 almost surely. For n∈ , define Zn in

a recursive fashion as follows.

(16)

for n∈ . Since W1, W2, … are mutually independent

and identically distributed, stochastic process {Zn : n
∈ {0}∪ } is a discrete-time homogeneous Markov

chain on state space S = {0, …, M}. Let v0 denote

the initial distribution for Markov chain {Zn : n∈ {0}

∪ }. Then,

(17)

Let gz:S×S → [0,1] denote the transition probability

function of Markov chain {Zn : n∈ {0}∪ }. Then,

(18)

for x∈ {0, …, y} and y∈ {0, …, M-1}. Also,

(19)

for x∈ {0, …, M}.

For m∈ {0, …, M-1}, state m leads to any state

m′∈ {m, …, M} while state m never leads to any

state m′∈ {0, …, m-1}. On the other hand, state

M leads only to state M itself, i.e., state M is an ab-

sorbing state. Thus, {Zn : n∈ {0}∪ } converges to

absorbing state M and there exists a steady state dis-

tribution for Markov chain {Zn : n∈ {0}∪ }. For n
∈ , let Vn denote the distribution for Zn, i.e.,

(20)

for A⊂ S. Then, there is the steady state distribution

for {Zn : n∈ {0}∪ }, denoted by v, such that

(21)

as n → ∞ for all A⊂ S. Note that

(22)

From (22), we observe that v = p and conclude that
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{Zn : n∈ {0}∪ } has the same steady state dis-

tribution as {Yn : n∈ {0}∪ }.

The following lemma compares two Markov chains

{Zn : n∈ {0}∪ } and {Yn : n∈ {0}∪ } in con-

vergence rate and confirms that {Zn : n∈ {0}∪ }

converges to steady state distribution p faster than {Yn

: n∈ {0}∪ }.

Lemma 2

(23)

for all n∈ .

Proof: A proof of Lemma 2 is given in the appendix.

Let HZ denote the time that {Zn : n∈ {0}∪ }

hits at state M, i.e.,

(24)

Note that the hitting time at state M can also be ex-

pressed by

(25)

Let fHZ denote the mass function of Hz. Set

(26)

for k∈ . Then, from (25), the mass of Hz can be

expressed by

(27)

for k∈ . Also, the expected value of Hz is yielded

by

(28)

The theorem below confirms that the expected hit-

ting time at state M of Markov chain {Zn : n∈ {0}∪

} is a lower bound on the expected cognition com-

pletion time.

Theorem 1

(29)

Proof: A proof of Theorem 1 is given in the appendix.

An asymptotic value of the lower bound on the ex-

pected cognition completion time can be obtained as

follows. Let denote a mass function such that

(30)

for z∈ {0}∪ , where

(31)

Then, for each r ∈ {0, …, min{M, L}},

(32)

as M,L → ∞[24]. Thus, for each k∈ ,

(33)

as M,L → ∞. Replacing with in (25) can yield

an asymptotic value of the expectation of Hz as

follows.

(34)

4.2 Upper Bound on Expected Cognition 
Completion Time

In this section, we build a Markov chain that con-

verges slower than {Yn : n∈ {0}∪ }. Using the

Markov chain, we then derive an upper bound on the

expected cognition completion time.

With intent to develop an upper bound on the ex-

pected cognition completion time, consider a sin-

gle-reader multiple-tag RFID network which adopts
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a slightly modified static naive MAC scheme as

follows. If no tag responds to the reader without colli-

sion for the first time during a frame, the reader newly

cognizes no tag as usual. Also, if only one tag colli-

sionlessly responds to the reader for the first time in

a frame, the reader newly cognizes one tag. However,

even if two or more tags respond to the reader without

collision during a frame, the reader can cognize only

one tag in the frame. (The tag that the reader cognizes

is randomly selected among the tags which collision-

lessly respond for the first time.) As a result, the read-

er is able to newly cognize at most one tag in any

frame according to the modified MAC scheme.

For n∈ , let Un denote the number of tags that

the reader newly cognizes during the nth frame in the

RFID network described above. Then, Un∈ {0,1}

for n∈ . Let {Xn : n∈ {0}∪ } denote a stochastic

process such that

(35)

for n∈ , where X0 = 0 almost surely. Then, Xn rep-

resents the cumulative number of the tags that the

reader has newly cognized until the end of the nth

frame. Note that

(36)

and

(37)

for x, xn-2, …, x0∈ {0, …, M}. Thus, stochastic proc-

ess {Xn : n∈ {0}∪ } is a discrete-time homoge-

neous Markov chain on state space S = {0, …, M}.

Further, {Xn : n∈ {0}∪ } is a discrete-time pure

birth Markov chain. Let l0 denote the initial dis-

tribution for Markov chain {Xn : n∈ {0}∪ }. Then,

(38)

Let gX : S×S → [0,1] denote the transition probability

function of Markov chain {Xn : n∈ {0}∪ }. Then,

(39)

for x∈ {0, …, M}, where

(40)

for x∈ {0, …, M}.

Since {Xn : n∈ {0}∪ } is a discrete-time pure

birth Markov chain, {Xn : n∈ {0}∪ } converges to

absorbing state M. Also, there exists a steady state

distribution for Markov chain {Xn : n∈ {0}∪ }. For

n∈ , let ln denote the distribution for Rn, i.e.,

(41)

for A⊂ S. Then, {Xn : n∈ {0}∪ } has the steady

state distribution, denoted by l, such that

(42)

as n → ∞ for all A⊂ S. Note that

(43)

From (43), we observe that k = p and conclude that

{Xn : n∈ {0}∪ } has the same steady state dis-

tribution as {Yn : n∈ {0}∪ }.

Remind that Vn is the random variable representing

the number of tags that the reader newly cognizes in

the nth frame (introduced in Section 3). Then, Un and

Vn are stochastically ordered as stated in the lemma

below.

Lemma 3 For each n∈ , Vn has first-order stochas-

tic dominance over Un, i.e.,

(44)
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for all r ∈ [0, ∞).

Proof: A proof of Lemma 3 is given in the appendix.

Recall that vn is the distribution for Zn. The follow-

ing lemma compares Markov chain {Xn : n∈ {0}∪
} with Markov chain {Yn : n∈ {0}∪ } in con-

vergence rate and confirms that {Xn : n∈ {0}∪ }

converges to steady state distribution p slower than

{Yn : n∈ {0}∪ }.

Lemma 4

(45)

for all n∈ .

Proof: A proof of Lemma 4 is given in the appendix.

Let HX denote the time that {Xn : n∈ {0}∪ } hits

at state M, i.e.,

(46)

Remind that {Xn : n∈ {0}∪ } is a discrete-time

pure birth Markov chain. For x∈ {1, …, M}, let

Gx denote the time elapsed from the moment that {Xn

: n∈ {0}∪ } reaches state x - 1 until {Xn : n∈ {0}

∪ } moves to state x. Then, hitting time HX can be

expressed by

(47)

Note that Gx has the shifted geometric distribution

with parameter bx for x∈ {1, …, M}. Thus,

(48)

for x∈ {1, …, M}. Therefore, the expected hitting

time at state M of {Xn : n∈ {0}∪ } is obtained by

(49)

The theorem below confirms that the expected hit-

ting time at state M of Markov chain {Xn : n∈ {0}∪
} is an upper bound on the expected cognition com-

pletion time.

Theorem 2

(50)

Proof: A proof of Theorem 2 is given in the appendix.

Ⅴ. Numerical Examples

Lower and upper bound on the expected cognition

completion time have been yielded in Section 4. In

this section, these bounds are compared with the exact

value of the expected cognition completion time in

the numerical examples covering a wide range of key

parameters.

Figure 3 illustrates asymptotic lower bound shown

in (34), exact value estimated by using a simulation

method and upper bound presented in (49) with re-

spect to the number of tags residing in the RFID net-

work under discussion. In this figure, the number of

slots comprising a response interval is set to be 5 and

20, and the announcement interval of each frame is

also set to consist of a single slot. In Figure 3, each

slot is assumed to be an interval during which a packet

specified in [30] can be sent. Note that the packet

Fig. 3. Expected cognition completion time with respect
to number of tags in RFID network.
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consists of preamble of 16 bits, flag field of 2 bits,

parameter field of 4 bits, payload of 64 bits, and

checksum field of 16 bits, which is then transmitted

from a tag to the reader with data rate of 40 kbits/sec.

As a result, the slot duration time is equal to 2.6 msec.

When a response interval consists of 5 slots, we par-

ticularly notice that the expected cognition completion

time is tightly bounded above by the upper bound

from Figure 3. When number of tags M∈ {1, …,

30}, the average absolute difference between upper

bound and exact value is calculated to be 0.082 sec.

Against the average of exact values, which is 6.4 sec,

the ratio of the average absolute difference is com-

puted to be 1.28%. On the other hand, the average

absolute difference between upper bound and exact

value for M∈ {1, …, 30} when a response interval

consists of 20 slots is calculated to be 0.625 sec. Also,

the ratio of the average absolute difference is 173%

against the average of exact values, which is 0.36 sec.

This phenomenon is explained by noting that the

chance for two or more tags are cognized in a frame

becomes rare as the number of tags increases while

the number of slots comprising a response interval is

fixed. Consequently, the exact value of the expected

cognition completion time shows a tendency to ap-

proach the upper bound as the number of tags

increases.

Figure 4 demonstrates asymptotic lower bound

shown in (34), exact value estimated by using a simu-

lation method and upper bound presented in (49) with

respect to the number of slots comprising a response

interval. In Figures 4.a and 4.b, the numbers of tags

in the RFID network are set to be 20 and 30,

respectively. In these figures, the announcement inter-

val of each frame is also set to consist of a single

slot. In Figures 4.a and 4.b, each slot is assumed to

be an interval during which a packet proposed in [31]

can be sent. Note that the packet consists of data struc-

ture format identifier field of 8 bits, reserved 8 bits,

header of 24 bits, payload of 64 bits, and checksum

field of 32 bits, which is then transmitted from a tag

to the reader with data rate of 256 kbits/sec. As a

result, the slot duration time is equal to 0.53125 msec.

In Figures 4.a and 4.b as well, we observe that the

exact values of the expected cognition completion

time form a convex downward curve with respect to

the number of slots that comprise a response interval.

From these figures, we also notice that there is a

unique critical number of slots which minimizes the

expected cognition completion time for constituting

a response interval. There is an optimal number of

slots that comprise a response interval in the sense

of minimizing the cognition rate, i.e., the average

number of tags that the reader cognizes during a

frame[8,10]. The existence of such an optimal number

is due to the trade-off between decreasing collision

probability and increasing number of squandered

slots. The existence of a critical number of slots that

minimizes the expected cognition time seems to also

(a)

(b)

Fig. 4. Expected cognition completion time with respect
to number of slots that comprise response interval.
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be brought by the same trade-off. In Figures 4.a and

4.b, we further observe that both lower bound curve

and upper bound curve are convex downward and

there are critical values minimizing lower bound and

upper bound, respectively, for the number of slots

contained in a response interval.

Ⅵ. Conclusions

In this paper, we considered an RFID network that

consists of a single reader and multiple tags sojourn-

ing in the vicinity of the reader. For a number of tags

to be able to successfully respond to the reader while

arbitrating the collision among some responses, we

supposed that the RFID network employs a static na-

ive MAC scheme rooted in framed slotted ALOHA.

In order to analyze the cognition completion time in

the RFID network under discussion, we constructed

a Markov chain to represent the cognition completion

time as a hitting time of the Markov chain. As an

alternative to the exact value, which is hardly obtain-

able in a tractable form, we then attained a lower

bound on the expected cognition completion time by

building a fast-converging Markov chain with first-or-

der stochastically dominating random variables and

developed an upper bound by constructing slow-con-

verging Markov chains with first-order stochastically

dominated random variables. Numerical examples

covering a wide range of key parameters revealed that

the exact value of the expected cognition completion

time is tightly bounded above by the upper bound in

case a relatively small number of slots comprise each

response interval. The examples also disclosed that

the exact value of the expected cognition completion

time shows a propinquity toward the upper bound as

the number of tags increases. Further, the examples

corroborated that the lower and upper bounds exhibit

a parametric characteristic of convexity as similarly

as the exact value of the expected cognition com-

pletion time does. In the future, we will proceed to

analyze the cognition completion time in the RFID

networks which employ static sophisticated, dynamic

naive and dynamic sophisticated MAC schemes.
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Appendix

A.1 Proof of Lemma 1
For n∈ ,

(A1)

for r ∈ [0, ∞). Since

(A2)

we have

(A3)

for r ∈ [0, ∞) and n∈ . Thus, Wn has first-order

dominance over Vn for all n∈ .

A.2 Proof of Lemma 2
Note that

(A4)

for all n∈ [25]. Since p({M}) = 1, we have
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(A5)

for all n∈ . Thus,

(A6)

for all n∈ since vn({M}) = P(Zn ≥ M). By the same

way, we have

(A7)

for all n∈ . Note that has first-order domi-

nance over since Vn has first-order domi-

nance over Un for all n∈ . Thus,

(A8)

for all n∈ .

A.3 Proof of Theorem 1
Note that

(A9)

Also,

(A10)

and

(A11)

for k∈ {0}∪ . Since has first-order sto-

chastic dominance over for all k∈ , we

have

(A12)

A.4 Proof of Lemma 3
Note that

(A13)

for all n∈ . Set

(A14)

for x∈ {0, …, M}. Then,

(A15)

for all n∈ . From (A15), we obtain the inequality

below.

(A16)
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Since Un indicates whether there is at least one tag

that the reader newly cognizes during the nth frame,

we also have the following inequality.

(A17)

for x∈ {0, …, M}.

Note that

(A18)

since from (A16) and P(Xn-1 ≤ M) = 1 =

P(Yn-1≤ M). Thus, we have

(A19)

Note that

(A20)

for x∈ {0, …, M}. Therefore,

(A21)

for all n∈ , which proves that Vn has first-order

dominance over Un for all n∈ since Un only sup-

ports {0,1} while Vn supports {0, …, M}.

A.5 Proof of Lemma 4
Note that

(A22)

for all n∈ [25]. Since p({M}) = 1,

(A23)

for all n∈ . Thus,

(A24)

for all n∈ since . Recall

that in (A7). Note

that has first-order dominance over

since Vn has first-order dominance over Un for all n
∈ . Thus,

(A25)

for all n∈ .

A.6 Proof of Theorem 2
Note that

(A26)

Also,
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(A27)

and

(A28)

for k∈ {0}∪ . Since has first-order stochas-

tic dominance over for all k∈ , we have

(A29)
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