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Ⅰ. Introduction

The millimeter-wave (mmWave) has emerged as

a promising solution[1] for addressing spectrum con-

gestion issues due to its massive available frequency

bands for wireless communications, yet propagation

at the highest frequencies faces a significant large path

loss. This challenge can be mitigated by leveraging

precoding techniques from multiantenna transceivers

to increase spectrum efficiency.

Digital precoding provides more flexibility when

all signal processing is performed. Nonetheless, it re-

quires a radio frequency (RF) chain, a digital-to-ana-

log converter (DAC), and an analog-to-digital con-

verter (ADC) for each antenna element, leading to

hardware costs and power consumption. This becomes

particularly burdensome in scenarios involving large

antenna arrays. Hence, the hybrid precoding archi-

tecture emerges as a promising alternative[2-6]. It lever-

ages an extensive array of phase shifters to execute

high-dimensional analog precoding, addressing sig-

nificant path loss, alongside a limited number of radio

frequency chains for low-dimensional digital

precoding. This hybrid approach provides a near-opti-

mal solution compared to digital precoding and the

requisite flexibility for advanced multiplexing and

multiuser techniques while mitigating hardware costs

and power consumption.

In hybrid precoding, there are two types of analog

precoding structures. First is a fully-connected struc-
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ABSTRACT

Hybrid precoding emerges as a promising solution for minimizing hardware costs and power consumption

while maintaining near-optimal performance for multi-user (MU) multiple-input-single-output (MISO)

communication. It leverages an extensive array of phase shifters to execute high-dimensional analog precoding,

addressing significant path loss, alongside a limited number of radio frequency chains for low-dimensional

digital precoding. This paper introduces a novel approach to hybrid precoding optimization employing Quantum

Neural Networks (QNN) and an unsupervised learning technique, with the objective to maximize spectral

efficiency and reducing the complexity. The QNN is utilized to obtain optimal analog precoding matrix, which

is then utilized to calculate digital precoding using zero-forcing criteria. Simulation results demonstrate the

spectral efficiency of QNN-based hybrid precoding gain improvement compared to other hybrid precoding

solutions with low complexity.
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ture as shown in Figure 1a where all RF chains are

connected to all antenna elements and the second

structure, shown in Figure 1b, adopts a sub-connected

design in where each RF chain connects solely to a

subset of antenna elements. Various approaches and

techniques have been produced surrounding the opti-

mization of hybrid precoding. In [2], the spatial struc-

ture of the mmWave channel is utilized to design the

digital and analog precoding as a sparse reconstruction

problem via orthogonal matching pursuit (OMP) to

improve spectral efficiency. The trade-off shown in

the high computational complexity while the perform-

ance can approach the unconstrained performance

limits. Reference [3] used zero-forcing precoding con-

sidering quantized analog and digital precoding for

fully-connected and sub-connected structures. By uti-

lizing the channel correlation-based codebook, the

sub-connected structure continuously surpasses the

fully connected structure in massive MIMO or low

signal-to-noise ratio scenarios with the assumption the

system operates in a low-mobility scenario with a

large channel block length. Other work[4], proposed

a Kalman-based hybrid precoding scheme, where the

baseband precoding matrix is considered as the state

matrix in Kalman formulation. The Kalman algorithm

utilizing a special designed error formulation, a

two-step process is implemented: first, the RF precod-

ing/combining matrix is calculated, followed by the

design of the digital baseband precoder at the base

station (BS). Although it is claimed to have affordable

complexity, no complexity analysis is provided to sup-

port the assertion.

Moreover, neural networks (NN) have shown po-

tential for solving complex nonconvex optimization

like hybrid precoding optimization[5,6]. In [5], un-

supervised NN with imperfect channel state in-

formation (CSI) is utilized to improve the achievable

sum rate. The purpose of employing unsupervised

learning is to reduce training time and cost, thus the

estimated channel data for training can be used di-

rectly without obtaining the optimal solution. Given

that the results demonstrate it’s better than the tradi-

tional method, a comparison with other NN models

can be provided. In [6], used an attention-based hybrid

precoding approach to maximize the achievable sum

rate while reducing the complexity. The attention lay-

er is used to get inter-user interference features from

input data and the convolutional neural network

(CNN) layer to design the optimized analog pre-

coding.

Furthermore, there are studies[7,8] that have ex-

plored the development of NN and quantum comput-

ing as quantum neural networks (QNN). QNN is a

subclass within variational quantum algorithms

(VQA), where the networks are constructed using

quantum circuits that incorporate parameterized gate

operations[9]. Initially, information is encoded into a

quantum state through a process known as a state

preparation routine or feature map[10]. Once the data

is successfully encoded into the quantum state, the

gates are adjusted and optimized to perform a specific

task, which typically involves minimizing a loss

function. The optimization process iteratively refines

the parameters of the quantum gates to improve the

model performance. The final output of the quantum

(a) Fully-connected.

(b) Sub-connected.

Fig. 1. Analog precoding structure in hybrid precoding.
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model is then derived by applying a classical

post-processing function to the measurement out-

comes obtained from the quantum circuit. QNN can

offer a speedup process based on quantum entangle-

ment and superposition, also reducing complexity by

leveraging quantum computation. Several studies have

already utilized this QNN advantage for wireless com-

munication optimization[11-13].

In this paper, a QNN-based optimization for

MUMISO hybrid precoding with an unsupervised

learning approach is proposed to maximize the spec-

tral efficiency and lowering the complexity. The QNN

used to obtain the optimized analog precoding that

later used to calculate digital precoding based on

zero-forcing criteria. The main contributions of this

paper are:

∙Employs QNN for hybrid precoding optimization

to enhance spectral efficiency and lower

complexity.

∙Unsupervised learning is considered in this study

to avoid the lack of reference points, i.e., data

labels.

∙Represent the optimization problem that will be

solved by quantum-based optimization.

∙The simulation result is presented to evaluate the

proposed method.

The remaining sections of the paper are structured

as follows: The scenario of system model is in-

troduced in Section II. Followed by section III, dis-

cusses the quantum-based approach is covered.

Section IV summarizes the experimental results of this

paper. The paper is finally concluded in Section V.

Notations: Bold italic lowercase and bold uppercase

letters denote vectors and matrices, respectively. (·)-1,

(·)H, and (·)T indicate the inverse, hermitian, and trans-

pose operation. Let |·| and ∥·∥f denotes absolute val-

ues and frobenius norm operation. The ⊗ denote

knocker product operation. Let Ry, Cz and repre-

sents as operation of rotation on the Y axis,

Controlled-Z gate operation, and Hadamard gate.

Ⅱ. System Model

Consider a downlink scenario with MU-MISO sys-

tem, which includes one base station (BS) that serves

K single antenna users with fully-connected archi-

tecture of hybrid precoding as presented in Figure.

2. The BS consists of NTx transmit antennas and NRF

radio frequency chain. The total data streams Ns being

transmitted is equal to K. By adopting a narrowband

block-fading channel model[2,14], the received signal

model y for all K users is given as

(1)

where H = [h1, ..., hK]T∈ is channel matrix; 

FRF∈ is analog precoding matrices; FBB =

[fBB, 1, ..., fBB, Ns]∈ is digital precoding ma-

trices; s∈ is transmitted signal vector, satisfy-

ing E[ssH] = , which is transmitted power as-

sume equally allocated among different users; and n
∈ is noise. Assuming that the channel H is per-

fectly known for the transmitter[2,4]. In practical, the

compressive sensing (CS) based schemes to estimate

the channel H with reduced pilot can be applied in

hybrid precoding scenarios, such as the OMP algo-

rithm[14]. Additionally, deep learning (DL) based

channel estimation approach[15] can also be employed

in hybrid precoding scenario[6].

The Saleh-Valenzuela channel model is utilized,

employing a uniform linear array (ULA)[14] antenna

as the channel matrix is presented by

(2)

Fig. 2. Hybrid precoding with fully-connected architecture.
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where the following distributions are assumed bl ~

(0, 1), ~ (0, 2p) and ~ (0, 2p) to

be the complex path gain, angle of departure and angle

of arrival (AoD and AoA), respectively. The Npath

is the number of paths. Since ULA are assigned at

the base station and users, the ATx ( ϕ) and ARx

( ) as corresponding antenna steering vectors of

transmitter and receiver can be stated as

(3)

(4)

where and l denotes distance between each

antenna and the signal wavelength. The spectral effi-

ciency calculation R[4,6] is presented as

(5)

where g indicate signal-noise-ratio. The optimization

problem of hybrid precoding (FRF and FBB) is ex-

pressed as

(6)

The first condition |FRF|2 = in equation (6)

refers to constant modulus constraint of the analog

precoding, while the second condition∥FRF fBB,k∥f≤
1 refers to normalized power constraint.

Ⅲ. Quantum Based Approach

The quantum based approach will be introduced in

this section as illustrated in Figure. 3.

3.1 QNN for Hybrid Precoding
The set of inputs for QNN are channel matrix H

that can be generated based on an equation (2) and

weight parameter q can be obtained with random nor-

mal distribution (0, ). Every hk will be inputted

to QNN and outputting the row optimize of analog

precoding, later will be constructed as matrix after all

hk already been processed through QNN. Following

output from QNN need to be converted to phase

shift scale as

(7)

Afterward, converted output ϑ will be used to cal-

culate analog precoding[3] as follows.

(8)

Digital precoding matrix could be computed based

on zero-forcing criteria according to effective channel

after obtaining analog precoding FRF
[6] as

(9)

(10)

Fig. 3. Proposed Method QNN Hybrid Precoding Optimization.
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normalization is needed in digital precoding to fulfill

the power constraint as mentioned in equation (6). The

normalization can be stated as follows.

(11)

After all variables have already obtained, the calcu-

lation of the spectral efficiency can be performed

based on equation (5). The loss function can be ex-

pressed as a negative number of the optimization

problem = -R(H, FRF, FBB) since considering un-

supervised learning. Parameter shift rule[16] is employ

for update gradient parameter q, can be describe as

(12)

(13)

where e and are denoted as shifting parameter and

learning rate.

3.2 Quantum Circuit
Figure 4 shows the quantum circuit architecture in

QNN process, there’s three main parts such as input

encoding, learnable parameters with entanglement lay-

ers, and measurement decoding. The operation of in-

put encoding is mapping the classical values into su-

perposition quantum states. Furthermore, the oper-

ation can be given as

(14)

where Ry (·) indicate rotation on Y-axis. Also, the

weight parameter q need to be encoded from classical

values into quantum states by encoding operation. The

operation of encoding the weight parameter is pre-

sented as

(15)

entanglement connecting one qubit to another can be

described as ⊗...⊗

and ⊗ ...⊗

Measurement decoding is performed in the last lay-

er to obtain the outputs of real values from quantum

states into classical values with decoding operation as

follows

(16)

to reduce the error output from noisy quantum com-

puting, the measurement is performed in Nshot times

which is given as

(17)

Fig. 4. Proposed quantum circuit for hybrid precoding optimization.
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where Nshot is a number of shots taken in the quantum

measurement process. Table 1 presents the quantum

operations that have been used in the quantum circuit.

Notation Matrix

Table 1. Quantum Operations

Ⅳ. Experimental Results

In this section, experimental results are presented

to assess the performance of QNN-based hybrid pre-

coding for MU-MISO systems with unsupervised

learning. The simulation runs in IBM Qiskit as a quan-

tum computing platform[17] that performs the QNN op-

eration and, ( , and ). As training

parameters for QNN, can be described in Table 2.

The channel matrix is generated according to equation

2 as input data.

Parameters Value

NTX 4

NRX 1

NRF 2

Ns 2

K 2

Npath 10

[0, 2p]

Nepisode 20

Ndata 200

q

0.01

e

Table 2. Training parameters

4.1 Complexity
The complexity analysis will consider one forward

propagation part and not consider the training com-

plexity, as QNN and classical NN utilize a similar

training algorithm. According to [12], the complexity

of QNN and classical NN can be stated as (Nlayer

Nneuron) and (Nlayer(Nneuron)2) with assumption that an

equal number of neurons in every layer to simplify

the complexity analysis; Nneuron = = ... = .

Furthermore, the Nneuron for QNN is equal to num-

ber of qubits Nqubits, so it can be said Nneuron = Nqubits.

As on the encoding operation, a single operation

yields (1) and all operation of Ry(tanh(․)) are per-

formed simultaneously. So, Ry(tanh(hk,i))

yields (1). The entanglement operation of the first

term as ⊗ ...⊗

yields Nneuron (1)≈ (Nneuron) and second term as

⊗ . . . ⊗

yields Nneuron (1)≈ (Nneuron) as Cz (․) operation

requires (1). The total complexity of entanglement

can be expressed as (Nneuron) + (Nneuron)≈
(Nneuron). The measurement MQNN requires (Nneuron)

as for each measurement in qubit yields (1). As for

one layer, the total complexity can be defined as

(Nneuron). Therefore, the total complexity can be ob-

tained in all layers as UQNN∈ (NlayerNneuron) for

QNN.

In this paper also the number of qubits is equal

to the number of transmit antenna, Nqubits = NTx. As

classical NN, the Nneuron will equal to the number

of inputs being processed Nneuron = 2NTxK. In Section

3.1, QNN needed to do K iterative to construct the

optimized analog precoding matrix. Then, the total

complexity of both QNN and classical NN for hybrid

precoding optimization are shown in Table 3.

Method Complexity

QNN (KNlayerNTx)

Classical NN (Nlayer (2NTxK)2)

Table 3. Complexity comparison

4.2 Loss
The QNN training loss results are illustrated in
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Figure 5. As shown in the figure, the loss training

for QNN offers faster convergence result. On the other

hand, the loss of classical NN can get more lower

compared to the QNN loss result. These loss results

are expected as mentioned in [12], that classical NN

loss can go lower than the QNN loss result.

Fig. 5. Training loss progress with g = 0 dB.

4.3 Spectral Efficiency
Figure 6 shows a comparison of the spectral effi-

ciency from QNN-based hybrid precoding towards

several hybrid precoding solutions such as classical

NN, hybrid Kalman precoding algorithm [4], ZF hy-

brid precoding[18] and MMSE hybrid precoding[19].

The proposed method shows the best performance

along with classical NN compared to the other hybrid

precoding solutions and presents a high achievable

spectral efficiency result while lowering the

complexity. The QNN learns to maximize the con-

struct of analog precoding and the ZF-based criteria

is utilized to minimize interference of the user for dig-

ital precoding, those approaches are given an advant-

age for the proposed QNN hybrid precoding compared

to other hybrid precoding solutions.

Ⅴ. Conclusion

In this paper, hybrid precoding optimization based

on QNN approach with unsupervised learning pro-

posed to improve the achievable spectral efficiency

performance. A channel matrix has been utilized as

input data for QNN in the training process. The QNN

is utilized to obtain optimal analog precoding, which

is subsequently used to compute digital precoding us-

ing the zero-forcing criterion. Unsupervised learning

is employed to maximize the achievable spectral effi-

ciency performance. It’s demonstrated the proposed

method improves the performance result compared to

other hybrid precoding solutions and maintaining the

same level of result as classical NN with reducing

the complexity.

The proposed method has significant potential for

real-world applications in the realm of 5G and future

6G networks. This is particularly can be highlighted

in high-density environments, such as urban areas and

large public events, where needed short time of com-

putation while giving the high data rates and reliable

connectivity.

For future works, extension hybrid precoding for

the MIMO system in QNN scheme can be considered,

also adopting non-orthogonal multiple access

(NOMA) can be one of technique to improve the ach-

ievable spectral efficiency. Relaxing the assumption

i.e. channel perfect knowledge, can be consider as one

of future direction.
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