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Abstract 

As the demand for high-quality rendering for mixed reality, videogame, and simulation has increased, global 

illumination has been actively researched. Monte Carlo path tracing can realize global illumination and produce 

photorealistic scenes that include critical effects such as color bleeding, caustics, multiple light, and shadows. 

If the sampling rate is insufficient, however, the rendered results have a large amount of noise. The most 

successful approach to eliminating or reducing Monte Carlo noise uses a feature-based filter. It exploits the 

scene characteristics such as a position within a world coordinate and a shading normal. In general, the 

techniques are based on the denoised pixel or sample and are computationally expensive. However, the main 

challenge for all of them is to find the appropriate weights for every feature while preserving the details of the 

scene. In this paper, we compare the recent algorithms for removing Monte Carlo noise in terms of their 

performance and quality. We also describe their advantages and disadvantages. As far as we know, this study 

is the first in the world to compare the artificial intelligence-based denoising methods for Monte Carlo 

rendering. 
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1. Introduction 

Rendering generates a final image that can see the virtual objects with the material in a 3D scene. We 

can have any imaginable objects, apply light sources that we would never be able to purchase, or change 

the time of day, or even the planet that we are on. The rendering algorithm receives descriptive input that 

includes information about the properties of their materials, set of light sources, location of objects, and 

camera that represents the eye in the virtual world. The result is an image that captures the scene as if the 

user were viewing it in the real world from that particular camera location. Local illumination considers 

only the direct lights from the light sources, and it has been widely used due to its high performance. 

However, the demand for high-quality rendering has increased for mixed reality, videogame, and 

simulation, and global illumination can satisfy this need. Global illumination simulates rays from light 

sources and models how a ray bounces from one surface onto another (indirect light) as well as from a 

light source onto an object (direct light), and it can create more detailed and realistic lighting. 

Calculating the effects by all rays for photorealistic results is definite and formulated using rendering 
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equations [1]. To simulate significant light transport effects with global illumination in films, animations, 

videogames, and other industrial fields, many researchers and practitioners have used ray tracing-based 

methods. When complex scenes with reflection models are rendered, Monte Carlo (MC) methods are 

practical [2] and can be used to realize global illumination. Path tracing based on MC integration [1,2], 

or particle density estimation such as photon mapping [3,4] has been widely used. Due to the density 

estimation step, photon mapping is a biased but consistent method [5]. Owing to the robustness, 

generality, flexibility, and simplicity, path tracing has been widely used for realistic rendering and 

rendering equations [5,6]. In this method, random samples are selected from the integration domain, and 

the integral is approximated based on the statistical mean of the evaluated integrand of each sample. 

Therefore, evaluating any complex multidimensional integral becomes a simple predictive value 

problem. 

As an effective technique for photorealistic images, MC path tracing can produce critical effects such 

as area lighting, motion blur, and depth of field [1]. It has been used to generate realistic images in 

videogames and films, with high-quality renderings produced from a variety of 3D models. To model all 

types of reflections and refractions in random rays, hybrid methods can be used to exploit the 

advantageous properties of the radiosity and ray tracing. In other words, these algorithms are similar to 

the auction system since both determine an output from many inputs [7]. 

However, the results by path tracing are noisy, and tracing a lot of rays is required [2] for a reasonable 

quality, which makes it slow. For example, hours (or even days) can be required for just a single image. 

Moreover, path tracing suffers from high variance. While tracing the rays, the variance in the MC 

estimator decreases linearly as the number of samples increases [7]. Therefore, a larger number of rays 

finally leads to the reliable estimation of the integral, but the high cost of tracing such rays results in high 

computational costs. In contrast, a small number of samples can be quickly evaluated, although the 

inaccurate estimation of the true value of the integral appears as noise in the final images [3]. This means 

that the rendered images will have a high noise level if they have only a few samples. 

Owing to the importance of fast photorealistic rendering with less noise, this problem has been subject 

to extensive studies for the past three decades, and many researchers have suggested methods. For 

example, a denoising filter [4] can be used. These filters choose samples per pixel from the neighboring 

pixels and analyze them [8] to remove noises with a small number of samples. To denoise a frame within 

a movie, the frame difference method detects a moving object using the difference between several 

consecutive frames, but this method is only suitable for specific scenes that are sensitive to ambient noise 

[9,10]. The recent nonlocal means (NL-means) filters [11,12] were effective and successful denoising 

methods that evaluate every pixel as the weighted average of the neighboring pixels. Besides, data-

adaptive transforms such as independent component analysis (ICA) and principal component analysis 

(PCA), non-data adaptive transform, and BM3D [13] as one of the extensions of the NL-means approach, 

convolutional neural network (CNN)-based denoising methods, MLP models, and deep learning-based 

approach [14] have been suggested. Furthermore, owing to the popularity of the MC method, there has 

been renewed interest in the filtering of general MC noise as well as powerful algorithms for such 

purposes [15-20]. In this study, we described and evaluated these recent researches. 

For the comparison and evaluation of these methods, the scenes are created as datasets including 

SPONZA, Amusement Park, or a product of the physically based ray tracer (PBRT) renderer system. In 

each of these scenes, a wide range of distributed effects with different numbers of triangles and all types 

of light is used. For example, Amusement Park includes 22.9 million triangles and 3.4 million emissive 



Soroor Malekmohammadi Faradounbeh and SeongKi Kim 

 

J Inf Process Syst, Vol.17, No.4, pp.737~753, August 2021 | 739 

triangles (all light comes from emissive and environment maps) wherein most of the emissive triangles 

move within every frame. 

This paper has the following contributions. First, this paper reviews and compares sample-based and 

pixel-based algorithms for MC noise. Second, successful AI-based filtering methods for denoising an 

MC rendered image are described, and studies on both pixel- and sample-based methods are detailed for 

the first time in the world. Third, this paper introduces the commonly used scenes and datasets to evaluate 

different methods. 

The rest of this paper is organized as follows: Section 2 describes the proposed algorithms; Section 3 

introduces two common datasets in this field and summarizes the advantages and disadvantages of the 

algorithms in terms of their performance and rendering aspects; finally, Section 4 concludes our study. 

 

 

2. Overview of Noise Removal Filters 

This section describes the developed algorithms for denoising in a rendered scene. In general, the noise 

removal filters can be categorized as shown in Fig. 1. 

MC methods have noise in many cases because they rely on random point samples of a complex 

integrand. This has spurred the development of denoising filters, which can be categorized into two 

techniques as shown in Fig. 1. Sample-based techniques track each sample [21], whereas pixel-based 

methods remove noise on the rendered image directly [17,22]. The goal of every filtering approach is to 

minimize the difference between the filter and ground truth images. 

 

 

Fig. 1. Taxonomy of denoising methods. 

 

2.1 Pixel-based Filters 

Pixel-based filters aggregate all samples in a single per-pixel average. Although they are efficient in 

terms of storage and unaffected by the complexity of the scene, flat images prevent artists from using 

deep-compositing techniques [23]. Pixel-based denoising methods operate on pixels rather than samples, so 

they can efficiently produce a high-quality denoised result [24]. 

 

2.1.1 Common features 

The first step is to render a noisy image with a few samples, and next is to apply the filter for the 

denoised results. Fig. 2 shows these processes. 
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Fig. 2. Overall processing of denoising. 

 

As the first stage, operations such as normalization or gradient extraction are performed. The second 

one is to reduce or eliminate the noise, and the last step involves performing exponential transform or 

reconstruction. A filter computes the weighted average of all neighborhood pixels to generate the filtered 

pixel [18]. For example, if we want to have color �  at single pixel � , based on a common filtering 

approach, the algorithm calculates the weighted average of all neighborhood pixels �(�) around pixel �: 

 

�̂� =
∑ ��� �̄��∈�(�)

∑ ����∈�(�)

 (1) 

 

where ��� is the weight between pixels � and 	 and is defined by the filter, and �̄� is a color at pixel 	. 

Weight ��� defines a type of filter. For example, in a cross bilateral filter, this weight is given by this 

equation, which is a multiplication of several terms that compute a Gaussian distance between two pixels 

in terms of the color of the screen pixel and several additional features, including the positions, normal 

shading, and texture. 

All methods have a specific filter that takes a set of the same features in a neighborhood around every 

pixel [25]. It also takes a set of filter parameters that vary per pixel to output the filtered pixel [18]. 

 

2.1.2 Kernel-predicting convolutional networks (KPCN) 

Developed by Bako et al. [17], KPCN uses a CNN that has emerged in recent years as an epidemic in 

machine learning, particularly on the problem of image denoising [26-28]. The learning-based techniques 

are effective for denoising MC rendering methods [29,30]. 

This approach used a deep CNN, but the layers of this network are not fully connected to avoid the 

danger of overfitting and increase the performance during the training phase. Rectified Linear Unit 

(ReLU) activations (
�(�) = ��
( 0,�)) are used by all layers except the last layer, which uses the 

identify function (
�(�) = �) [13]. 

CNNs can learn nonlinear functions of the input features (it is significant to achieve better outputs) by 

combining many of these layers with activation functions together [28]. Each layer within a CNN is 

applied to multiple spatial kernels with learnable weights. These are naturally suited for the denoising 

task and used before traditional noise removal [26]. 

Fig. 3 illustrates the general structure of this method. Inputs are divided into specular and diffuse light 

and are processed by independent pipelines. In general, CNN predicts a different smoothing filter kernel 

for every pixel [31]. 

KPCN yields good denoising performance for a relatively small number of instances. More complex 

denoising functions can increase flexibility, reduce modeling bias, and prevent overfitting. Using these 

functions and ensuring that there are sufficient samples to estimate can lead to the generation of a generic 

model that can generalize the denoising result to images that are not used during training. 
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Fig. 3. The general structure of KCPN method [13]. 

 

2.1.3 Learning-based filter (LBF) 

LBF improves PBRT2 [26], and noisy input data have a complex relationship with the optimal filter 

parameters. In addition, this method uses features generated by the rendering system. The neighboring 

noisy samples are used to compute the secondary features, which serve as inputs to the neural network. 

This method uses a multilayer perceptron neural network and combines the network with a matching 

filter during both training and testing. This trained network can generate filtered images on a wide range 

of distributed effects such as depth of field, motion blur, area lighting, glossy reflections, and global 

illumination [18]. The most important challenge is to counteract the distributed effects, and filter 

adjustment is required for all features while maintaining the details as much as possible [15]. This method 

is shown in Fig. 4. 

This method can be extended to perform animated sequences by applying a filtering process in the 

spatiotemporal volumes. 

 

 

Fig. 4. The LBF method structure uses a multi-layer perceptron neural network and combines it directly 
with a matching filter during training and testing [18]. 

 

2.1.4 Reservoir-based spatiotemporal importance resampling (ReSTIR) 

This is an MC approach used in direct lighting based on a generalization of the resampled importance 

sampling, which allows unbiased spatial samples, As an algorithm used for all direct light, this algorithm 

is based on the resampled important sampling [32]. Resampling generates equally weighted samples for 

importance sampling. The importance of resampling parameters lies in the reduction of near-optimal 

variance [32]. Unlike post-processing methods, this method such as most denoising methods can trace 

additional samples as well as the criteria that determine where this method has failed and allocate 

additional samples to such areas. ReSTIR interactively samples direct lighting from thousands or millions 

of dynamic emissive triangles and supports millions of polygonal lights (even off-screen, and lights can 

move with the environment) in real time with shadows [33]. Through such filtering technique, denoising 

need not remain a post-process but is performed once rendering is effectively completed; in addition, 

denoising is moved into the core of the renderer, filtering the probability density functions rather than 

colors. Fig. 5 illustrates the steps of the ReSTIR algorithm. 
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Fig. 5. Steps of ReSTIR algorithm. 
 

As shown in Fig. 5, with this method, m independent per-pixel light candidates are first generated and 

resampled. Next, the selected samples from this step are tested for their visibility, and occluded samples 

are discarded. The selected samples in each pixel reservoir are then combined with the prior frame’s 

output, determined using back-projection. For the leverage information from a pixel’s neighbors, n 

rounds of spatial reuse are applied. Finally, the image is shaded, and the final reservoirs are forwarded to 

the next frame. 

The main data structure is composed of image buffers, which makes this method fast, simple, and 

efficient in terms of memory. However, the usage of this method is limited to tasks conducted on the first 

vertex of the camera path. Therefore, it cannot be used easily for direct light or global illumination beyond 

the first hit. 

A wide range of prior approaches has addressed light sampling and sample reuse in rendering or has 

developed mathematical tools related to this work. 
 

2.1.5 Spatiotemporal variance-guided filtering (SVGF) 

This algorithm separates the direct and indirect effects by light sources and denoises them independently; 

in addition, it estimates the amount of noise in different regions within the image to provide more useful 

information for denoising routines. This means that the history buffers (from a prior frame reconstruction) 

and normal, albedo, depth, motion vectors, and mesh ID rasterization are required. No neural network or 

learning algorithms are used in this technique. In general, this is a reconstruction method that can generate 

a stable temporal sequence of images from global illumination in any path-per-pixel [19]. 

The reconstruction filter is shown in Fig. 6. It uses temporal accumulation to determine the integrated 

color/moments and variance estimation to obtain the filtered color [19]. 

 

 

Fig. 6. The general structure of SVGF [19]. 
 

2.1.6 Adaptive SVGF (A-SVGF) 

Adaptive SVGF is a newer technique that removes problems such as flicker by using an adaptive 

temporal filter. This method estimates a gradient for real-time adaptive temporal filtering, which runs on 

modern graphics hardware at speeds of 2 ms at 1080 pixels, and it can be included by deferred renderers 

[34]. The SVGF method [19] introduces temporal blur, and the light sequence continues to be illuminated 

when the light source is turned off and glossy objects exist (Fig. 7). The difference between A-SVGF and 

SVGF is that a simple 3×3 box filter is used by the À-trous wavelet, reducing the quality but boasting of 

significant speed. This algorithm estimates, reconstructs sparse temporal gradients that are used to adjust 
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time coefficient α (accumulation element) per pixel. The temporal gradient is measured to control 

temporal accumulation adaptively, which depends on the shading function of the previous frame and 

current frame [19]. In general, reliable historical data are rejected and replaced with constant temporal 

weight α using the weight of each adaptive pixel calculated from the temporal gradients. To compute the 

per-pixel weight, the resulting dense gradient field is used [34]. This algorithm is based on the resampling 

of important samples. 

 

 

Fig. 7. An overview of A-SVGF method. 
 

Compared to previous studies, performance is significantly increased and temporal stability including 

is improved when reconstructing the final image. This temporal filter can be integrated into the deferred 

renderer and is 5%–47% better matched with reference images compared to previous crossover filters. In 

addition, this algorithm produces temporarily stable outcomes 10 times faster and requires 10 ms (± 15%) 

if it runs on modern graphics hardware with resolution of 1920×1080 [19]. 

 

2.1.7 Machine learning-based denoising 

Recently, machine learning has been applied to denoising. After starting as a solution to the problem 

of classifying noisy text [35,36], the problem domain was expanded to include more computer graphics 

focused on problems such as denoising within the path-traced images [17,37-40], real-time denoising for 

ray tracing [15,41], general image reconstruction, and upscaling images while maintaining the details 

through super-resolution. However, the difficulty in using these lies in their computational cost. Without 

dedicated hardware or tradeoff in quality and performance, it is difficult to achieve real-time denoising 

with high quality through machine learning. 

Thus, research has been conducted in the area of algorithmic techniques to denoise images in real time 

using spherical harmonics to encode low-frequency data, guided filters for blurring while avoiding sharp 

changes in the normal or albedo information, and spatiotemporal reprojection for reusing data that are 

not view-dependent, such as global illumination or shadows. 

Nowadays, MC-based rendering is widespread in visual effects production and animation [42]. The 

latest method used in feature film production is machine learning denoising, which follows the approach by 

Vogels et al. [38]. However, they modified the neural network architecture to increase the performance. 

The denoiser separately denoises three parts: (1) color output, (2) diffusion divided by the rendered 

surface color, and (3) specular reflection. It then multiplies the denoised diffusion and adds the 

multiplication result to the specular part to obtain the final denoised color. The alpha is also denoised in 

an additional pass. In general, the neural network-based solutions can reduce the time [43]. 
 

2.1.8 Autoencoder 

An autoencoder is one of the types of neural networks with an encoder and a decoder phase in the input 
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and output section, respectively [44]. The basic architecture of Autoencoder shown in Fig. 8. An 

autoencoder is trained to correct the imperfect input and copy it to output. In fact, the autoencoder 

attempts to learn how to undo its input corruption. These phases let the network operation continuously 

decrease and increase. Moreover, if the hidden layer of the encoder is non-linear, it will differently behave 

from PCA, and it will be able to capture multi-modal aspects of the input distribution. Generally, due to 

the high-frequency signals of PCA filtering, the details of an image can be lost when reconstructing an 

image [45]. Due to the limited capacity of the neural network, however, it can lead to compromised image 

quality compared to offline techniques. On the other hand, an exact value for the rule strength has been 

reached, and the optimal solution is achieved by training the same as an activation function in a finite 

period at the fuzzy-based techniques, with no complicated mathematical models required [46]. Fuzzy 

approaches have already been applied in many areas such as filtering and image improvement, and they 

have the potential to combine with other techniques for denoising global illumination. Generally, fuzzy-

based filtration is regarded as a nonlinear filtering technique [47]. Fuzzy systems can also be used to 

reduce the uncertainty in stacks of autoencoders [48]. 

 

 

Fig. 8. Overview of autoencoder structure. 

 

2.2 Sample-based Filters 

One of the other subsets of denoising approaches is sample-based, meaning they work on individual 

samples and theoretically allow the production of suitable inputs for deep-compositing pipelines as a 

result. However, none of the denoising techniques are general enough to be used in production. Light 

field reconstruction techniques [49,50] handle only a subset of light transport cases, and generic methods 

[51,52] scale poorly owing to the high sampling rates needed for high-end production; the recent 

approach by Bauszat et al. [53] handles only indirect illumination and depth of field, relying solely on 

geometric buffers to guide the filter, so it is prone to incompatibility with high sampling rates. 
 

2.2.1 Sample-based Monte Carlo denoising (SBMCD) 

A convolutional network can learn to denoise MC renderings directly from the samples. However, both 

variance and covariance can be estimated and calculated with samples [54]. It is challenging to learn the 

mapping between samples and images because the samples should be treated in a permutation-invariant 

manner, and the samples’ order is arbitrary. 

If the images are too noisy, however, post-processing methods are often unable to recover clean and 

sharp images. Usually, hundreds of samples per pixel are required on average for a good-quality image 

(It will be a tedious, time-consuming process). Compared to previous methods, the sample-based kernel-
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splatting denoising (SBKSD) [21] produces cleaner outputs with an extremely small number of samples. 

Based on the kernel-predicting architecture, the individual samples are splatted on adjacent pixels (as 

shown in Fig. 9). Splatting is a natural solution for situations such as depth-of-field, motion blur, and 

many light transmission paths, where it is easier to predict which pixels a sample contributes to, instead 

of a collection method that should specify for each pixel which samples (or surrounding pixels) are 

relevant. By using individual sample embeddings and context features per pixel, this architecture is not 

fixed for replacing each pixel of samples. 

Compared to previous recent approaches, this method handles severe noise of images with low samples 

count (e.g., 4 SPP [samples per pixel]) and provides higher-quality results both numerically and visually. 

 

 

Fig. 9. Architecture of sampled-based kernel-splatting denoising method [20]. Dividing the extraction of 
per-sample feature and sharing spatial information in alternating steps (scattering or splatting) are a more 
natural operation for a sample-based configuration [21]. 

 

 

3. Datasets and Scenes 

In general, for the evaluation and testing of denoising methods for MC rendering, rendered scenes such 

as SPONZA or renderers like PBRT or other specific renderers are used to create validation data and 

scenes. 
 

3.1 SPONZA 

The SPONZA Atrium model was created by Marko Dabrovic and has been widely used as a lighting 

test [55]. The SPONZA sample scene is a sample that can be used by developers and researchers to test 

lighting for their games, setups, and new methods. Fig. 10 shows the scenes. 

 

  
Fig. 10. SPONZA Atrium scenes. 

 

3.2 Classroom Scene 

The Classroom scene has similar SPONZA scene features and different lighting setup. The classroom 
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scene has directional light source, sky illumination, and rich set of textures, thin geometric shapes, and 

layered materials [56]. 
 

3.3 Dungeon Scene 

The dungeon scene is illuminated by using multiple static area light sources [19]. This scene has many 

challenging situations such as moving shadows, differently shaded regions with sharp boundaries, rapidly 

changing direct/indirect illumination, and direct/indirect glossy reflection. 
 

3.4 Physically Based Ray Tracer 

Physics-based rendering is a widely adopted practical roadmap with more accurately simulating 

materials and lights and is used for most physically based shading and lighting systems such as film 

production. These scenes are based on the ray-tracing algorithm and implemented and designed with 

three main goals: physically based, illustrative, and complete [34]. Fig. 11 shows some of the scenes 

produced by PBRT and which have been used in most filter denoising studies. 

 

 

 

 

(a) 
 

(b) (c) (d) 

Fig. 11. Some scenes are available for use with PBRT. (a) Modern-bathroom model includes depth of 
field and soft indirect lighting. The overall appearance of the scene is significantly affected by the indirect 
illumination, due to the existence of mirrors and bright white walls. (b) Another modern-bathroom scene. 
Visible noise-free rendering is challenging: specular light transmission for efficient render by large 
mirrors and light sources in a very small area surrounded by glass lamps is not too easy. (c) Interior scene 
with two illumination configurations. The day type is primarily illuminated by light coming through the 
windows from outdoors, whereas the night version is illuminated by the two lights in the scene. (d) A 
sophisticated model inspired by a hotel in Mexico (San Miguel de Allende) [34]. 

 

 

4. Evaluation 

4.1 Metrics 

To measure the noise removal effects by method, we used the root-mean-square error (R-MSE) and 
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structural similarity index (SSIM) [57] error metrics that compared to a 4,096 SPP image as a reference 

because these metrics are widely used for the noise removal filters. We also measured the weight relative 

mean square error (Rel-MSE) [58] relative to brightness. Rel-MSE is calculated by dividing the estimated 

MSE by the square value of the scale selected with a small constant to avoid over-emphasis in very dark 

image areas. 

Table 1 shows the equation and the parameters for the measurement. 

 

Table 1. Equations for the performance measurement 

Method Equation Parameters 

MSE 
1

������(�, �) − 	(�, �)
�
�

���

�

���

 
�(�, �), 	(�, �): original and denoised images 

�, �: pixel position in � × � image. 

SSIM 
(2�	�
 + ��)(2
	
 + ��)

(�	� + �
� + ��)(
	� + 

� + ��) 
�	 ,�
;
	�,

�;
	
: the average values of �, 	 

��, ��: two parameters that are used to stabilize the 

division with a weak denominator 

 

4.2 Results 

Due to the different conditions of each scene (test set), we provide the evaluation result on SPONZA 

in Table 2 and on PBRT renderer in Table 3. In Table 2, SPP is the number of light rays existing in every 

pixel, and we can obtain a more converged image with more SPPs. 

A-SVGF and neural bilateral grid denoiser [56] have better results than LBF and SVGF. However, the 

KPCN method with 4 SPPs generates much better result than the A-SVGF method with a few modifi-

cations because it benefits from deep learning and neural networks. Table 3 compares their performance 

with the PBRT renderer. 

In this comparison, SBMCD as a sample-based method shows better results with 4 SPPs compared to 

two pixel-based methods (LBF and deep Monte Carlo rendering [23]). Based on these results, it is 

expected that better results with few SPPs can be obtained by improving the sample-based methods. 

 

Table 2. Noise removal effects of denoising algorithms on the SPONZA test set 

Filter methods SSIM R-MSE Rel-MSE SPP 

KPCN - - ~0.006 4 

SVGF 0.4315 0.0753 - 1 

LBF 0.7770 0.0320 - 1 

A-SVGF 0.9227 0.0227 - 1 

An autoencoder-based method (neural 

bilateral grid denoiser) 

0.9270 - - 1 

 

Table 3. Noise removal effects of denoising algorithms on PBRT renderer’s test set 

Filter methods DSSIM (1-SSIM) R-MSE SPP 

SBMCD 0.0685 0.0482 4 

LBF 0.0869 1.5814 4 

A machine learning-based method (deep Monte 

Carlo rendering) 

0.1294 1.0867 4 
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Figs. 12 show some results of the methods on datasets, and they are taken while moving the camera. 

All comparative methods record and maintain outstanding structures and provide acceptable and noise-

free results. 

Some examples of the results that apply pixel-based methods, such as KPCN and LBF, as well as 

sample-based methods (SBMCD) are shown in Fig. 12. All of these methods have been able to provide 

noise-free results with different inputs; and as can be seen in the picture, the SBMCD method is very 

accurate, and the results are similar to the ground-truth image. 

We also measured the required time for removing noises to compare their efficiency, and the results 

are presented in Table 4. These denoisers were evaluated on the system with Intel i7-6900K CPU and 

NVIDIA Titan XP GPU. The elapsed time (seconds) is considered to process a 1024×1024 image based 

on the PBRT dataset. 

 

 

Fig. 12. Comparison between sample-based and pixel-based methods [17,21,31]. 
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Table 4. Elapsed time of denoising algorithms on PBRT renderer’s test set 

Filter methods  Type 4 SPP 8 SPP 16SPP 32 SPP 64 SPP 128 SPP 

LBF  Pixel-based and machine learning 10.4 - - - - - 

KPCN Pixel-based 14.6 - - - - - 

SBMCD Sample-based 6.0 10.1 18.9 35.9 67.0 156.5 

 

The elapsed time of pixel-based methods is constant because all of them should check all pixels and 

calculate the average regardless of the status of a pixel, but the sample-based method increases linearly 

with the number of samples. However, the use of machine learning acts as an optimizer and takes less 

time than others. 

Other methods such as A-SVGF and SVGF can be executed in real time with the benefit of machine 

learning, and the neural bilateral grid denoiser as an autoencoder approach can also remove the noises in 

real time. The elapsed time of real-time denoising algorithms is shown in Table 5. The scenes are 

animated with different camera flythroughs and were rendered at 60 FPS (frame per second). To check 

whether these approaches are applicable to interactive scenarios, the time was measured by the 

breakdown of the frame time. The common filters cannot handle this kind of animation due to the global 

effect on shading, including issues of temporal blur and stability. 
 

Table 5. Elapsed time of real-time denoising algorithms 

Filter methods  Type Time (ms) Scene Device 

A-SVGF Pixel-based and machine learning <2 Dungeon NVIDIA Titan XP 

SVGF Pixel-based and machine learning 4.400 Classroom NVIDIA Titan XP 

Neural bilateral grid denoiser Pixel-based and autoencoder 9.407 Classroom NVIDIA RTX 2080 

 

 

5. Conclusion 

Recently, there have been numerous studies on denoising algorithms. Rendering fully converged, 

noise-free images is often too expensive, and much effort has been made to improve the image quality 

produced from this renderer, especially to obtain high-quality results with fewer samples, which is critical 

for high-performance/realistic rendering. In this study, we compared some of these denoising algorithms 

to show their potential and balance between quality and performance. As previously mentioned, the LBF, 

KPCN, SVGF, A-SVGF, and ReSTIR algorithms introduced for denoising are pixel-based, and LBF, 

KPCN, and A-SVGF used the advantage of neural networks to improve the performance of their systems. 

Moreover, except the ReSTIR algorithm, the rest of the algorithms use a similar process and include post-

processing steps. In addition to comparing and introducing the pixel-based denoising methods (as 

common methods), other methods such as sample-based methods (SBMCD) are also discussed. We also 

tried to show the potential of using machine learning methods (deep Monte Carlo rendering) and neural 

networks (neural bilateral grid denoiser) to improve the final quality. 

This paper has limitations, however. Noise removal for augmented reality (AR) applications has not 

been explored in this study. This field can provide researchers with a range of opportunities and research 

topics. Furthermore, other methods of artificial intelligence, neural networks, and fuzzy logic can be used 

to remove noises within the resulting images. In the future, we plan to investigate these methods. 
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