

www.kips.or.kr Copyright© 2020 KIPS

Energy-Aware Virtual Data Center Embedding

Xiao Ma*, Zhongbao Zhang*, and Sen Su*

Abstract

As one of the most significant challenges in the virtual data center, the virtual data center embedding has

attracted extensive attention from researchers. The existing research works mainly focus on how to design

algorithms to increase operating revenue. However, they ignore the energy consumption issue of the physical

data center in virtual data center embedding. In this paper, we focus on studying the energy-aware virtual data

center embedding problem. Specifically, we first propose an energy consumption model. It includes the energy

consumption models of the virtual machine node and the virtual switch node, aiming to quantitatively measure

the energy consumption in virtual data center embedding. Based on such a model, we propose two algorithms

regarding virtual data center embedding: one is heuristic, and the other is based on particle swarm optimization.

The second algorithm provides a better solution to virtual data center embedding by leveraging the evolution

process of particle swarm optimization. Finally, experiment results show that our proposed algorithms can

effectively save energy while guaranteeing the embedding success rate.

Keywords

Energy-Aware, Particle Swarm Optimization, Virtual Data Center Embedding, Virtual Link, Virtual Node

1. Introduction

Virtual data center (VDC) is a new form of cloud computing applied to the data center. VDC abstractly

integrates physical resources through virtualization technology, thus dynamically allocating and

scheduling resources. There are two benefits: sharing resources of physical data center among multiple

users, and greatly reducing the operating costs of data centers [1].

There are two roles existing in VDC: infrastructure provider (InP) and service provider (SP). The

former controls the infrastructure that runs in the entire data center. The latter creates its VDC above the

infrastructure and deploys corresponding services and applications for end users. Each VDC embedding

request has a network topology consisting of a certain amount of virtual nodes and virtual links with

resource requirements. And there are two types of virtual nodes: virtual machine nodes and virtual switch

nodes, which have demands for resources (like CPU, memory and hard disk) and switch ports,

respectively. Virtual links often represent the need for communication bandwidth. When InP provides a

VDC embedding request service for an SP, it needs to find nodes and links that meet these resource

requirements in the physical data center network, and then allocate corresponding resources for the

deployment of protocols or services, etc. This is termed as the problem of VDC embedding.

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received August 9, 2018; first revision November 14, 2018; accepted January 2, 2019; onlinefirst July 29, 2019.
Corresponding Author: Xiao Ma (max106485@bupt.edu.cn)

* State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunication, Beijing, China
(max106485@bupt.edu.cn, zhongbaozb@bupt.edu.cn, susen@bupt.edu.cn)

J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020 ISSN 1976-913X (Print)

https://doi.org/10.3745/JIPS.02.0112 ISSN 2092-805X (Electronic)

Xiao Ma, Zhongbao Zhang, and Sen Su

J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020 | 461

VDC embedding has always been a hot topic in recent researches. Existing research work focuses on

how to enable InP to accept more VDC embedding requests, or to provide VDC embedding with fixed

bandwidth for offering better service guarantees. However, the energy consumption of current InP during

its operation has not received sufficient attention. For example, in China, China Mobile Communications

Corporation needs trillions of watt-hours of electricity per year, which is equal to the annual electricity

consumption of tens of millions of households. This shows that the issue of energy consumption in the

Internet industry cannot be ignored. Therefore, to maximize profits, InP also needs to minimize energy

consumption to reduce operating costs.

There are three challenges in achieving the goal of minimizing energy consumption.

The first challenge is how to model and quantify energy consumption. This paper first classifies

physical nodes into two categories: server nodes and switch nodes. The former is used to perform

computing tasks; while the latter is used to transmit and forward communication data between physical

nodes. Then according to the state of the nodes, they need to be further divided into powering-on nodes

and powering-off nodes. However, changing from the unopened mode to the opened mode requires a part

of additional energy consumption overhead. This paper establishes a corresponding energy consumption

model for different types of nodes, then performs different quantitative analyses based on the model, and

finally calculates the entire energy consumption of physical nodes during the VDC embedding process.

The second challenge is how to design an energy-aware VDC embedding algorithm. To address this

challenge, this paper designs a corresponding heuristic algorithm. The algorithm is divided into two steps:

virtual node embedding and virtual link embedding. In the former process, there are two sub-steps: virtual

switch node embedding and virtual machine node embedding. In the process of the virtual switch node

embedding, the virtual switch node is preferentially embedded to a position close to the server node

according to the characteristics of physical data centers. Firstly, for the purpose of improving the success

rate of virtual link embedding, we utilize the worst-fit strategy to sort the physical switches that satisfy

the link resource demand, on the basis of the ingress and egress link bandwidth resources of the physical

switches. Secondly, we add labels for the physical switch nodes, and these labels represent the amount

of available underlying virtual machine resources. Thirdly, for the purpose of ensuring the utilization of

the node resources, we employ the best-fit strategy to sort the physical switch nodes that meet the virtual

machine resource demands with the help of labels we have added. Finally, we add the above two sorted

sequence to find the top physical switch node as the target node for the virtual switch node embedding.

In the process of the virtual machine node embedding, we directly find the suitable physical server node

in the lower layer according to the embedding place of the virtual switch node. In the process of virtual

link embedding, we use the shortest path strategy. The core idea is to select the lowest number of

powering-off nodes on the path that is preferentially selected. Through the above embedding processes,

the goal of energy saving will eventually be achieved.

The third challenge lies in that the heuristic algorithm above merely uses the heuristic information to

find the only solution, and its performance is still waiting to be optimized. Thus, we use the population-

based optimization technique to find multiple solutions and then select the best one. Through the existing

population-based techniques, particle swarm optimization (PSO) is widely applied in lots of fields, since

it has strong robustness and faster execution and higher efficiency. We leverage this technique for the

VDC embedding problem. In this algorithm, we redefine particle related parameters and operations in

Section 5.3 and then propose the best-fit and worst-fit hybrid strategies.

Energy-Aware Virtual Data Center Embedding

462 | J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020

We summarize the contributions as follows:

1) This paper studies energy consumption in the VDC embedding process. To reduce the con-

sumption, we propose the energy consumption model for switch nodes and server nodes, and

design an algorithm of energy-aware VDC embedding.

2) This paper further proposes a PSO-based VDC embedding algorithm. In the algorithm, we

redefine particle related parameters and operations in Section 5.3 and then propose the best-fit

and worst-fit hybrid strategy.

3) This paper evaluates the energy-aware VDC embedding algorithms through lots of simulation

experiments. The results show that the two proposed algorithms can greatly reduce the energy

consumption in the VDC embedding process while guaranteeing the embedding success rate.

The following sections of this paper are arranged as follows. Section 2 summarizes the related research

works. Section 3 gives the description of the VDC embedding problem, and proposes the energy

consumption model of switch nodes and server nodes. In Sections 4 and 5, we propose a heuristic and

PSO-based algorithm for energy-aware VDC embedding, respectively. In Section 6, the experiment is

designed by comparing the analysis results and evaluating the efficiency of the embedding algorithm.

Finally, Section 7 gives the summarization of this paper.

2. Related Work

For the past few years, VDC embedding has become more and more important in the field of

virtualization technology research and received widespread attention from experts and scholars. It is

related to virtual machine placement and virtual network embedding. These issues are described as follows.

Virtual machine placement (VMP): Virtual machine placement refers to the problem of placing

virtual machines with node requirements in the data center. The authors [2] mainly solves the problem of

resource waste caused by excessive resource fragmentation in the data center. According to the multi-

path transmission and virtual machine migration technology, two algorithms are proposed. These two

algorithms can respectively deal with the static and dynamic network environments and effectively

improve the data utilization rate. Based on the specific conditions of different applications, especially the

applications deployed in multi-level virtual machines that require frequent communication, the authors

[3] proposes an application-aware virtual machine migration strategy. It ensures that when the virtual

machine migrates to relieve the load of the data center, the normal operation of these applications will

not be affected. However, unlike VDC embedding, it does not consider the allocation of bandwidth

resources on the links.

Virtual network embedding (VNE): There are multiple virtual networks on a physical network.

These virtual networks dynamically share physical nodes and physical links on a physical network under

the constraints of certain service level agreements (SLAs) and resources. In [4-6], the energy

consumption model of nodes and links is proposed, and an energy-aware VNE algorithm is designed to

effectively reduce the energy consumption of nodes and links during virtual network embedding. Several

studies [7-9] consider the dynamic nature of virtual network embedding and design a VNE algorithm in

a dynamic environment.

Although VDC embedding and VNE are somewhat similar, there are three differences between them.

The first point lies in the scales. There are usually thousands of nodes in the physical data center while

Xiao Ma, Zhongbao Zhang, and Sen Su

J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020 | 463

only 50–100 nodes in the physical network. Secondly, they have different types of topology. The physical

data center usually adopts some hierarchy topology (e.g., tree) while the physical network usually adopts

some flat topology. Thirdly, there are more than one kind of nodes in the physical data center, e.g., switch

node and server node. The three differences above make the problem of VDC embedding so difficult that

the existing VNE algorithm is not applicable.

Virtual data center embedding (VDCE): Current research works about VDC networks mainly focus

on the aspects of packet forwarding policy, bandwidth control guarantee, multi-path transmission, and

bandwidth sharing. Diverter [10] uses the software (VNET) to simplify the work of forwarding packets

by switches and routers. However, it does not consider the bandwidth problem in the communication of

nodes. VICTOR [11] uses the strategy of migrating virtual machines to complete the load balancing

problem in the data center network, but it requires the network equipment to support many specific

protocols with large changes. Oktopus [12] defines two types of VDC embedding request and proposes

a bandwidth guarantee embedding algorithm. However, its requirements for the network topology of the

physical data center are special, and its applications are limited. SecondNet [13] controls the completion

of VDC embedding through the VDC Manager, and it provides three levels of embedding schemes to

meet different embedding requirements from different users. However, it is not applicable to data center

networks of many types of topology. For example, it increases the utilization of network resources in

BCube [14] topological type, but reduces the one in VL2 [15] and fat-tree. CloudNaaS [16] adopts a

programmable approach to add a logical layer on the data center network. It is similar to the software

defined network (SDN) that controls the network nodes together. The disadvantage of this method is the

difficult operation and the increase in the new network communication overhead. Moreover, they do not

consider energy consumption in the process of scheduling resources in the data center.

Recently, based on the balance between operator revenue, energy consumption and carbon emissions,

Greenhead [17] suggests first partitioning the VDC requests and then completing the embedding of multi-

domain physical data centers. Different from this paper, its data center spans multiple areas and is

interconnected through the backbone network of the NSFNet topology. After the VDC embedding request

is divided, and the communication links between them need to be embedded to the backbone. How to

properly embed the above links on the backbone network has become an important method to achieve

the energy-aware goals. This issue is fundamentally different from this paper, so the two are not compared.

Yang et al. [18] propose a robust green VDC embedding solution. Specifically, a Nearest-edge-Switch

approach is used to embed virtual Servers (NSS) and then a Joint embedding approach is to embed virtual

Switches and Links (JointSL). This is a heuristic solution; however, our proposed solution can leverage

the evolution process of PSO to get a better solution, as demonstrated through extensive experiments in

Section 6.2. Gilesh et al. [19] propose a novel solution, which can minimize fragmentation to achieve a

higher acceptance rate compared to existing strategies; meanwhile, it minimally disrupts the existing

VDCs. However, it still ignores the energy consumption, which hence is excluded from the comparison.

3. Description of VDC Embedding

This section includes problem descriptions, and the introduction of the energy consumption model and

evaluation metrics.

Energy-Aware Virtual Data Center Embedding

464 | J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020

3.1 Problem Description

3.1.1 Physical data center

As an infrastructure provided by InP, there are many types of physical data center topology [1]. In the

traditional binary tree structure, the root node is easy to make a communication bottleneck. The path

between the nodes in the fat-tree structure gradually widens from the leaf node, adapting the traffic from

the leaf node to the root node in order to make the use of resources in data center networks more

convenient. Therefore, this paper mainly uses the above advantages of fat-tree structure to define the

network topology of the physical data center. Its concrete topological structure is shown in Fig. 1(d). It

can be represented by a weighted undirected graph �����, ��, ���, where ��	is the set of physical server

nodes, �� is the set of physical switch nodes, and �� is the set of links between nodes.

Fig. 1. VDC request + physical data center network topology: (a) one layer VDC request, (b) two layers

VDC request, (c) three layers VDC request, and (d) fat-tree physical data center network topology.

At each physical server node, there are specific resources such as CPU, memory, and hard disk.

However, in this paper, due to the resource constraint on the node, we mainly consider the number of

virtual machines that are embedded, as shown in the square node in Fig. 1. We assume that each physical

server node has the same configuration capability. For the physical switch node, the above resources are

defined as the number of available ports, and each physical switch node is defined as a unified

specification. Each physical link allocates certain bandwidth resources for the communication

requirements between the nodes. Owing to different types of VDC embedding requirements, it is required

to allocate corresponding resources to them and perform related records while embedding and releasing

resources. To achieve this goal, for any server node � ∈ ��, 	(�) indicates the amount of currently

available virtual machines. For any switch node
 ∈ ��, the variable 	(
) indicates the total number of

available virtual machines currently on all server nodes connected to it. For any switch node
 ∈ ��, �(
)
indicates the number of port resources available on it. Finally, for any physical link in the link set � ∈ ��,

(�) denotes the current amount of available bandwidth resources.

(c):Three layers VDC request (d):Fat-tree physical data center network topology

2 3

5 2 7 1 3 5 4 2

3 2 2 3

(b):Two layers VDC request(a):One layer VDC request

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

(a) (b)

(c)
(c)

Xiao Ma, Zhongbao Zhang, and Sen Su

J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020 | 465

3.1.2 Virtual data center

VDC mainly includes two parts: virtual nodes and virtual links. The former is divided into two types:

virtual switch nodes and virtual machine nodes. As with the physical data center, a VDC request can also

be represented by a weighted undirected graph ����� , �� , ���, where N� indicates the set of virtual

machines, �� indicates the set of virtual switches, and �� indicates the set of virtual links. For each virtual
machine node � ∈ �� and VDC embedding request, 	(�) indicates its requirement for the number of

virtual machine resources. For any of the virtual switch nodes � ∈ �� in the request, 	(�) indicates the
sum of the virtual machine resources required by all underlying virtual machine nodes. For any of the

virtual switch nodes in the request � ∈ �� , we use �(�) to indicate the number of port resource

requirements on the physical switch. Finally, for any virtual link � ∈ �� in the request,
(�) indicates its
required number of bandwidth resources.

This paper defines its topology as a basic binary tree. According to the switch hierarchy, it can be

divided into VDC embedding request with one layer, VDC embedding request with two layers and VDC

embedding request with three layers. As shown in Fig. 1(a)–(c), circles represent virtual switch nodes,

squares represent virtual machine nodes, numbers in square nodes represent the numbers of virtual

machine resources required, and connections between nodes represent virtual links between nodes.

3.1.3 Virtual data center embedding

The formal definition of the VDC embedding process is given below. Based on the above-modeled

representations of the physical data center and the VDC, VDC embedding refers to M:�����, �� , ��� →
�����, ��, ���. M contains three separate maps as follows.

Virtual machine node embedding is defined by ��:�� → �� . It refers to embedding each virtual

machine node to a corresponding server node of a physical data center on the premise of satisfying the

constraints of the virtual machine node.

Virtual switch node embedding is defined by ��: �� → ��. It refers to the embedding of each virtual

switch node to the corresponding physical switch node of the physical data center on the premise of

satisfying the constraints of the virtual switch node.

Link embedding is defined by ��: �� → �� . It refers to embedding each virtual link to the

corresponding physical path in the physical data center on the premise of satisfying the virtual link

requirement for each physical link on this path.

3.2 Energy Consumption Model

The energy consumption model mainly includes the energy consumption of the physical switch node

and the physical server node in the physical data center. Before calculating the energy consumption of

these two parts, it is necessary to express the energy consumption of physical switch nodes and physical

server nodes.

Energy consumption of the physical switch node: After the virtual switch node � ∈ �� is embedded

to the physical switch node
 ∈ ��, the extra energy consumption of the physical switch node
 needs to
be calculated, represented by ∆���	. The energy consumption of a typical switch is usually related to

system throughput, communication loads, its inherent fans and other refrigeration equipment. One of

these is the inherent energy consumption overhead of the switch, which is denoted by �
. A switch uses

Energy-Aware Virtual Data Center Embedding

466 | J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020

multiple ports to connect different devices. These ports are responsible for the communication between

the ingress and egress packets of switches. Energy consumption of per port is represented by ����
. Based
on the above analysis, the total energy consumption of a physical switch is:

��� = �
 + � ∙ ����
, (1)

where � indicates the number of currently used ports of the physical switch node
.
Therefore, in order to embed the virtual switch node �, the extra energy consumption of the physical

switch node
 can be calculated by the following formula:

∆���	 = ��
 + ∆� ∙ ����
����		�		��		�
��
∆� ∙ ����
 . (2)

Energy consumption of the physical server node: After embedding the virtual machine node � ∈ ��

to the physical server node � ∈ ��, the extra energy consumption of the physical server node � needs to
be calculated, which is denoted by ∆���

�. Similar to the energy consumption of the switch nodes, the

server nodes also have a fixed part of the basic energy consumption to maintain the normal operation of

the machine. In addition, the energy consumption of other parts is mainly linearly related to the CPU

loads. Therefore, this paper calculates the energy consumption of physical server node � by the following
formula:

��� = �� + �� ∙ �, (3)

where �� represents the energy of the server node with no load, called the basic energy consumption; �
represents the current CPU loads, and �� represents the linear parameter of the server node with �.
Based on the above energy consumption model, to embed the virtual machine node �, the extra energy

required by the physical server node � is:

∆���
� = ��� + �� ∙ ������		�		��		�
���� ∙ �� 	, (4)

where �� represents the CPU demand of the virtual machine node �.
Based on the energy consumption model of the physical switch node and the physical server node, the

entire energy consumption of the physical data center during the virtual node embedding process is:

∆����� = ∑ ∑ ��	 ∙�∈��	∈�� ∆���	 � ��
�

�
+ 			∑ ∑ ��� ∙�∈���∈�� ∆���

� � ��
�

�
, (5)

where ��	 and ��� respectively represent whether a certain virtual node is embedded on the corresponding

physical node. If so, the value is 1; otherwise, the value is 0. And �� and �� represent the arrival time and
departure time of the VDC embedding request, respectively.

3.3 Evaluation Metrics

This paper mainly considers two evaluation metrics, including the embedding success rate and energy

consumption.

Xiao Ma, Zhongbao Zhang, and Sen Su

J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020 | 467

The embedding success rate refers to the rate of successfully embedding requests to all embedding

requests. It can be defined as follows:

��

����
, (6)

where �� represents the number of VDC requests that are accepted, and ���� represents the amount of

VDC requests that need to be embedded.

Then the long-term average energy consumption of the physical data center network is defined as

follow:

���
�→�

∑ ∆�
����
� �	�

�	

�
�

�
, (7)

where �� represents the number of VDC requests that are successfully embedded during the time �, and
∆������ ���� represents the energy consumption caused by embedding the �
� VDC embedding request.

4. Energy-Aware VDC Embedding Algorithm

For the purpose of solving the energy consumption problem in the VDC embedding process, this paper

proposes an energy-aware embedding algorithm, which is divided into following three steps:

1) Node label algorithm based on available resources. We add two variable parameters for each

switch node in the physical data center network, which respectively represent the amount of

available virtual machines of the underlying network topology and the bandwidth resources

available for connecting the switch nodes.

2) Energy-aware virtual node embedding algorithm. According to the network topology of the VDC

embedding request, we analyze the root node that needs to be embedded and the corresponding

levels of the physical data center network. With the help of the labels we have already added, we

then use the best-fit strategy in node resource selection and the worst-fit strategy in bandwidth

selection. According to the above two strategies, we find the most suitable embedding target for

the root node, and then design a recursive algorithm to complete the embedding of the remaining

nodes.

3) Energy-aware virtual link embedding algorithm. The virtual link embedding is performed by using

the energy-saving shortest path method to save energy cost while ensuring the link requirements

of the VDC.

4.1 Node Label Method Algorithm on Available Resources

Since the physical data center network topology is defined as fat-tree in this paper, each layer contains

many switch nodes (except for leaf nodes). This paper uses the node label method based on available

resources to add two attribute variables to each switch node as follows: one represents the number of

available virtual machine node resources on all network nodes that are connected to the lower part of the

switch node (as shown in Fig. 2(d)). The other represents available bandwidth resources outward from

the node. When a VDC embedding request comes, based on the above two attribute variables, those nodes

Energy-Aware Virtual Data Center Embedding

468 | J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020

that do not meet the embedding request can be quickly eliminated, thereby providing support for the

subsequent specific embedding algorithm.

Fig. 2. VDC request with labels + physical data center with labels: (a) one layer VDC request with labels,

(b) two layers VDC request with labels, (c) three layers VDC request with labels, and (d) physical data

center network topology with labels.

4.2 Energy-Aware Virtual Node Embedding Algorithm

According to the node labeling method based on the available resources in the previous step, the

corresponding node embedding algorithm needs to be designed for energy saving. Considering the

topology structure of the VDC embedding request, the corresponding network hierarchy is sought to

ensure that the nodes in the embedding request correspond to the nodes in the physical data center

network. Since the resource requirements of each node and each link in the VDC request have already

been defined when it arrives, referring to the previous step, the request-based node label method is used.

For each virtual switch node in the VDC request, we add two attribute variables to represent the number

of virtual machine node resources required by its lower layer (as shown in Fig. 2(a)–(c)) and the number

of bandwidth resource requirements, respectively.

We design a recursive embedding algorithm to complete the embedding task. Inspired by the packing

algorithm and the number of node resource requirements at the lower level of the root node in the request,

we use the best-fit strategy to sort all switch nodes at the corresponding level of the physical data center

network, find the most suitable embedding position and improve the resource utilization rate.

In order to explain the best-fit strategy better, the following section describes the packing problems.

Classic packing problems require that a certain amount of items are placed in boxes with the same

capacity, so that the sum of the items in each box will not exceed the capacity of the box. The bin packing

problem is a complex discrete combinatorial optimization problem. The so-called combinatorial

optimization means finding a solution that satisfies a given condition and makes its target function value

maximum or minimum on a discrete, finite mathematical structure.

Depending on different resource requirements, the virtual nodes are compared to items of different

sizes. Then the physical nodes are compared to the boxes in use, according to the current resource usage.

5

5 5

10

7 8

15

8 6

14

29

20 20

40 40

20 20

40 40

20 20

40 40

20 20

40 40

160 160 160 160

(a) (b)

(c) (c)

Xiao Ma, Zhongbao Zhang, and Sen Su

J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020 | 469

Based on the resource requirements of the virtual nodes and the available resources of all physical nodes,

we calculate the number of remaining available resources to decide whether the virtual nodes can be

embedded on the physical nodes and then sort them. The best-fit strategy is to embed the virtual nodes

on the physical node that can fulfill them with the fewest remaining resources, thus ensuring the optimal

utilization of node resources.

According to the ingress and egress bandwidth requirements of virtual nodes and the available ingress

and egress bandwidth resource on all physical nodes, we calculate the number of remaining available

bandwidth resources of the physical nodes after embedding the virtual nodes, and then sort candidate

physical nodes. The worst-fit strategy is used to find the most suitable embedding position. The worst-fit

strategy is to embed the virtual nodes on the physical node that can fulfill them with the most available

ingress and egress bandwidth resources. Compared with the best-fit strategy, its resource utilization rate

is lower, and the success rate of subsequent embedding is higher.

Finally, we add the above two sorted sequences together. According to the result after addition, the

top-ranked node is taken as the most suitable position where the virtual node is to be embedded. This

approach not only achieves the goal of energy saving, but also facilitates other follow-up embedding

requests. For other nodes in the embedding request, the embedding is done in the same way. The specific

algorithm is shown in Algorithm 1.

Algorithm 1: Energy-aware virtual node embedding algorithm

Input: VDC embedding request ��, physical data center network ��.
Output: Virtual Node embedding Scheme.
1. embedding（node in ��）

2. If（node==NULL）

3. Return successful embedding；
4. Define the hierarchy of variable d=node in node ��.
5. Define the total number of layers of network topology in variable n=��.
6. For（all nodes in the n-d+1 layer of ��）
7. Obtain rank NR based on best-fit strategy on available node resources.
8. Obtain rank LR according to worst-fit strategy on the number of available bandwidth resources.
9. Define the variable R=NR+LR (final rank).
10. Sort R from small to large.
11. If（all items in R are infinite）
12. Return node embedding failed
13. Else
14. If（node has a child node）

15. For（every child belongs to the node）

16. embedding（child of node）
17. Map the node to the first position in R.

4.3 Energy-Aware Virtual Link Embedding Algorithm

Virtual link embedding means that, a non-recursive path should be found between physical nodes in

the corresponding physical data center network after virtual node embedding, and all the links on the path

Energy-Aware Virtual Data Center Embedding

470 | J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020

should satisfy the bandwidth resource requirements of the corresponding virtual link. In this process,

existing studies usually use the shortest path method to solve the problem, but neglect the on/off state of

physical data center network nodes, leading to increased energy consumption with too many opened

nodes. Thus, this paper designs an energy-aware virtual link embedding algorithm. First, in the topology

diagram of the physical data center network, the physical links that do not satisfy the bandwidth

requirements of the virtual link to be embedded are deleted, and the remaining graphs are called residual

figures. Then, in the residual figures, we calculate the shortest path. It is possible to get multiple shortest

paths here. Finally, we choose paths that have the least number of opened nodes among the multiple

shortest paths. By using the algorithm, we not only select the shortest path to avoid the long path problem

of link embedding, but also reduce the number of nodes that are newly opened to achieve the goal of

energy-aware. The specific algorithm is is shown in Algorithm 2.

Algorithm 2: Energy-aware virtual link embedding algorithm

Input: VDC embedding request ��, physical data center network �� and virtual node embedding scheme.
Output: Virtual Link embedding Scheme.

1. For every virtual link �� belongs to	��
2. Delete all physical links in the physical data center network �� that cannot meet the resource

requirements of the virtual link ��.
3. In the residual network, find the corresponding shortest path set.
4. In this set, find the path with the smallest number of newly opened nodes P.
5. If path P can meet all �� bandwidth resource requirements then
6. Map �� to path P and allocate bandwidth resources for ��.
7. Else
8. Release bandwidth resources of allocated physical paths.
9. Return virtual link embedding failed
10. Return virtual link embedding succeeded

5. Energy Aware Particle Swarm Optimization based Virtual

Data Center Embedding (EA-VDCE-PSO)

In the last section, we propose a heuristic VDC embedding algorithm. However, its performance is still

waiting to be optimized. It only uses heuristic information to find only one solution. Next, we use the

population-based optimization technique to find multiple solutions and then select the best solution.

Through the existing population-based techniques, PSO is widely applied in lots of fields, because of its

strong robustness, faster execution, and higher efficiency. Thus, we leverage this technique to VDC

embedding problem. In this section, we introduce PSO basis in Section 5.1, present two challenges to

adopt PSO in our problem in Section 5.2, propose two strategies for these two challenges in Sections 5.3

and 5.4, and finally give the description of this algorithm in Section 5.5.

5.1 PSO Basis

The PSO algorithm is based on swarm intelligence [20]. In this algorithm, each particle moves in the

solution space at some speed, and aggregates to its personal historical best position ��� and the global

Xiao Ma, Zhongbao Zhang, and Sen Su

J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020 | 471

historical optimal position ��� to realize the evolution of the candidate solution. The update formula of

the particle’s velocity and position is as follows:

���� = ��� + �������� − ��� + �������� − ���,																																																(8)

���� = �� + ���,																																																																											(9)

where �� represents the current position of the i-th particle and � represents its current velocity; w
represents the weight of the particles holding inertia; !� and !� as the acceleration of the particles
represent the tendency of the particles to move to their historical best position and global best position

respectively; "� and "� are uniformly generated random numbers between (0, 1).

5.2 Challenges

When applying PSO into the energy-aware VDC embedding problem, there are two challenges as

below:

1) VDC embedding is a discrete problem. Thus, how to make PSO suitable for discrete optimization

problem?

2) In basic PSO, it randomly chooses the position in the solution space, which may lead to the slow

convergence in VDC embedding.

To address these two challenges, we first redefine particle-related parameters and operations in Section

5.3, and then propose the best-fit and worst-fit hybrid strategy in Section 5.4.

5.3 Redefinition of Particle Related Parameters and Operations

PSO is mainly used to settle some problems in continuous domains. While solving discrete

optimization problems, it is necessary to redefine the parameters and related operations of particles on

the basis of specific problems. According to the optimized model of VDC embedding, we redefine the

position, velocity and related operations in the particle swarm, as below:

DEFINITION 1. The position of one particle: The position vector �� = [���, ���, ⋯ , ���] is defined as the
ith possible mapping scheme. # indicates that the virtual network request contains a total of # VDC
nodes; ��� takes a positive integer whose value represents the number of nodes in the physical data center
selected by the jth VDC node from its list of underlying network candidate nodes.

DEFINITION 2. The velocity of two particles: The velocity vector � 	= 	 [���, ���, ⋯ , ���] of the particle
is defined by the adjustment decision of the mapping scheme, which guides the current mapping scheme

to the better mapping scheme. Here, ��� is a binary variable. If ��� = 0, it means that the jth virtual node

needs to reselect the node mapping from its candidate node list of the physical data center.

DEFINITION 3. Subtraction Θ: ��Θ�� is used to calculate the difference between the two mapping

schemes. If the mapping schemes �� and �� have the same value in the same dimension, the result of the

difference is 1, otherwise 0. For example, (1,2,3,4,5)	Θ(1,8,7,4,9) = (1,0,0,1,0).

Energy-Aware Virtual Data Center Embedding

472 | J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020

DEFINITION 4. Addition ⊕: �� �⊕�� � is used to obtain the adjustment decision of the mapping scheme.

�� � and �� � respectively represent that the values of � dimensions are maintained with the probability

of �� and the values of � are maintained with the probability of ��, and �� + �� = 1 (0 ≤ � ≤ 1). For

example, 0.3(1,0,0,1,1) ⊕ 0.7(1,0,1,0,1) = (1,0,*,*,1), where * denotes that this dimension 0 or 1 is

uncertain. In addition, the first * indicates that this dimension takes 0 with a possibility of 0.3 and takes

1 with a possibility of 0.7.

DEFINITION 5. Multiplication ⊗: ��⊗ � is used to obtain a new mapping scheme. The mapping scheme

�� adjusts its virtual node mapping scheme according to the adjustment decision � . For example,

(1, 8, 5, 9, 10)	⊗	(1, 0, 1, 1, 1), indicating that the mapping scheme of the second virtual node should be

adjusted.

Therefore, we can derive the basic formula for the position and velocity update of the redefined PSO

algorithm as follows:

 ��� = �� �⊕��$���%��&⊕!�"� '���Θ��((10)

���� = ��⊗ ���																																																																										(11)

where ��, ��, and �� are constants, and �� + �� + �� = 1.

5.4 Best-Fit and Worst-Fit Hybrid Strategy

In basic PSO, it randomly chooses the position in the solution space, which may lead to the slow

convergence in our problem. To settle this problem, the best-fit and worst-fit hybrid strategy is proposed,

which shares the same idea with the heuristic algorithm in Section 4.2. We adopt the best-fit strategy to

sort all switch nodes in the physical data center network, find the most suitable embedding position and

improve resource utilization rate. Then we use the worst-fit strategy to embed the virtual nodes on the

physical node that can fulfill them with the most available ingress and egress bandwidth resources.

Finally, we add the above two sorted sequences together and give the final rank. If a physical node has a

higher rank, it is more likely to be selected as the candidate embedding node.

This strategy guarantees that the selected node can satisfy the node and link resource constraint, and

thus has a faster convergence speed.

5.5 VDCE-PSO Algorithm Description

The VDCE-PSO algorithm makes the number of active physical nodes as the fitness function)(�),
where the position vector � represents a possible mapping scheme. If the mapping scheme is feasible,

then the value of)(�) represents the overhead of the VDC embedding. If the embedding scheme is not

feasible, then the value of)(�) is set to +∞; the description of the VDCE-PSO algorithm is as follows:

Step 1: Set the number of particle swarms to N, and the maximum number of iterations executed by

the algorithm to ��. The particle randomly generates the initial position parameter �� and the velocity

parameter �.

Xiao Ma, Zhongbao Zhang, and Sen Su

J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020 | 473

Step 2: Calculate the fitness)(��) of all particles, and obtain the global optimal initial position ���
and the optimal initial position ��� of each particle.

Step 3: Update the velocity of the particles satisfying the constraint according to Eq. (10); update the

position in Eq. (11), randomly select the candidate nodes of the physical data center in the position

updating process, and regenerate the position and velocity parameters for the particles that do not satisfy

the node constraints.

Step 4: For each particle in the particle group, if)(��) <)(���), then ��� = ��; if)(���) <)(���),
then ��� = ���.

Step 5: Check the current number of iterations. If it is less than MG, execute Step 3; otherwise, execute

Step 6.

Step 6: Output the optimal VDC embedding scheme and its fitness value.

6. Experimental Evaluation

In this section, we assess our proposed two energy-aware VDC embedding algorithms. Firstly, the

experimental environment is described. Then the experimental results are analyzed. Compared with other

existing works, this paper proves that the energy-aware VDC embedding algorithms can make a

significant increment in terms of the embedding success rate and energy consumption.

6.1 Experimental Configuration

Physical data center settings: This paper uses a three-layer fat-tree structure to define the network

topology of the physical data center. Each switch has 16 ports. Therefore, in the experimental

environment, there are 320 physical switches, 1024 physical servers, and 3072 physical links. Each

physical server has 10 units of virtual machine resources at most; while each physical link has 100 units

of bandwidth resources.

Virtual data center request settings: For each VDC embedding request, this paper uses a binary tree

to define their network topology. As shown in Fig. 1(a)–(c), there are three types: one-layer architecture,

two-layer architecture, and three-layer architecture. Each virtual machine has different requirements for

the virtual machine resources, and each virtual link needs to occupy one port of the physical switch at

both ends of the link. Meanwhile, the resource demands of virtual links for bandwidth resources are

between 1 and 10 units.

This paper defines that an average of one VDC embedding request will arrive for per unit of time, and

the request type is a random one of the three types, and there are 2000 VDC embedding requests totally.

The VDC embedding request is normally distributed during the period of time. At the same time,

according to the energy-aware VDC embedding algorithm proposed in this paper, resources should be

allocated for each VDC embedding request when it comes while resources should be released when it

leaves so as to serve other coming VDC embedding requests.

Compared algorithm: To evaluate our proposed solution, we compare our algorithms to the latest

algorithm, NSS-JointSL algorithm, proposed in [18]. In this algorithm, first a Nearest-edge-Switch

Energy-Aware Virtual Data Center Embedding

474 | J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020

approach is used to embed virtual Servers (NSS) and then a Joint embedding approach is employed to

embed virtual Switches and Links (JointSL). This is a heuristic solution. However, our proposed solution

leverages the evolution process of PSO to get a better solution, which can be demonstrated through an

extensive experiment in Section 6.2. Gilesh et al. [19] propose a novel solution. It minimizes

fragmentation to achieve more accepted VDC requests compared to existing strategies, meanwhile

minimally disrupting the existing VDCs. However, they also ignore the energy consumption. Thus, we

exclude the solution from the comparison.

Other research works about VDC embedding problem mainly focus on enhancing operating revenue,

improving the embedding success rate and providing bandwidth guarantee. Therefore, to facilitate a fair

comparison, we exclude these existing studies and choose the random embedding algorithm (R-VDCE)

as the compared algorithm. That is, when a VDC embedding request comes, the physical nodes and

physical paths that satisfy the resource needs of both virtual nodes and virtual links are randomly found

on the physical data center.

Evaluation metrics: The evaluation metrics include the embedding success rate of VDC embedding

requests and energy consumption during the embedding process, as shown in Eqs. (6) and (7).

6.2 Experimental Results and Analysis

Compared to the state-of-the-art algorithm: To evaluate the performance of the EA-VDCE

algorithm proposed in this paper, we compare it to the random embedding algorithm R-VDCE and the

algorithm NSS-SL [18]. Figs. 3 and 4 show the experimental results. EA-VDCE has a higher successful

rate of embedding and less energy consumption than R-VDCE. The reasons are as follows. First, the EA-

VDCE algorithm comprehensively considers the scheduling of node resources and bandwidth resources,

so it provides a better embedding environment for subsequent VDC embedding requests and improves

the embedding success rate. Second, it figures out the type of VDC request (one layer, two layers or three

layers) and then maps it to the corresponding layer of the physical data center, which avoids the long-

path problem and effectively reduces the energy consumption. Third, the algorithm proposed in this paper

adds labels to each physical node. By these labels, we can find more suitable physical nodes during the

embedding process as soon as possible. In this way, the number of newly opened physical nodes is

decreased and the energy consumption is effectively reduced.

For the success rate, from Fig. 3, through the experiments above, compared with R-VDCE and NSS-

SL, EA-VDCE maintains a relatively high success rate of embedding, reaching almost 80%. However,

the success rate of R-VDCE is affected by the increase of embedding requests, and the average rate is

maintained at about 60%.

For the energy cost, from Fig. 4, we can also see that EA-VDCE, on the average, has reduced energy

consumption by about 28% and 11% compared with R-VDCE and NSS-SL. This is because EA-VDCE

can consolidate the VDC nodes into a smaller number of physical data center nodes and thus power off

more nodes into a sleeping state.

The impact of the PSO-based algorithm: From Fig. 3, for the success rate, EA-VDCE-PSO

maintains a relatively high success rate of embedding which is almost 82%, similar to the other three

algorithms. From Fig. 4, for the energy cost, we can also observe that the proposed algorithm EA-VDCE-

PSO further reduces energy consumption by 9%, compared to our proposed heuristic algorithm EA-

VDCE. The reason is that EA-VDCE-PSO can find more solutions by the particles through the iterative

Xiao Ma, Zhongbao Zhang, and Sen Su

J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020 | 475

process. It is smart to find more and more optimal solutions through learning from each other particles.

Notably, it also consumes some running time, which is omitted due to the page limit. However, the

physical data center owner can adjust the iteration times and the number of particles to balance energy

efficiency and running time.

Fig. 3. Comparison of the embedding success rate.

Fig. 4. Comparison of energy cost.

7. Conclusion

To optimize the energy consumption in the embedding process of VDC requests, we propose the energy

consumption model of physical nodes, and design two VDC embedding algorithms for energy-saving.

The first one is a heuristic algorithm. It computes the label variables of each node, comprehensively uses

the best matching strategy, the worst matching strategy and the shortest path algorithm, and then

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120 140 160 180 200

S
U
C
C
E
S
S
 R
A
T
E
 O
F
 E
M
B
E
D
D
IN
G

TIME(100 units)

R-VDCE EA-VDCE NSS-SL EA-VDCE-PSO

100

150

200

250

300

350

400

20 40 60 80 100 120 140 160 180 200

E
N
E
R
G
Y
 C
O
S
T

TIME(100 units)

R-VDCE EA-VDCE NSS-SL EA-VDCE-PSO

Energy-Aware Virtual Data Center Embedding

476 | J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020

completes the virtual node and virtual link embedding in turn. The second one is the PSO-based

technique. It leverages the smart iterative process to achieve more and more optimal solutions. Simulation

experiments show that our proposed two algorithms can greatly reduce the energy consumption with a

guaranteed success rate of the VDC request embedding.

Acknowledgement

This work was supported in part by the following funding agencies of China, National Natural Science

Foundation (Grant No. 61602050 and U1534201).

References

[1] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G. Rabbani, Q. Zhang, and M. F. Zhani,

“Data center network virtualization: a survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 2,

pp. 909-928, 2012.

[2] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM placement and routing for data center traffic

engineering,” in Proceedings of 2012 Proceedings IEEE INFOCOM, Orlando, FL, 2012, pp. 2876-2880.

[3] V. Shrivastava, P. Zerfos, K. W. Lee, H. Jamjoom, Y. H. Liu, and S. Banerjee, “Application-aware virtual

machine migration in data centers,” in Proceedings of 2011 IEEE INFOCOM, Shanghai, China, 2011, pp.

66-70.

[4] Z. Zhang, S. Su, K. Shuang, W. Li, and M. A. Zia, “Energy aware virtual network migration,” in Proceedings

of 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, 2016, pp. 1-6.

[5] Z. Zhang, S. Su, X. Niu, J. Ma, X. Cheng, and K. Shuang, “Minimizing electricity cost in geographical virtual

network embedding,” in Proceedings of 2012 IEEE Global Communications Conference (GLOBECOM),

Anaheim, CA, 2012, pp. 2609-2614.

[6] S. Su, Z. Zhang, A. X. Liu, X. Cheng, Y. Wang, and X. Zhao, “Energy-aware virtual network embedding,”

IEEE/ACM Transactions on Networking, vol. 22, no. 5, pp. 1607-1620, 2014.

[7] Z. Zhang, S. Su, J. Zhang, K. Shuang, and P. Xu, “Energy aware virtual network embedding with dynamic

demands: online and offline,” Computer Networks, vol. 93, pp. 448-459, 2015.

[8] Z. Zhang, S. Su, J. Zhang, K. Shuang, and P. Xu, “Energy aware virtual network embedding with dynamic

demands,” in Proceedings of 2015 IEEE International Conference on Communications (ICC), 2015, London,

UK.

[9] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,” Computer Networks, vol. 54, no.

5, pp. 862-876, 2010.

[10] A. Edwards, A. Fischer, and A. Lain, “Diverter: a new approach to networking within virtualized

infrastructures,” in Proceedings of the 1st ACM Workshop on Research on Enterprise Networking, Barcelona,

Spain, 2009, pp. 103-110.

[11] F. Hao, T. V. Lakshman, S. Mukherjee, and H. Song, “Enhancing dynamic cloud-based services using

network virtualization,” in Proceedings of the 1st ACM Workshop on Virtualized Infrastructure Systems and

Architectures, Barcelona, Spain, 2009, pp. 37-44.

[12] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards predictable datacenter networks,” ACM

SIGCOMM Computer Communication Review, vol. 41, no. 4, pp. 242-253, 2011.

[13] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang, “Secondnet: a data center network

virtualization architecture with bandwidth guarantees,” in Proceedings of the 6th International Conference,

Philadelphia, PA, 2010.

Xiao Ma, Zhongbao Zhang, and Sen Su

J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020 | 477

[14] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu, “BCube: a high performance,

server-centric network architecture for modular data centers,” ACM SIGCOMM Computer Communication

Review, vol. 39, no. 4, pp. 63-74, 2009.

[15] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta,

“VL2: a scalable and flexible data center network,” ACM SIGCOMM Computer Communication Review, vol.

39, no. 4, pp. 51-62, 2009.

[16] T. Benson, A. Akella, A. Shaikh, and S. Sahu, “CloudNaaS: a cloud networking platform for enterprise

applications,” in Proceedings of the 2nd ACM Symposium on Cloud Computing, Cascais, Portugal, 2011.

[17] A. Amokrane, M. F. Zhani, R. Langar, R. Boutaba, and G. Pujolle, “Greenhead: virtual data center embedding

across distributed infrastructures,” IEEE Transactions on Cloud Computing, vol. 1, no. 1, pp. 36-49, 2013.

[18] Y. Yang, X. Chang, J. Liu, and L. Li, “Towards robust green virtual cloud data center provisioning,” IEEE

Transactions on Cloud Computing, vol. 5, no. 2, pp. 168-181, 2015.

[19] M. P. Gilesh, S. M. Kumar, L. Jacob, and U. Bellur, “Towards a complete virtual data center embedding

algorithm using hybrid strategy,” in Proceedings of 2017 IEEE 37th International Conference on Distributed

Computing Systems (ICDCS), Atlanta, GA, 2017, pp. 2616-2617.

[20] R. Eberhart and J. Kennedy, “Particle swarm optimization,” in Proceedings of the IEEE International

Conference on Neural Networks, Perth, Australia, 1995, pp. 1942-1948.

Xiao Ma https://orcid.org/0000-0001-7792-9457
He is a PhD candidate in the State Key Laboratory of Networking and Switching

Technology, Beijing University of Posts and Telecommunications. His current

research interests include resource management in data center.

Zhongbao Zhang https://orcid.org/0000-0002-3242-150X
He received the Ph.D. degree in Computer Science from Beijing University of Posts

and Telecommunications, China, in 2014. He is an assistant professor in Beijing

University of Posts and Telecommunications now. His major is Computer Science. His

research interests include network virtualization, social network and big data.

Sen Su https://orcid.org/0000-0003-4266-7527
He received the Ph.D. degree in Computer Science from the University of Electronic

Science and Technology, China, in 1998. He is currently a professor at the Beijing

University of Posts and Telecommunications. His research interests include cloud

computing and big data.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

