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Abstract 

As one of the most significant challenges in the virtual data center, the virtual data center embedding has 

attracted extensive attention from researchers. The existing research works mainly focus on how to design 

algorithms to increase operating revenue. However, they ignore the energy consumption issue of the physical 

data center in virtual data center embedding. In this paper, we focus on studying the energy-aware virtual data 

center embedding problem. Specifically, we first propose an energy consumption model. It includes the energy 

consumption models of the virtual machine node and the virtual switch node, aiming to quantitatively measure 

the energy consumption in virtual data center embedding. Based on such a model, we propose two algorithms 

regarding virtual data center embedding: one is heuristic, and the other is based on particle swarm optimization. 

The second algorithm provides a better solution to virtual data center embedding by leveraging the evolution 

process of particle swarm optimization. Finally, experiment results show that our proposed algorithms can 

effectively save energy while guaranteeing the embedding success rate. 

 

Keywords 

Energy-Aware, Particle Swarm Optimization, Virtual Data Center Embedding, Virtual Link, Virtual Node 
 

 

 

1. Introduction 

Virtual data center (VDC) is a new form of cloud computing applied to the data center. VDC abstractly 

integrates physical resources through virtualization technology, thus dynamically allocating and 

scheduling resources. There are two benefits: sharing resources of physical data center among multiple 

users, and greatly reducing the operating costs of data centers [1]. 

There are two roles existing in VDC: infrastructure provider (InP) and service provider (SP). The 

former controls the infrastructure that runs in the entire data center. The latter creates its VDC above the 

infrastructure and deploys corresponding services and applications for end users. Each VDC embedding 

request has a network topology consisting of a certain amount of virtual nodes and virtual links with 

resource requirements. And there are two types of virtual nodes: virtual machine nodes and virtual switch 

nodes, which have demands for resources (like CPU, memory and hard disk) and switch ports, 

respectively. Virtual links often represent the need for communication bandwidth. When InP provides a 

VDC embedding request service for an SP, it needs to find nodes and links that meet these resource 

requirements in the physical data center network, and then allocate corresponding resources for the 

deployment of protocols or services, etc. This is termed as the problem of VDC embedding. 
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VDC embedding has always been a hot topic in recent researches. Existing research work focuses on 

how to enable InP to accept more VDC embedding requests, or to provide VDC embedding with fixed 

bandwidth for offering better service guarantees. However, the energy consumption of current InP during 

its operation has not received sufficient attention. For example, in China, China Mobile Communications 

Corporation needs trillions of watt-hours of electricity per year, which is equal to the annual electricity 

consumption of tens of millions of households. This shows that the issue of energy consumption in the 

Internet industry cannot be ignored. Therefore, to maximize profits, InP also needs to minimize energy 

consumption to reduce operating costs. 

There are three challenges in achieving the goal of minimizing energy consumption. 

The first challenge is how to model and quantify energy consumption. This paper first classifies 

physical nodes into two categories: server nodes and switch nodes. The former is used to perform 

computing tasks; while the latter is used to transmit and forward communication data between physical 

nodes. Then according to the state of the nodes, they need to be further divided into powering-on nodes 

and powering-off nodes. However, changing from the unopened mode to the opened mode requires a part 

of additional energy consumption overhead. This paper establishes a corresponding energy consumption 

model for different types of nodes, then performs different quantitative analyses based on the model, and 

finally calculates the entire energy consumption of physical nodes during the VDC embedding process. 

The second challenge is how to design an energy-aware VDC embedding algorithm. To address this 

challenge, this paper designs a corresponding heuristic algorithm. The algorithm is divided into two steps: 

virtual node embedding and virtual link embedding. In the former process, there are two sub-steps: virtual 

switch node embedding and virtual machine node embedding. In the process of the virtual switch node 

embedding, the virtual switch node is preferentially embedded to a position close to the server node 

according to the characteristics of physical data centers. Firstly, for the purpose of improving the success 

rate of virtual link embedding, we utilize the worst-fit strategy to sort the physical switches that satisfy 

the link resource demand, on the basis of the ingress and egress link bandwidth resources of the physical 

switches. Secondly, we add labels for the physical switch nodes, and these labels represent the amount 

of available underlying virtual machine resources. Thirdly, for the purpose of ensuring the utilization of 

the node resources, we employ the best-fit strategy to sort the physical switch nodes that meet the virtual 

machine resource demands with the help of labels we have added. Finally, we add the above two sorted 

sequence to find the top physical switch node as the target node for the virtual switch node embedding. 

In the process of the virtual machine node embedding, we directly find the suitable physical server node 

in the lower layer according to the embedding place of the virtual switch node. In the process of virtual 

link embedding, we use the shortest path strategy. The core idea is to select the lowest number of 

powering-off nodes on the path that is preferentially selected. Through the above embedding processes, 

the goal of energy saving will eventually be achieved. 

The third challenge lies in that the heuristic algorithm above merely uses the heuristic information to 

find the only solution, and its performance is still waiting to be optimized. Thus, we use the population-

based optimization technique to find multiple solutions and then select the best one. Through the existing 

population-based techniques, particle swarm optimization (PSO) is widely applied in lots of fields, since 

it has strong robustness and faster execution and higher efficiency. We leverage this technique for the 

VDC embedding problem. In this algorithm, we redefine particle related parameters and operations in 

Section 5.3 and then propose the best-fit and worst-fit hybrid strategies. 
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We summarize the contributions as follows: 

1) This paper studies energy consumption in the VDC embedding process. To reduce the con-

sumption, we propose the energy consumption model for switch nodes and server nodes, and 

design an algorithm of energy-aware VDC embedding. 

2) This paper further proposes a PSO-based VDC embedding algorithm. In the algorithm, we 

redefine particle related parameters and operations in Section 5.3 and then propose the best-fit 

and worst-fit hybrid strategy. 

3) This paper evaluates the energy-aware VDC embedding algorithms through lots of simulation 

experiments. The results show that the two proposed algorithms can greatly reduce the energy 

consumption in the VDC embedding process while guaranteeing the embedding success rate. 

 

The following sections of this paper are arranged as follows. Section 2 summarizes the related research 

works. Section 3 gives the description of the VDC embedding problem, and proposes the energy 

consumption model of switch nodes and server nodes. In Sections 4 and 5, we propose a heuristic and 

PSO-based algorithm for energy-aware VDC embedding, respectively. In Section 6, the experiment is 

designed by comparing the analysis results and evaluating the efficiency of the embedding algorithm. 

Finally, Section 7 gives the summarization of this paper. 

 

 

2. Related Work 

For the past few years, VDC embedding has become more and more important in the field of 

virtualization technology research and received widespread attention from experts and scholars. It is 

related to virtual machine placement and virtual network embedding. These issues are described as follows. 

Virtual machine placement (VMP): Virtual machine placement refers to the problem of placing 

virtual machines with node requirements in the data center. The authors [2] mainly solves the problem of 

resource waste caused by excessive resource fragmentation in the data center. According to the multi-

path transmission and virtual machine migration technology, two algorithms are proposed. These two 

algorithms can respectively deal with the static and dynamic network environments and effectively 

improve the data utilization rate. Based on the specific conditions of different applications, especially the 

applications deployed in multi-level virtual machines that require frequent communication, the authors 

[3] proposes an application-aware virtual machine migration strategy. It ensures that when the virtual 

machine migrates to relieve the load of the data center, the normal operation of these applications will 

not be affected. However, unlike VDC embedding, it does not consider the allocation of bandwidth 

resources on the links. 

Virtual network embedding (VNE): There are multiple virtual networks on a physical network. 

These virtual networks dynamically share physical nodes and physical links on a physical network under 

the constraints of certain service level agreements (SLAs) and resources. In [4-6], the energy 

consumption model of nodes and links is proposed, and an energy-aware VNE algorithm is designed to 

effectively reduce the energy consumption of nodes and links during virtual network embedding. Several 

studies [7-9] consider the dynamic nature of virtual network embedding and design a VNE algorithm in 

a dynamic environment. 

Although VDC embedding and VNE are somewhat similar, there are three differences between them. 

The first point lies in the scales. There are usually thousands of nodes in the physical data center while 
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only 50–100 nodes in the physical network. Secondly, they have different types of topology. The physical 

data center usually adopts some hierarchy topology (e.g., tree) while the physical network usually adopts 

some flat topology. Thirdly, there are more than one kind of nodes in the physical data center, e.g., switch 

node and server node. The three differences above make the problem of VDC embedding so difficult that 

the existing VNE algorithm is not applicable. 

Virtual data center embedding (VDCE): Current research works about VDC networks mainly focus 

on the aspects of packet forwarding policy, bandwidth control guarantee, multi-path transmission, and 

bandwidth sharing. Diverter [10] uses the software (VNET) to simplify the work of forwarding packets 

by switches and routers. However, it does not consider the bandwidth problem in the communication of 

nodes. VICTOR [11] uses the strategy of migrating virtual machines to complete the load balancing 

problem in the data center network, but it requires the network equipment to support many specific 

protocols with large changes. Oktopus [12] defines two types of VDC embedding request and proposes 

a bandwidth guarantee embedding algorithm. However, its requirements for the network topology of the 

physical data center are special, and its applications are limited. SecondNet [13] controls the completion 

of VDC embedding through the VDC Manager, and it provides three levels of embedding schemes to 

meet different embedding requirements from different users. However, it is not applicable to data center 

networks of many types of topology. For example, it increases the utilization of network resources in 

BCube [14] topological type, but reduces the one in VL2 [15] and fat-tree. CloudNaaS [16] adopts a 

programmable approach to add a logical layer on the data center network. It is similar to the software 

defined network (SDN) that controls the network nodes together. The disadvantage of this method is the 

difficult operation and the increase in the new network communication overhead. Moreover, they do not 

consider energy consumption in the process of scheduling resources in the data center. 

Recently, based on the balance between operator revenue, energy consumption and carbon emissions, 

Greenhead [17] suggests first partitioning the VDC requests and then completing the embedding of multi-

domain physical data centers. Different from this paper, its data center spans multiple areas and is 

interconnected through the backbone network of the NSFNet topology. After the VDC embedding request 

is divided, and the communication links between them need to be embedded to the backbone. How to 

properly embed the above links on the backbone network has become an important method to achieve 

the energy-aware goals. This issue is fundamentally different from this paper, so the two are not compared. 

Yang et al. [18] propose a robust green VDC embedding solution. Specifically, a Nearest-edge-Switch 

approach is used to embed virtual Servers (NSS) and then a Joint embedding approach is to embed virtual 

Switches and Links (JointSL). This is a heuristic solution; however, our proposed solution can leverage 

the evolution process of PSO to get a better solution, as demonstrated through extensive experiments in 

Section 6.2. Gilesh et al. [19] propose a novel solution, which can minimize fragmentation to achieve a 

higher acceptance rate compared to existing strategies; meanwhile, it minimally disrupts the existing 

VDCs. However, it still ignores the energy consumption, which hence is excluded from the comparison. 

 

 

3. Description of VDC Embedding 

This section includes problem descriptions, and the introduction of the energy consumption model and 

evaluation metrics. 
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3.1 Problem Description 

3.1.1 Physical data center 

As an infrastructure provided by InP, there are many types of physical data center topology [1]. In the 

traditional binary tree structure, the root node is easy to make a communication bottleneck. The path 

between the nodes in the fat-tree structure gradually widens from the leaf node, adapting the traffic from 

the leaf node to the root node in order to make the use of resources in data center networks more 

convenient. Therefore, this paper mainly uses the above advantages of fat-tree structure to define the 

network topology of the physical data center. Its concrete topological structure is shown in Fig. 1(d). It 

can be represented by a weighted undirected graph �����, ��, ���, where ��	is the set of physical server 

nodes, �� is the set of physical switch nodes, and �� is the set of links between nodes. 
 

 

Fig. 1. VDC request + physical data center network topology: (a) one layer VDC request, (b) two layers 

VDC request, (c) three layers VDC request, and (d) fat-tree physical data center network topology. 

 

At each physical server node, there are specific resources such as CPU, memory, and hard disk. 

However, in this paper, due to the resource constraint on the node, we mainly consider the number of 

virtual machines that are embedded, as shown in the square node in Fig. 1. We assume that each physical 

server node has the same configuration capability. For the physical switch node, the above resources are 

defined as the number of available ports, and each physical switch node is defined as a unified 

specification. Each physical link allocates certain bandwidth resources for the communication 

requirements between the nodes. Owing to different types of VDC embedding requirements, it is required 

to allocate corresponding resources to them and perform related records while embedding and releasing 

resources. To achieve this goal, for any server node � ∈ ��, 	(�) indicates the amount of currently 

available virtual machines. For any switch node 
 ∈ ��, the variable 	(
) indicates the total number of 

available virtual machines currently on all server nodes connected to it. For any switch node 
 ∈ ��, �(
) 
indicates the number of port resources available on it. Finally, for any physical link in the link set � ∈ ��, 

(�) denotes the current amount of available bandwidth resources. 

(c):Three layers VDC request (d):Fat-tree physical data center network topology
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3.1.2 Virtual data center 

VDC mainly includes two parts: virtual nodes and virtual links. The former is divided into two types: 

virtual switch nodes and virtual machine nodes. As with the physical data center, a VDC request can also 

be represented by a weighted undirected graph ����� , �� , ���, where N�  indicates the set of virtual 

machines, �� indicates the set of virtual switches, and �� indicates the set of virtual links. For each virtual 
machine node � ∈ �� and VDC embedding request, 	(�) indicates its requirement for the number of 

virtual machine resources. For any of the virtual switch nodes � ∈ �� in the request, 	(�) indicates the 
sum of the virtual machine resources required by all underlying virtual machine nodes. For any of the 

virtual switch nodes in the request � ∈ �� , we use �(�)  to indicate the number of port resource 

requirements on the physical switch. Finally, for any virtual link � ∈ �� in the request, 
(�) indicates its 
required number of bandwidth resources. 

This paper defines its topology as a basic binary tree. According to the switch hierarchy, it can be 

divided into VDC embedding request with one layer, VDC embedding request with two layers and VDC 

embedding request with three layers. As shown in Fig. 1(a)–(c), circles represent virtual switch nodes, 

squares represent virtual machine nodes, numbers in square nodes represent the numbers of virtual 

machine resources required, and connections between nodes represent virtual links between nodes. 

 

3.1.3 Virtual data center embedding 

The formal definition of the VDC embedding process is given below. Based on the above-modeled 

representations of the physical data center and the VDC, VDC embedding refers to M:�����, �� , ��� →
�����, ��, ���. M contains three separate maps as follows. 

Virtual machine node embedding is defined by ��:�� → �� . It refers to embedding each virtual 

machine node to a corresponding server node of a physical data center on the premise of satisfying the 

constraints of the virtual machine node. 

Virtual switch node embedding is defined by ��: �� → ��. It refers to the embedding of each virtual 

switch node to the corresponding physical switch node of the physical data center on the premise of 

satisfying the constraints of the virtual switch node. 

Link embedding is defined by ��: �� → �� . It refers to embedding each virtual link to the 

corresponding physical path in the physical data center on the premise of satisfying the virtual link 

requirement for each physical link on this path. 

 

3.2 Energy Consumption Model 

The energy consumption model mainly includes the energy consumption of the physical switch node 

and the physical server node in the physical data center. Before calculating the energy consumption of 

these two parts, it is necessary to express the energy consumption of physical switch nodes and physical 

server nodes. 

Energy consumption of the physical switch node: After the virtual switch node � ∈ �� is embedded 

to the physical switch node 
 ∈ ��, the extra energy consumption of the physical switch node 
 needs to 
be calculated, represented by ∆���	. The energy consumption of a typical switch is usually related to 

system throughput, communication loads, its inherent fans and other refrigeration equipment. One of 

these is the inherent energy consumption overhead of the switch, which is denoted by �
. A switch uses 
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multiple ports to connect different devices. These ports are responsible for the communication between 

the ingress and egress packets of switches. Energy consumption of per port is represented by ����
. Based 
on the above analysis, the total energy consumption of a physical switch is: 

 

��� = �
 + � ∙ ����
,                                (1) 
 

where � indicates the number of currently used ports of the physical switch node 
. 
Therefore, in order to embed the virtual switch node �, the extra energy consumption of the physical 

switch node 
 can be calculated by the following formula: 

 

∆���	 = ��
 + ∆� ∙ ����
����		�		��		�
��
∆� ∙ ����
 .                     (2) 

 

Energy consumption of the physical server node: After embedding the virtual machine node � ∈ �� 

to the physical server node � ∈ ��, the extra energy consumption of the physical server node � needs to 
be calculated, which is denoted by ∆���

�. Similar to the energy consumption of the switch nodes, the 

server nodes also have a fixed part of the basic energy consumption to maintain the normal operation of 

the machine. In addition, the energy consumption of other parts is mainly linearly related to the CPU 

loads. Therefore, this paper calculates the energy consumption of physical server node � by the following 
formula: 

 

��� = �� + �� ∙ �,                                 (3) 
 

where �� represents the energy of the server node with no load, called the basic energy consumption; � 
represents the current CPU loads, and �� represents the linear parameter of the server node with �. 
Based on the above energy consumption model, to embed the virtual machine node �, the extra energy 

required by the physical server node � is: 
 

∆���
� = ��� + �� ∙ ������		�		��		�
���� ∙ �� 	,                                                (4)  

 

where �� represents the CPU demand of the virtual machine node �. 
Based on the energy consumption model of the physical switch node and the physical server node, the 

entire energy consumption of the physical data center during the virtual node embedding process is: 

 

∆����� = ∑ ∑ ��	 ∙�∈��	∈�� ∆���	 � ��
�


�
+ 			∑ ∑ ��� ∙�∈���∈�� ∆���

� � ��
�


�
,                    (5) 

 

where ��	 and ��� respectively represent whether a certain virtual node is embedded on the corresponding 

physical node. If so, the value is 1; otherwise, the value is 0. And �� and �� represent the arrival time and 
departure time of the VDC embedding request, respectively. 

 

3.3 Evaluation Metrics 

This paper mainly considers two evaluation metrics, including the embedding success rate and energy 

consumption. 
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The embedding success rate refers to the rate of successfully embedding requests to all embedding 

requests. It can be defined as follows: 
 

��

����
,                                     (6) 

 

where �� represents the number of VDC requests that are accepted, and ���� represents the amount of 

VDC requests that need to be embedded. 

Then the long-term average energy consumption of the physical data center network is defined as 

follow: 
 

���
�→�

∑ ∆�
����
� �	�


�	

�
�

�
,                                                               (7) 

 

where �� represents the number of VDC requests that are successfully embedded during the time �, and 
∆������ ���� represents the energy consumption caused by embedding the �
� VDC embedding request. 

 

 

4. Energy-Aware VDC Embedding Algorithm 

For the purpose of solving the energy consumption problem in the VDC embedding process, this paper 

proposes an energy-aware embedding algorithm, which is divided into following three steps: 

1) Node label algorithm based on available resources. We add two variable parameters for each 

switch node in the physical data center network, which respectively represent the amount of 

available virtual machines of the underlying network topology and the bandwidth resources 

available for connecting the switch nodes. 

2) Energy-aware virtual node embedding algorithm. According to the network topology of the VDC 

embedding request, we analyze the root node that needs to be embedded and the corresponding 

levels of the physical data center network. With the help of the labels we have already added, we 

then use the best-fit strategy in node resource selection and the worst-fit strategy in bandwidth 

selection. According to the above two strategies, we find the most suitable embedding target for 

the root node, and then design a recursive algorithm to complete the embedding of the remaining 

nodes. 

3) Energy-aware virtual link embedding algorithm. The virtual link embedding is performed by using 

the energy-saving shortest path method to save energy cost while ensuring the link requirements 

of the VDC. 

 

4.1 Node Label Method Algorithm on Available Resources 

Since the physical data center network topology is defined as fat-tree in this paper, each layer contains 

many switch nodes (except for leaf nodes). This paper uses the node label method based on available 

resources to add two attribute variables to each switch node as follows: one represents the number of 

available virtual machine node resources on all network nodes that are connected to the lower part of the 

switch node (as shown in Fig. 2(d)). The other represents available bandwidth resources outward from 

the node. When a VDC embedding request comes, based on the above two attribute variables, those nodes 
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that do not meet the embedding request can be quickly eliminated, thereby providing support for the 

subsequent specific embedding algorithm. 

 

 

Fig. 2. VDC request with labels + physical data center with labels: (a) one layer VDC request with labels, 

(b) two layers VDC request with labels, (c) three layers VDC request with labels, and (d) physical data 

center network topology with labels. 

 

4.2 Energy-Aware Virtual Node Embedding Algorithm 

According to the node labeling method based on the available resources in the previous step, the 

corresponding node embedding algorithm needs to be designed for energy saving. Considering the 

topology structure of the VDC embedding request, the corresponding network hierarchy is sought to 

ensure that the nodes in the embedding request correspond to the nodes in the physical data center 

network. Since the resource requirements of each node and each link in the VDC request have already 

been defined when it arrives, referring to the previous step, the request-based node label method is used. 

For each virtual switch node in the VDC request, we add two attribute variables to represent the number 

of virtual machine node resources required by its lower layer (as shown in Fig. 2(a)–(c)) and the number 

of bandwidth resource requirements, respectively. 

We design a recursive embedding algorithm to complete the embedding task. Inspired by the packing 

algorithm and the number of node resource requirements at the lower level of the root node in the request, 

we use the best-fit strategy to sort all switch nodes at the corresponding level of the physical data center 

network, find the most suitable embedding position and improve the resource utilization rate. 

In order to explain the best-fit strategy better, the following section describes the packing problems. 

Classic packing problems require that a certain amount of items are placed in boxes with the same 

capacity, so that the sum of the items in each box will not exceed the capacity of the box. The bin packing 

problem is a complex discrete combinatorial optimization problem. The so-called combinatorial 

optimization means finding a solution that satisfies a given condition and makes its target function value 

maximum or minimum on a discrete, finite mathematical structure. 

Depending on different resource requirements, the virtual nodes are compared to items of different 

sizes. Then the physical nodes are compared to the boxes in use, according to the current resource usage. 
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Based on the resource requirements of the virtual nodes and the available resources of all physical nodes, 

we calculate the number of remaining available resources to decide whether the virtual nodes can be 

embedded on the physical nodes and then sort them. The best-fit strategy is to embed the virtual nodes 

on the physical node that can fulfill them with the fewest remaining resources, thus ensuring the optimal 

utilization of node resources. 

According to the ingress and egress bandwidth requirements of virtual nodes and the available ingress 

and egress bandwidth resource on all physical nodes, we calculate the number of remaining available 

bandwidth resources of the physical nodes after embedding the virtual nodes, and then sort candidate 

physical nodes. The worst-fit strategy is used to find the most suitable embedding position. The worst-fit 

strategy is to embed the virtual nodes on the physical node that can fulfill them with the most available 

ingress and egress bandwidth resources. Compared with the best-fit strategy, its resource utilization rate 

is lower, and the success rate of subsequent embedding is higher. 

Finally, we add the above two sorted sequences together. According to the result after addition, the 

top-ranked node is taken as the most suitable position where the virtual node is to be embedded. This 

approach not only achieves the goal of energy saving, but also facilitates other follow-up embedding 

requests. For other nodes in the embedding request, the embedding is done in the same way. The specific 

algorithm is shown in Algorithm 1. 

 

Algorithm 1: Energy-aware virtual node embedding algorithm  

Input: VDC embedding request ��, physical data center network ��. 
Output: Virtual Node embedding Scheme. 
1. embedding（node in ��） 

2.    If（node==NULL） 

3.       Return successful embedding； 
4. Define the hierarchy of variable d=node in node ��. 
5. Define the total number of layers of network topology in variable n=��. 
6. For（all nodes in the n-d+1 layer of ��） 
7.    Obtain rank NR based on best-fit strategy on             available node resources. 
8.    Obtain rank LR according to worst-fit strategy on the number of available bandwidth resources. 
9.    Define the variable R=NR+LR (final rank). 
10.    Sort R from small to large. 
11.       If（all items in R are infinite） 
12.          Return node embedding failed 
13.       Else 
14.          If（node has a child node） 

15.             For（every child belongs to the node） 

16.               embedding（child of node） 
17.    Map the node to the first position in R. 

 

4.3 Energy-Aware Virtual Link Embedding Algorithm 

Virtual link embedding means that, a non-recursive path should be found between physical nodes in 

the corresponding physical data center network after virtual node embedding, and all the links on the path 
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should satisfy the bandwidth resource requirements of the corresponding virtual link. In this process, 

existing studies usually use the shortest path method to solve the problem, but neglect the on/off state of 

physical data center network nodes, leading to increased energy consumption with too many opened 

nodes. Thus, this paper designs an energy-aware virtual link embedding algorithm. First, in the topology 

diagram of the physical data center network, the physical links that do not satisfy the bandwidth 

requirements of the virtual link to be embedded are deleted, and the remaining graphs are called residual 

figures. Then, in the residual figures, we calculate the shortest path. It is possible to get multiple shortest 

paths here. Finally, we choose paths that have the least number of opened nodes among the multiple 

shortest paths. By using the algorithm, we not only select the shortest path to avoid the long path problem 

of link embedding, but also reduce the number of nodes that are newly opened to achieve the goal of 

energy-aware. The specific algorithm is is shown in Algorithm 2. 

 

Algorithm 2: Energy-aware virtual link embedding algorithm 

Input: VDC embedding request ��, physical data center network �� and virtual node embedding scheme. 
Output: Virtual Link embedding Scheme. 

1. For every virtual link �� belongs to	�� 
2.    Delete all physical links in the physical data center network �� that cannot meet the resource 

requirements of the virtual link ��.  
3.    In the residual network, find the corresponding shortest path set. 
4.    In this set, find the path with the smallest number of newly opened nodes P. 
5.       If path P can meet all �� bandwidth resource requirements then 
6.          Map �� to path P and allocate bandwidth resources for ��.  
7.       Else 
8.          Release bandwidth resources of allocated physical paths. 
9.          Return virtual link embedding failed 
10.    Return virtual link embedding succeeded 

 

 

5. Energy Aware Particle Swarm Optimization based Virtual 

Data Center Embedding (EA-VDCE-PSO) 

In the last section, we propose a heuristic VDC embedding algorithm. However, its performance is still 

waiting to be optimized. It only uses heuristic information to find only one solution. Next, we use the 

population-based optimization technique to find multiple solutions and then select the best solution. 

Through the existing population-based techniques, PSO is widely applied in lots of fields, because of its 

strong robustness, faster execution, and higher efficiency. Thus, we leverage this technique to VDC 

embedding problem. In this section, we introduce PSO basis in Section 5.1, present two challenges to 

adopt PSO in our problem in Section 5.2, propose two strategies for these two challenges in Sections 5.3 

and 5.4, and finally give the description of this algorithm in Section 5.5. 

 

5.1 PSO Basis 

The PSO algorithm is based on swarm intelligence [20]. In this algorithm, each particle moves in the 

solution space at some speed, and aggregates to its personal historical best position ��� and the global 
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historical optimal position ��� to realize the evolution of the candidate solution. The update formula of 

the particle’s velocity and position is as follows: 

 

���� = ��� + �������� − ��� + �������� − ���,																																																(8) 
 

���� = �� +  ���,																																																																											(9) 
 

where ��  represents the current position of the i-th particle and  �  represents its current velocity; w 
represents the weight of the particles holding inertia; !�  and !�  as the acceleration of the particles 
represent the tendency of the particles to move to their historical best position and global best position 

respectively; "� and "� are uniformly generated random numbers between (0, 1). 

 

5.2 Challenges 

When applying PSO into the energy-aware VDC embedding problem, there are two challenges as 

below: 

1) VDC embedding is a discrete problem. Thus, how to make PSO suitable for discrete optimization 

problem? 

2) In basic PSO, it randomly chooses the position in the solution space, which may lead to the slow 

convergence in VDC embedding.  

To address these two challenges, we first redefine particle-related parameters and operations in Section 

5.3, and then propose the best-fit and worst-fit hybrid strategy in Section 5.4.   

 

5.3 Redefinition of Particle Related Parameters and Operations 

PSO is mainly used to settle some problems in continuous domains. While solving discrete 

optimization problems, it is necessary to redefine the parameters and related operations of particles on 

the basis of specific problems. According to the optimized model of VDC embedding, we redefine the 

position, velocity and related operations in the particle swarm, as below: 
 

DEFINITION 1. The position of one particle: The position vector �� = [���, ���, ⋯ , ���] is defined as the 
ith possible mapping scheme. # indicates that the virtual network request contains a total of # VDC 
nodes; ��� takes a positive integer whose value represents the number of nodes in the physical data center 
selected by the jth VDC node from its list of underlying network candidate nodes. 

 

DEFINITION 2. The velocity of two particles: The velocity vector  � 	= 	 [���, ���, ⋯ , ���] of the particle 
is defined by the adjustment decision of the mapping scheme, which guides the current mapping scheme 

to the better mapping scheme. Here, ��� is a binary variable. If ��� = 0, it means that the jth virtual node 

needs to reselect the node mapping from its candidate node list of the physical data center. 
 

DEFINITION 3. Subtraction Θ: ��Θ��  is used to calculate the difference between the two mapping 

schemes. If the mapping schemes �� and �� have the same value in the same dimension, the result of the 

difference is 1, otherwise 0. For example, (1,2,3,4,5)	Θ(1,8,7,4,9) = (1,0,0,1,0). 
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DEFINITION 4. Addition ⊕: �� �⊕�� � is used to obtain the adjustment decision of the mapping scheme. 

�� � and �� � respectively represent that the values of  � dimensions are maintained with the probability 

of �� and the values of  � are maintained with the probability of ��, and �� + �� = 1 (0 ≤ � ≤ 1). For 

example, 0.3(1,0,0,1,1) ⊕ 0.7(1,0,1,0,1) = (1,0,*,*,1), where * denotes that this dimension 0 or 1 is 

uncertain. In addition, the first * indicates that this dimension takes 0 with a possibility of 0.3 and takes 

1 with a possibility of 0.7. 
 

DEFINITION 5. Multiplication ⊗: ��⊗ � is used to obtain a new mapping scheme. The mapping scheme 

��  adjusts its virtual node mapping scheme according to the adjustment decision  � . For example, 

(1, 8, 5, 9, 10)	⊗	(1, 0, 1, 1, 1), indicating that the mapping scheme of the second virtual node should be 

adjusted. 

 

Therefore, we can derive the basic formula for the position and velocity update of the redefined PSO 

algorithm as follows: 

 

 ��� = �� �⊕��$���%��&⊕!�"� '���Θ��(																																																	(10) 
 

���� = ��⊗ ���																																																																										(11) 
 

where ��, ��, and �� are constants, and �� + �� + �� = 1. 

 

5.4 Best-Fit and Worst-Fit Hybrid Strategy 

In basic PSO, it randomly chooses the position in the solution space, which may lead to the slow 

convergence in our problem. To settle this problem, the best-fit and worst-fit hybrid strategy is proposed, 

which shares the same idea with the heuristic algorithm in Section 4.2. We adopt the best-fit strategy to 

sort all switch nodes in the physical data center network, find the most suitable embedding position and 

improve resource utilization rate. Then we use the worst-fit strategy to embed the virtual nodes on the 

physical node that can fulfill them with the most available ingress and egress bandwidth resources. 

Finally, we add the above two sorted sequences together and give the final rank. If a physical node has a 

higher rank, it is more likely to be selected as the candidate embedding node. 

This strategy guarantees that the selected node can satisfy the node and link resource constraint, and 

thus has a faster convergence speed. 

 

5.5 VDCE-PSO Algorithm Description 

The VDCE-PSO algorithm makes the number of active physical nodes as the fitness function )(�), 
where the position vector � represents a possible mapping scheme. If the mapping scheme is feasible, 

then the value of )(�) represents the overhead of the VDC embedding. If the embedding scheme is not 

feasible, then the value of )(�) is set to +∞; the description of the VDCE-PSO algorithm is as follows: 

Step 1: Set the number of particle swarms to N, and the maximum number of iterations executed by 

the algorithm to ��. The particle randomly generates the initial position parameter �� and the velocity 

parameter  �. 
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Step 2: Calculate the fitness )(��) of all particles, and obtain the global optimal initial position ��� 
and the optimal initial position ��� of each particle. 

Step 3: Update the velocity of the particles satisfying the constraint according to Eq. (10); update the 

position in Eq. (11), randomly select the candidate nodes of the physical data center in the position 

updating process, and regenerate the position and velocity parameters for the particles that do not satisfy 

the node constraints. 

Step 4: For each particle in the particle group, if )(��) < )(���), then ��� = ��; if )(���) < )(���), 
then ��� = ���. 

Step 5: Check the current number of iterations. If it is less than MG, execute Step 3; otherwise, execute 

Step 6. 

Step 6: Output the optimal VDC embedding scheme and its fitness value. 

 

 

6. Experimental Evaluation 

In this section, we assess our proposed two energy-aware VDC embedding algorithms. Firstly, the 

experimental environment is described. Then the experimental results are analyzed. Compared with other 

existing works, this paper proves that the energy-aware VDC embedding algorithms can make a 

significant increment in terms of the embedding success rate and energy consumption. 

 

6.1 Experimental Configuration 

Physical data center settings: This paper uses a three-layer fat-tree structure to define the network 

topology of the physical data center. Each switch has 16 ports. Therefore, in the experimental 

environment, there are 320 physical switches, 1024 physical servers, and 3072 physical links. Each 

physical server has 10 units of virtual machine resources at most; while each physical link has 100 units 

of bandwidth resources. 

Virtual data center request settings: For each VDC embedding request, this paper uses a binary tree 

to define their network topology. As shown in Fig. 1(a)–(c), there are three types: one-layer architecture, 

two-layer architecture, and three-layer architecture. Each virtual machine has different requirements for 

the virtual machine resources, and each virtual link needs to occupy one port of the physical switch at 

both ends of the link. Meanwhile, the resource demands of virtual links for bandwidth resources are 

between 1 and 10 units. 

This paper defines that an average of one VDC embedding request will arrive for per unit of time, and 

the request type is a random one of the three types, and there are 2000 VDC embedding requests totally. 

The VDC embedding request is normally distributed during the period of time. At the same time, 

according to the energy-aware VDC embedding algorithm proposed in this paper, resources should be 

allocated for each VDC embedding request when it comes while resources should be released when it 

leaves so as to serve other coming VDC embedding requests. 

Compared algorithm: To evaluate our proposed solution, we compare our algorithms to the latest 

algorithm, NSS-JointSL algorithm, proposed in [18]. In this algorithm, first a Nearest-edge-Switch 
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approach is used to embed virtual Servers (NSS) and then a Joint embedding approach is employed to 

embed virtual Switches and Links (JointSL). This is a heuristic solution. However, our proposed solution 

leverages the evolution process of PSO to get a better solution, which can be demonstrated through an 

extensive experiment in Section 6.2. Gilesh et al. [19] propose a novel solution. It minimizes 

fragmentation to achieve more accepted VDC requests compared to existing strategies, meanwhile 

minimally disrupting the existing VDCs. However, they also ignore the energy consumption. Thus, we 

exclude the solution from the comparison. 

Other research works about VDC embedding problem mainly focus on enhancing operating revenue, 

improving the embedding success rate and providing bandwidth guarantee. Therefore, to facilitate a fair 

comparison, we exclude these existing studies and choose the random embedding algorithm (R-VDCE) 

as the compared algorithm. That is, when a VDC embedding request comes, the physical nodes and 

physical paths that satisfy the resource needs of both virtual nodes and virtual links are randomly found 

on the physical data center. 

Evaluation metrics: The evaluation metrics include the embedding success rate of VDC embedding 

requests and energy consumption during the embedding process, as shown in Eqs. (6) and (7). 

 

6.2 Experimental Results and Analysis 

Compared to the state-of-the-art algorithm: To evaluate the performance of the EA-VDCE 

algorithm proposed in this paper, we compare it to the random embedding algorithm R-VDCE and the 

algorithm NSS-SL [18]. Figs. 3 and 4 show the experimental results. EA-VDCE has a higher successful 

rate of embedding and less energy consumption than R-VDCE. The reasons are as follows. First, the EA-

VDCE algorithm comprehensively considers the scheduling of node resources and bandwidth resources, 

so it provides a better embedding environment for subsequent VDC embedding requests and improves 

the embedding success rate. Second, it figures out the type of VDC request (one layer, two layers or three 

layers) and then maps it to the corresponding layer of the physical data center, which avoids the long-

path problem and effectively reduces the energy consumption. Third, the algorithm proposed in this paper 

adds labels to each physical node. By these labels, we can find more suitable physical nodes during the 

embedding process as soon as possible. In this way, the number of newly opened physical nodes is 

decreased and the energy consumption is effectively reduced.  

For the success rate, from Fig. 3, through the experiments above, compared with R-VDCE and NSS-

SL, EA-VDCE maintains a relatively high success rate of embedding, reaching almost 80%. However, 

the success rate of R-VDCE is affected by the increase of embedding requests, and the average rate is 

maintained at about 60%. 

For the energy cost, from Fig. 4, we can also see that EA-VDCE, on the average, has reduced energy 

consumption by about 28% and 11% compared with R-VDCE and NSS-SL. This is because EA-VDCE 

can consolidate the VDC nodes into a smaller number of physical data center nodes and thus power off 

more nodes into a sleeping state. 

The impact of the PSO-based algorithm: From Fig. 3, for the success rate, EA-VDCE-PSO 

maintains a relatively high success rate of embedding which is almost 82%, similar to the other three 

algorithms. From Fig. 4, for the energy cost, we can also observe that the proposed algorithm EA-VDCE-

PSO further reduces energy consumption by 9%, compared to our proposed heuristic algorithm EA-

VDCE. The reason is that EA-VDCE-PSO can find more solutions by the particles through the iterative 
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process. It is smart to find more and more optimal solutions through learning from each other particles. 

Notably, it also consumes some running time, which is omitted due to the page limit. However, the 

physical data center owner can adjust the iteration times and the number of particles to balance energy 

efficiency and running time. 

 

 

Fig. 3. Comparison of the embedding success rate. 

 

 

Fig. 4. Comparison of energy cost. 

 

 

7. Conclusion 

To optimize the energy consumption in the embedding process of VDC requests, we propose the energy 

consumption model of physical nodes, and design two VDC embedding algorithms for energy-saving. 

The first one is a heuristic algorithm. It computes the label variables of each node, comprehensively uses 

the best matching strategy, the worst matching strategy and the shortest path algorithm, and then 
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completes the virtual node and virtual link embedding in turn. The second one is the PSO-based 

technique. It leverages the smart iterative process to achieve more and more optimal solutions. Simulation 

experiments show that our proposed two algorithms can greatly reduce the energy consumption with a 

guaranteed success rate of the VDC request embedding. 

 

 

Acknowledgement 

This work was supported in part by the following funding agencies of China, National Natural Science 

Foundation (Grant No. 61602050 and U1534201).  

 

 

References 

[1] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G. Rabbani, Q. Zhang, and M. F. Zhani, 

“Data center network virtualization: a survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 2, 

pp. 909-928, 2012. 

[2] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM placement and routing for data center traffic 

engineering,” in Proceedings of 2012 Proceedings IEEE INFOCOM, Orlando, FL, 2012, pp. 2876-2880. 

[3] V. Shrivastava, P. Zerfos, K. W. Lee, H. Jamjoom, Y. H. Liu, and S. Banerjee, “Application-aware virtual 

machine migration in data centers,” in Proceedings of 2011 IEEE INFOCOM, Shanghai, China, 2011, pp. 

66-70.  

[4] Z. Zhang, S. Su, K. Shuang, W. Li, and M. A. Zia, “Energy aware virtual network migration,” in Proceedings 

of 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, 2016, pp. 1-6. 

[5] Z. Zhang, S. Su, X. Niu, J. Ma, X. Cheng, and K. Shuang, “Minimizing electricity cost in geographical virtual 

network embedding,” in Proceedings of 2012 IEEE Global Communications Conference (GLOBECOM), 

Anaheim, CA, 2012, pp. 2609-2614. 

[6] S. Su, Z. Zhang, A. X. Liu, X. Cheng, Y. Wang, and X. Zhao, “Energy-aware virtual network embedding,” 

IEEE/ACM Transactions on Networking, vol. 22, no. 5, pp. 1607-1620, 2014. 

[7] Z. Zhang, S. Su, J. Zhang, K. Shuang, and P. Xu, “Energy aware virtual network embedding with dynamic 

demands: online and offline,” Computer Networks, vol. 93, pp. 448-459, 2015. 

[8] Z. Zhang, S. Su, J. Zhang, K. Shuang, and P. Xu, “Energy aware virtual network embedding with dynamic 

demands,” in Proceedings of 2015 IEEE International Conference on Communications (ICC), 2015, London, 

UK. 

[9] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,” Computer Networks, vol. 54, no. 

5, pp. 862-876, 2010. 

[10] A. Edwards, A. Fischer, and A. Lain, “Diverter: a new approach to networking within virtualized 

infrastructures,” in Proceedings of the 1st ACM Workshop on Research on Enterprise Networking, Barcelona, 

Spain, 2009, pp. 103-110. 

[11] F. Hao, T. V. Lakshman, S. Mukherjee, and H. Song, “Enhancing dynamic cloud-based services using 

network virtualization,” in Proceedings of the 1st ACM Workshop on Virtualized Infrastructure Systems and 

Architectures, Barcelona, Spain, 2009, pp. 37-44. 

[12] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards predictable datacenter networks,” ACM 

SIGCOMM Computer Communication Review, vol. 41, no. 4, pp. 242-253, 2011. 

[13] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang, “Secondnet: a data center network 

virtualization architecture with bandwidth guarantees,” in Proceedings of the 6th International Conference, 

Philadelphia, PA, 2010. 



Xiao Ma, Zhongbao Zhang, and Sen Su 

 

J Inf Process Syst, Vol.16, No.2, pp.460~477, April 2020 | 477 

[14] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu, “BCube: a high performance, 

server-centric network architecture for modular data centers,” ACM SIGCOMM Computer Communication 

Review, vol. 39, no. 4, pp. 63-74, 2009. 

[15] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, 

“VL2: a scalable and flexible data center network,” ACM SIGCOMM Computer Communication Review, vol. 

39, no. 4, pp. 51-62, 2009. 

[16] T. Benson, A. Akella, A. Shaikh, and S. Sahu, “CloudNaaS: a cloud networking platform for enterprise 

applications,” in Proceedings of the 2nd ACM Symposium on Cloud Computing, Cascais, Portugal, 2011. 

[17] A. Amokrane, M. F. Zhani, R. Langar, R. Boutaba, and G. Pujolle, “Greenhead: virtual data center embedding 

across distributed infrastructures,” IEEE Transactions on Cloud Computing, vol. 1, no. 1, pp. 36-49, 2013. 

[18] Y. Yang, X. Chang, J. Liu, and L. Li, “Towards robust green virtual cloud data center provisioning,” IEEE 

Transactions on Cloud Computing, vol. 5, no. 2, pp. 168-181, 2015. 

[19] M. P. Gilesh, S. M. Kumar, L. Jacob, and U. Bellur, “Towards a complete virtual data center embedding 

algorithm using hybrid strategy,” in Proceedings of 2017 IEEE 37th International Conference on Distributed 

Computing Systems (ICDCS), Atlanta, GA, 2017, pp. 2616-2617.  

[20] R. Eberhart and J. Kennedy, “Particle swarm optimization,” in Proceedings of the IEEE International 

Conference on Neural Networks, Perth, Australia, 1995, pp. 1942-1948. 

 

 

Xiao Ma  https://orcid.org/0000-0001-7792-9457   
He is a PhD candidate in the State Key Laboratory of Networking and Switching 

Technology, Beijing University of Posts and Telecommunications. His current 

research interests include resource management in data center. 

 

 
 
Zhongbao Zhang  https://orcid.org/0000-0002-3242-150X   
He received the Ph.D. degree in Computer Science from Beijing University of Posts 

and Telecommunications, China, in 2014. He is an assistant professor in Beijing 

University of Posts and Telecommunications now. His major is Computer Science. His 

research interests include network virtualization, social network and big data. 

 

 
Sen Su  https://orcid.org/0000-0003-4266-7527   
He received the Ph.D. degree in Computer Science from the University of Electronic 

Science and Technology, China, in 1998. He is currently a professor at the Beijing 

University of Posts and Telecommunications. His research interests include cloud 

computing and big data. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


