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Abstract 
Biometrics identification using multiple modalities has attracted the attention of many researchers as it produces 
more robust and trustworthy results than single modality biometrics. In this paper, we present a novel multimodal 
recognition system that trains a deep learning network to automatically learn features after extracting multiple 
biometric modalities from a single data source, i.e., facial video clips. Utilizing different modalities, i.e., left 
ear, left profile face, frontal face, right profile face, and right ear, present in the facial video clips, we train 
supervised denoising auto-encoders to automatically extract robust and non-redundant features. The automatically 
learned features are then used to train modality specific sparse classifiers to perform the multimodal 
recognition. Moreover, the proposed technique has proven robust when some of the above modalities were 
missing during the testing. The proposed system has three main components that are responsible for detection, 
which consists of modality specific detectors to automatically detect images of different modalities present in 
facial video clips; feature selection, which uses supervised denoising sparse auto-encoders network to capture 
discriminative representations that are robust to the illumination and pose variations; and classification, which 
consists of a set of modality specific sparse representation classifiers for unimodal recognition, followed by 
score level fusion of the recognition results of the available modalities. Experiments conducted on the 
constrained facial video dataset (WVU) and the unconstrained facial video dataset (HONDA/UCSD), resulted 
in a 99.17% and 97.14% Rank-1 recognition rates, respectively. The multimodal recognition accuracy 
demonstrates the superiority and robustness of the proposed approach irrespective of the illumination, non-
planar movement, and pose variations present in the video clips even in the situation of missing modalities. 
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1. Introduction 

Several factors, e.g., changes in illumination and viewing direction, affect the accuracy and robustness 

of unimodal face biometrics [1-4]. To overcome these limitations, fusion of different modalities has been 

used in the literature to obtain robust and accurate recognition results. 

There are several motivations for building robust multimodal biometric systems that extract multiple 

modalities from a particular source of biometrics, i.e., facial video clips. Firstly, acquiring facial video 

clips data is straight forward using conventional video cameras, which are ubiquitous. Secondly, the 

nature of data collection is non-intrusive and the ear, frontal, and profile face can appear in the same 
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video. Thirdly, in a multimodal biometric identification system, it is expected to encounter missing 

modalities when working with video data. Various modalities, e.g., frontal face, left ear, right ear, left 

profile face, and right profile face might exist in the training video clips. If the test data does not contain 

all the modalities during the classification, we should be able to perform multi-modal classification using 

the available modalities. 

In this work, we proposed a novel multimodal biometrics methodology to efficiently recognize subjects 

from facial video surveillance data irrespective of the multiple constraints, such as illumination, pose 

variations, and non-planar movement existing in the face surveillance data. Unlike facial videos recorded 

under a constrained environment, facial video clips collected in unconstrained environments contain 

significant head pose variations due to non-planar movements. Moreover, detected frames of the same 

modality from unconstrained facial video clips contain a high degree of non-planar rotation variabilities 

compared with the constrained counterpart. This makes unconstrained facial video clips more challenging 

to adequately extract information for efficient recognition. 

 

 
Fig. 1. System block diagram: multimodal biometrics recognition from facial video. 

 

The proposed methodology, shown in Fig. 1, entails three distinct components to perform the task of 

efficient multimodal recognition from facial video clips. First, the automatic detection of modality 

specific regions from the video frames been performed by adopting the detection framework of Viola and 

Jones [5]. Unconstrained facial video clips contain significant head pose variations due to non-planar 

movements, and sudden changes in facial expressions. This results in an uneven number of detected 

modality specific video frames for the same subject in different video clips, and also a different number 

of modality specific images for different subject. From the aspect of building a robust and accurate model, 

it is always preferable to use the entire available training data. However, classification through sparse 
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representation (SRC) is vulnerable due to the existence of uneven count of modality specific training data 

for different subjects. Thus, to overcome the vulnerability of SRC while using all of the detected modality 

specific regions, in the model building phase we train supervised denoising sparse auto-encoder to 

construct a mapping function. This mapping function is used to automatically extract the discriminative 

features preserving the robustness to the possible variances using the uneven number of detected modality 

specific regions. Therefore, by applying deep learning network as the second component in the pipeline 

results in an equal number of training sample features for the different subjects. Finally, using the 

modality specific recognition results, score level multimodal fusion is performed to obtain the multimodal 

recognition result. 

Due to the unavailability of proper datasets for multimodal recognition studies [6], often virtual 

multimodal databases are synthetically obtained by pairing modalities of different subjects from different 

databases. To the best of the authors’ knowledge, the framework presented in this manuscript is the first 

work where multiple modalities are extracted from a single data source that belongs to the same subject. 

There are a very few studies in biometrics recognition literature that deal with substantial head pose 

variation in facial video clips. It may however be noted that majority of the previous studies were aimed 

to overcome the particular variabilities, e.g., expression, viewing angle, and illumination, in different 

facial images by applying individual transformations. The major contributions of the presented framework 

is the application of training a deep learning network for automatic feature learning in multimodal 

biometrics recognition using a single source of biometrics i.e., facial video data, irrespective of the 

various constraints, e.g., illumination, pose variations, and non-planar movement existing in the face 

surveillance data. 

The rest of this manuscript is structured as follows: Section 2 analyses the related work. Section 3 

details the modality specific frame detection from the facial video clips. Section 4 describes the automatic 

feature learning using supervised denoising sparse auto-encoder (deep learning). Section 5 presents the 

modality specific SRC and multimodal fusion. Section 6 provides the experimental results on the facial 

video datasets collected in constrained (WVU) [7], and the unconstrained (HONDA/UCSD) [8] 

environment, demonstrating performance of the presented framework. Finally, conclusion of the research 

with future potential to advance the proposed framework are described in Section 7. 
 

 

2. Related Work 

2.1 Multimodal Recognition 

Research in face recognition domain been active during the past few decades [9-14]. Although majority 

of the study on face recognition is using 2D images or 3D data, there are few publications that address 

video-based face recognition [15-18]. In [15], face images extracted from the training video clips are 

used to build a dictionary where face images of the same subject with variations in illumination, viewing 

angle, and facial expression, reside on the same nonlinear sub-manifold. Later, the learned dictionary is 

used to recognize faces from query video clips. Lee et al. [16] proposed probabilistic appearance 

manifolds, a spatiotemporal manifold model, which computes the transition probabilities between the 

subspaces. Given a query video, the probabilistic appearance manifold algorithm locates the operating 

part of the manifold to identify the subject. In [17], a view synthesis method is proposed reconstructing 

3D frontal face model using many non-frontal 2D face images obtained from training video frames. Later, 
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the synthesized frontal face image is used to match against the frontal face image extracted from the 

query video. In [18], decisions from multiple face matchers are adaptively fused in improving recognition 

accuracy using facial video. Lumini and Nanni [19] presented an article listing the state-of-the-art 

methodologies on fusing information in the multimodal biometric recognition. 

The ear, though a comparatively new area of biometric research, owns multiple inherent characteristics, 

e.g., it nearly maintains its shape with aging, and is not at all affected by facial expressions, which makes 

its use beneficial [20]. Because of these advantages, several researchers built multimodal ear and face 

biometric systems [21-23]. In [24], the authors presented the advantage of using profile face, side view 

of the face including the ear, which provides discriminative information for human recognition. In [23], 

the authors presented a feature-fusion framework incorporating kernel Fisher discriminant analysis 

(KFDA) on 2D images, later utilize it for profile face- and ear-based recognition. Kisku et al. [22] 

presented a multimodal biometric framework to fuse 2D ear and facial biometrics using Dempster-Shafer 

decision theory. In [21], the authors incorporated eigen ear and face techniques to build a multimodal 

framework using 2D profile face and ear images. A sparse representation based multimodal biometric 

system is proposed in [6]. It fuses ear and face at the feature level, where the fusion weights are 

determined by computing the reliability of each modality. 
 

2.2 Deep Learning in Biometrics 

Recently, deep learning of artificial neural networks (ANN) has been used in several biometric 

authentication research studies. Ngiam et al. [25] presented a deep network based unsupervised feature 

learning for audio-visual speech classification. The features obtained from the audio and video data is 

used to learn the latent relationship of the lip pose and motions in the video with the articulated phonemes 

in the audio. Different variants of convolutional neural network [12,26,27] have been used to design face 

verification systems. A face verification framework using convolutional neural network based Siamese 

network is presented in [27]. In [12], a facial verification system using convolutional neural network was 

presented which considerably outperforms the existing systems on the LFW dataset. The above-cited 

research articles are proposed for face verification, whereas our proposed approach deals with multimodal 

recognition in which, given a test video, it identifies the subject among many. 

Goswami et al. [28] proposed MDLFace, a memorability-based frame selection technique that assists 

automatic selection of memorable frames for facial feature extraction and comparison, by using a deep 

learning algorithm. In [28], the deep learning algorithm is trained to identify the memorable faces, certain 

face images that can be more accurately remembered by human subjects compared to other faces, to 

resemble the human perception in face recognition. In [29], the multimodal biometrics (face, iris, 

fingerprint) anti-spoofing framework is presented using deep neural network. A stacked supervised auto-

encoders based single sample face recognition technique is proposed in [30], which achieves considerably 

better accuracy compared to other DNN framework, such as Lambertian network. 
 

 

3. Modality Specific Image Frame Detection 

To perform multimodal biometric recognition, we first need to detect the image frames of the various 

modalities from the facial video. The facial video clips in the constrained dataset are collected in a 

controlled environment, where the camera rotates around the subject's head. The video frame sequences 
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begin with the left face profile, i.e., 0o, then proceed towards right face profile up to 180o rotation, contains 

image frames of various modalities, e.g., frontal face, left profile face, right profile face, left ear, and 

right ear, respectively. Sequences in the unconstrained facial video dataset contains uncontrolled and 

non-uniform head rotations and changing facial expressions. Thus, the appearance of a specific modality 

in a certain video frame of the unconstrained clip is random compared with the constrained video clips. 

The algorithm was trained to detect the different modalities that appear in the facial video clips. To 

automate the detection process of the modality specific image frames, we adopted the AdaBoost detection 

framework [5]. We trained this detection framework to detect frontal and profile faces in the video frames, 

respectively, using manually cropped frontal face images from color FERET [31] database, and face 

profile images from the University of Notre Dame (UND) Collection J2 dataset. Moreover, it is trained 

using ear images in UND [32] color ear dataset to detect ear images in the video frames. By using these 

modality specific trained detectors, we can detect faces and ears in the video frames. The modality 

specific trained detectors are utilized in detecting face and the ear regions in the video frames. Figs. 2 

and 3 consist examples of detection results from the constrained and unconstrained facial video dataset. 

 

 
(a) 

 
(b) 

Fig. 2. Modality specific image frame detection for constrained facial video clips. (a) Automatic detection 
of image frames in WVU facial video clips using modality specific trained cascade classifier. (b) 
Categorized detected regions from WVU facial video clips into modality specific groups from a video 
sequence. 
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(a) 

 
(b) 

Fig. 3. Modality specific image frame detection for unconstrained facial video clips. (a) Automatic 
detection of image frames in HONDA facial video clips using modality specific trained cascade classifier. 
(b) Categorized detected regions from HONDA facial video clips into modality specific groups from a 
video sequence. 

 

Performance of the modality specific detection for the constrained face video clip is highly accurate. 

However, due to the uncontrolled head movements and non-planar rotation present in the unconstrained 

dataset, the detection results are not as accurate and there are few false positives. The detection accuracies 

on the unconstrained facial database is listed in Table 1. 

Before using these detected modality specific regions from the video frames for extracting features, 

some pre-processing steps are performed. The facial video clips recorded in the unconstrained 

environment contain variations in illumination and low contrast. The contrast of the images is enhanced 

through histogram equalization. Finally, all detected modality specific regions from the facial video clips 

were resized; ear images were resized to 110×70 pixels and faces (frontal and profile) were resized to 

128×128 pixels. 
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Table 1. Detection accuracy for unconstrained video clips 

Modality Detection accuracy (%) 

Frontal face 97.55 

Left profile face 93.42 

Right profile face 92.21 

Left ear 98.77 

Right ear 98.84 

 

 

4. Automatic Feature Learning Using Deep Neural Network 

Even though the modality specific sparse classifiers result in relatively high recognition accuracy on 

the constrained face video clips, the accuracy suffers in case of unconstrained video because the sparse 

classifier is vulnerable to the bias in the number of training images from different subjects. For example, 

subjects in the HONDA/UCSD dataset [8] randomly change their head pose. This results in a non-

uniform number of detected modality specific video frames across different video clips, which is not 

ideal to perform classification through sparse representation. 

In the subsequent sections we first describe the Gabor feature extraction technique. Then, we describe 

the supervised denoising sparse auto-encoders, which we use to automatically learn equal amount of 

feature vectors for each subject from the uneven quantity of modality specific detected regions. 

 

4.1 Feature Extraction 

Two-dimensional Gabor filters [33] are used in broad range of applications [34,35] to extract scale and 

rotation invariant feature vectors. In our feature extraction step, uniform down-sampled Gabor wavelets 

are computed for the detected regions using Eq. (1), as proposed in [36]: 

 ߰ஜ,ఔ(ݖ) = ฮ௞ಔ,ഌฮమ௦మ ℯ(షฮೖಔ,ഌฮమ‖೥‖మమೞమ ) ൤ℯ௜௞ಔ,ഌ௭ − ℯೞమమ ൨                                             (1) 

 

where z = (x, y) represents each pixel in the 2D image,	݇ஜ,ఔ 	is the wave vector, which can be defined as ݇ஜ,ఔ = ݇ఔℯ௜థೠ 	, ݇ఔ = ௞೘ೌೣ௙ഌ  , ݇௠௔௫ is the maximum frequency, and f is the spacing factor between kernels 

in the frequency domain, ߶௨ = గஜଶ  , and the value of s determines the ratio of the Gaussian window width 

to wavelength. Using Eq. (1), Gabor kernels can be generated from one filter using different scaling and 

rotation factors. In this paper, we used five scales, 	ߥ	 ∈ 	0, … , 4 and eight orientations	μ	 ∈ 	0, … , 7.  The 

other parameter values used are	s = 2π, ݇௠௔௫ = గଶ , and ݂ = 	√2. 
Before computing the Gabor features, all detected ear regions are resized to the average size of all the 

ear images, i.e., 110×70 pixels, and all face images (frontal and profile) are resized to the average size of 

all the face images, i.e., 128×128 pixels. Gabor features are computed by convolving each Gabor wavelet 

with the detected 2D region, as follows: 

(ݖ)ஜ,ఔܥ  = (ݖ)ܶ ∗ 	߰ஜ,ఔ(ݖ)                                                            (2) 
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where T(z) is the detected 2D region, and z = (x, y) represents the pixel location. The feature vector is 

constructed out of ܥஜ,ఔ by concatenating its rows. 

 

4.2 Classical Sparse Auto-encoder 

Deep learning is a suite of machine learning techniques, where multiple layers of information 

processing phases in hierarchical architectures are utilized for pattern analysis/classification. There are 

different deep learning architectures available in the literature. The available deep learning architectures 

can be categorized broadly into three major classes: convolution neural network (CNN), recurrent neural 

network (RNN), and deep auto-encoder. CNNs are neural network with local and global connectivity 

structure consist of multiple stages of feature extractors. CNNs are used in recognizing various 

images/scenes, video content analysis, natural language processing applications, etc. RNN contains feed-

back connection, thus the activations can flow round in a loop. This phenomenon enables the networks 

to do temporal processing and learn sequences, e.g., perform sequence recognition/reproduction or 

temporal prediction/association. RNNs are used in speech recognition, video captioning, word prediction, 

translation applications, etc. Thus, we can see none of the CNN or RNN architectures are suitable for the 

automatic feature extraction. However, in the deep auto-encoder architecture the output target itself is the 

data input, usually pre-trained with deep belief network or using distorted training data to regularize the 

learning. In this subsection we describe the sparse auto-encoder algorithm [37], which is one of the 

approaches to learn features from unlabeled data automatically. 

 

 
Fig. 4. Structure of an auto-encoder. 

 

The application of ANN’s to supervised learning [38] is well proven in variety of applications including 

speech recognition, computer vision such as self-driving car. An auto-encoder network is an unsupervised 

learning algorithm, one of the commonly used building blocks in deep neural networks, which applies 

backpropagation to set the target values to be equal to the inputs. The weights of each layer is adjusted 

by the reconstruction error between the input and the output of the network. As shown in Fig. 4, an auto-

encoder tries to learn a function ௜ݔ	 = పෝݔ , where ݔ௜  belongs to unlabeled training samples 
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set	{ݔ(ଵ),  ℝ௡. In other words, it is trying to learn an approximation to the identity	௜߳ݔ	and ,{(௡)ݔ,…,(ଷ)ݔ,(ଶ)ݔ

function, to produce an output ݔො that is similar to x, in two subsequent stages: (i) an encoder, maps the 

input x to the nodes in the hidden layer using some deterministic mapping function f: h = f(x), then (ii) a 

decoder, maps the hidden nodes back to the original input space through another deterministic function 

g:	ݔො = ݃(ℎ). For real-valued input the parameters of encoder and decoder can be learned by minimizing 

the reconstruction error ݔ‖	 − ଶ‖((ݔ)݂)݃ . This simple auto-encoder often resembles learning a low-

dimensional representation alike Principal Component Analysis (PCA) [39]. However, it has been proven 

in [40] that such a nonlinear auto-encoder is different from PCA, also training an auto-encoder results in 

minimizing the reconstruction error and maximizing a lower bound on the mutual information between 

the input and the learned representation. 

In Fig. 4, the number of hidden units can be increased, i.e., the number of hidden nodes can be made 

even greater than the number of input nodes. In this case, we can learn some inherent structure of the data 

by imposing a sparsity constraint on the network. In other words, if we think of a neuron as being “active” 

if its output value is close to 1, or as being “inactive” if its output value is close to 0, we would like to 

constrain the neurons to be inactive most of the time. Recent research progress in biology reveals that the 

percentage of the activated neurons of human brain at a specific time is around 1% to 4% [41]. Thus, 

sparsity constraint on the activation of the hidden layer is frequently applied in the auto-encoder based 

neural networks. Recent research proven that that sparse auto-encoder usually achieves better 

performance than that trained without the sparsity constraint [37]. 

 

4.3 Denoising Auto-encoder 

Denoising auto-encoder (DAE) [42] is a more generalized and robust version of the classical auto-

encoder. Since it assumes that the input data contain noise, it is suitable for learning features from data 

with noise. In other words, DAE is trained to reconstruct a repaired or clean version of the input from a 

corrupted or noisy one. It is proven that compared to conventional auto-encoders, DAEs are capable to 

acquire Gabor-like edge detectors from image patches. 

In [42], DAE is designed and effectively tested to address different real-world scenario where noise 

can corrupt the input data. The original input data ݔϵ	ℝ௡can be affected by (a) additive isotropic Gaussian 

noise	(ݔ෤|ݔ	~	ݔ)ࣨ,  masking noise, i.e., a fraction of randomly chosen x is forced to 0, and (c) (b) ,(ܫଶߪ

Salt-and-pepper noise, i.e., a fraction of randomly chosen x is forced to 0 or 1. The corrupted data is used 

as the input of the encoder, i.e., the encoding of DAE is obtained by a nonlinear transformation function: 

 ℎ = ௘݂(ݔ෤) = ௘݂(ܹݔ෤ + ܾ௘)                                                       (3) 
 

where ℎϵ	ℝ௬ represent the output of the hidden layer and also be known as feature representation or code, 

y is the number of hidden layer units, ܹ߳	ℝ௬௑௡ is weights for the input-to-hidden layer, ܾ௘	signifies the 

bias, stands for the hidden layer input, and ௘݂ 	is the hidden layer activation function. The reconstruction 

of DAE or decoding is obtained by utilizing a mapping function	݃ௗ: 

ොݔ  = ݃ௗ(ℎ) = ݃ௗ(ܹᇱℎ + ܾௗ)	                                                       (4) 
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where ݔො	߳	ℝ௭ is the output of DAE, which is also the robust reconstruction of the corrupted original data ݔ෤. The output layer contains equal number of nodes as the input layer. ܹᇱ = ்ܹ known as tied weights. 

DAE incorporate reconstruction-oriented training, in other words training the network by imposing 

constraint on the output data ݔො	to reconstruct the noisy input data	ݔ෤. Thus, the objective function or cost 

function is the reconstruction error as follows: 

 minௐ,ௐᇲ,௕೐,௕೏ ∑ ,ݔ)ܮ ො)௫ఢ௑ݔ 		                                                           (5) 

 

where L represents reconstruction error: when the values of input x range from 0 to 1 it’s cross-entropy 

function, and squared error	ݔ)ܮ, (ොݔ = ݔ‖ −  for real-valued inputs, is used. Quantitative experiments	ො‖ଶݔ

show that even when the fraction of corrupted pixels, e.g., as corrupted by zero masking noises, reaches 

55%, the recognition accuracy is still better or comparable with that of a network trained without 

corruptions. 

 

4.4 Supervised Stacked Denoising Auto-encoder 

To obtain feature values, those are not affected by changes in viewing angle, pose, illumination etc., 

from modality specific image regions, we adopted the supervised auto-encoder [30]. The supervised auto-

encoder is trained using features extracted from image regions (ݔపෝ) containing variations in illumination, 

viewing angle and pose whereas the features of selected image regions, (ݔ௜),	with similar illumination 

and without pose variations are utilized as the target. By minimizing the objective criterion given in Eq. 

(6) (subject to, the modality specific features of the same person are similar), the supervised auto-

encoders learn to capture the modality specific robust representation. 

 ݉݅݊ௐ,௕೐,௕೏ ଵே ∑ ௜ݔ‖) − ଶଶ‖((పෝݔ)݂)݃ + (௜ݔ)݂‖ߣ − ଶଶ)௜‖(పෝݔ)݂ 		                              (6) 

 

where h represent output of the hidden layer, is defined as ℎ = (ݔ)݂ = tanh	(ܹݔ + ܾ௘),	݃ = ℎ(ݔ) =tanh	(்ܹℎ + ܾௗ), N is the total number of training samples, and ߣ is the weight preservation term. The 

first term in Eq. (6) minimize the reconstruction error, i.e., after passing through the encoder and the 

decoder, the variations (illumination, viewing angle and pose) of the features extracted from the 

unconstrained images will be repaired. The second term in Eq. (6) enforces the similarity of modality 

specific features corresponding to the same person. 

Stacking supervised DAEs to initialize a deep network follows the procedure of stacking restricted 

Boltzmann machines (RBMs) in deep belief networks [43-45]. It is worth noting that the corrupted/noisy 

input is only used for the initial denoising-training of each individual layer so that it may learn useful 

feature extractors. After training a first level DAE, the learned encoding function ௘݂ଵ can be used on clean 

input for reconstruction. The resulting representation is used to train a second level DAE to learn a second 

level encoding function	 ௘݂ଶ. This procedure can be repeated to stack the trained DAE layer-by-layer to 

form a stacked denoising auto-encoder (SDAE). Fig. 5 represent a conventional SDAE structure, this 

contains two encoding layers and two decoding layers. In the encoding section, the output of the first 

encoding layer works as the input data of the second encoding layer. 

After training a stack of encoders its highest level output representation can be used as input to a stand-
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alone supervised learning algorithm. A logistic regression (LR) layer was added on top of the encoders 

as the final output layer [46], which enable the deep neural network to perform supervised learning. By 

performing gradient descent on a supervised cost function, the supervised SDAE automatically learned 

fine-tuned network weights. Thus, the parameters of the entire SDAE network are attuned to minimize 

supervised target (e.g., class labels) prediction error. It is worthwhile to mention that SDAE is 

unsupervised where LR is supervised and the data contained labelled information can only be used in LR 

stage. The supervised SDAE network shown in Fig. 6, which represents a two-category classification 

architecture. As per [46], to produce the initial features the decoding part of SDAE is removed and only 

the encoding part of SDAE is retained. Additionally, the output layer of the entire network (LR layer), is 

added. 

 

 
Fig. 5. Stacked denoising auto-encoder network. 

 

 
Fig. 6. Supervised stacked denoising auto-encoder. 

 

4.5 Training the Deep Learning Network 

In this subsection we will describe the constraints we faced while training the SDAE using the layer-

wise greedy learning algorithm, and application of the supervised fine-tuning to minimize the error of 

predicting the supervised target. 

Empirically, deep networks were generally found to be not better, and often worse, than conventional 

neural networks [42]. A reasonable explanation is that gradient-based optimization often get stuck near 

poor solutions. 
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An approach that has been explored and proved successful to train deep networks with more than two 

hidden layers, is based on constructively adding layers [47], using a supervised criterion at each stage. 

However, it requires having an extensive training dataset to achieve generalization and avoid overfitting. 

In our application, the technique of constructively adding layers did not perform well because of the 

relatively small number of training samples. Moreover, we need to initialize the weights in a region near 

a good local minima, to better generalize the internal representations of the data. 

Thus, we adopt the two-stage training of the deep learning network, where we have a better 

initialization to begin with and a fine-tuned network weights that lead us to a more accurate high-level 

representation of the dataset. The steps of two-stage deep learning network training are as follows: 

Step 1. SDAEs are used to train the initial network weights one layer at a time in a greedy fashion using 

deep belief network (DBN). 

Step 2. The initial weights of the deep learning network are initialized using the learned parameters 

from DBN. 

Step 3. Labelled training data are used as input, and their predicted classification labels obtained from 

the LR layer along with the initial weights are used to apply backpropagation on the SDAE. 

Step 4. Back propagation is applied on the network to optimize the objective function (given in Eq. 

(5)), results in fine-tune the weights and bias for the entire network. 

Step 5. Finally, the learned network weights and bias are used to extract image features to train the 

sparse classifier. 
 

4.5.1 Layer-wise greedy learning 

Deep multi-layer ANN’s have numerous levels of non-linearities associated with them to efficiently 

symbolize the highly varying nonlinear functions through a compact representation. However, until 

recent days it was not obvious how to effectively train such deep networks since gradient-based 

optimization starting from random initialization often get stuck in local optima resulting in poor solutions. 

Hinton et al. [48], recently proposed a greedy layer-wise unsupervised learning algorithm for DBN, a 

generative model with numerous layers of hidden causal variables. Later on, in [46], a variant of the 

greedy layer-wise unsupervised learning is proposed to extend it to scenarios where inputs are continuous. 

In a DBN, x is the input, ݃௜	represent hidden variables in layer i, then the computation of probability 

and sampling can be represented by the joint distribution: 
,ݔ)ܲ  ݃ଵ, ݃ଶ, … , ݃௟) = …(ଵ|݃ଶ݃)ܲ(ଵ݃|ݔ)ܲ 	ܲ(݃௟ − 2|݃௟ − 1)	ܲ(݃௟ − 1, ݃௟)		                 (7) 
 

all the conditional layers ܲ(݃௜|݃௜ାଵ)	represents the factorized conditional distributions. In Hinton et al. 

[48], the hidden layer ݃௜	is used as a binary random vector with ݊௜ elements, ݃௝௜  
 ܲ(݃௜|݃௜ାଵ) = ∏ ܲ൫݃௝௜ |݃௜ାଵ൯௡೔௝ୀଵ 		                                                        (8) 

where ܲ(݃௜ = 1|݃௜ାଵ) = )	݉݃݅ݏ ௝ܾ௜ + ∑ ௞ܹ௝௜ ݃௞௜ାଵ௡೔శభ௞ୀଵ )		                                            (9) 
 

where (ݐ)݉݃݅ݏ = ଵଵା௘ష೟,	the ௝ܾ௜ 	are biases for unit j of layer i, and ܹ௜ is the weight matrix for layer i. If 

we set	݃଴ =  .will follow Eq. (7)	(ଵ݃|ݔ)ܲ the generative model for the first layer ,ݔ

DBN can be utilized for generatively pre-training a deep neural network where the initial weights are 



Multimodal Biometrics Recognition from Facial Video with Missing Modalities Using Deep Learning 

 

18 | J Inf Process Syst, Vol.16, No.1, pp.6~29, February 2020 

the learned weights [48]. A DBN can be efficiently trained in an unsupervised, layer-by-layer manner 

where the layers are typically made of RBM [49]. RBM is a generative stochastic ANN that can learn a 

probability distribution over the set of inputs. 

It should be noted that 1-level DBN is equivalent to an RBM. The greedy layer-wise strategy to add 

multiple layers in the DBN follows this same methodology. Train the first layer as an RBM that models 

the raw input ݔ = ݃଴  as its visible layer. Then, use the first layer to obtain the mean activations ܲ(݃ଵ = 1|݃଴)	of the input, which will be used as input data for the second layer. Train the second layer 

as an RBM	ܲ(݃଴, ݃ଵ), taking the transformed data (mean activations) as input to the visible layer of that 

RBM. Iterate the same steps to add the (l + 1)th level, after training the top-level RBM with l level DBN, 

such that, the distribution ܲ(݃௟, ݃௟ − 1) from the RBM associated with layers (l - 1) and l is kept as part 

of the DBN generative model. In training a single RBM, the following equation represent the weight 

updates using gradient ascent: 
ݐ)௜௝ݓ∆  + 1) = (ݐ)௜௝ݓ	 + ƞ ఋ	୪୭୥	(௣(௩))ఋ	௪೔ೕ 		                                               (10) 

 

where (ݒ)݌ represent the probability of a visible vector and ƞ	is the learning rate, given by: 
(ݒ)݌  = 	 ଵ௓ 	∑ ݁ିா(௛,௩)௛ 		                                                           (11) 

 

In Eq. (11), Z (used for normalizing) is the partition function and ܧ(ℎ, (ݒ = 	−ℎᇱܹݒ − ܾᇱݒ −	ܿᇱℎ, is 

the energy function assigned to the state-of-the-art network. Here, v stands for visible units and hidden 

layer activations h stands for hidden units. Computation of stepwise weight updates is explained in 

Algorithm 1, where b and c respectively represent the vector of biases for visible units and the hidden 

units. 

 

Algorithm 1. Stepwise weight update of the DBN 

1. Initialization: Visible units to training vector. 

2. Update: hidden units in parallel given the visible units: ݌൫ℎ௝ = 1|ܸ൯ = ௝ܾ)݉݃݅ݏ + ∑ ௜௜ݒ ௜ܹ௝) 
3. Update: visible units in parallel given the hidden units: ݒ)݌௜ = (ܪ|1 = ൫ܿ௜݉݃݅ݏ +∑ ℎ௝௝ ௜ܹ௝൯	(“Reconstruction” step.) 

4. Re-update the hidden units in parallel given the reconstructed visible units following the same 

equation as step 2. 

5. Weight update by following: ∆ݓ௜௝ ᆁ ൻݒ௝ℎ௝ൿௗ௔௧௔ − ൻݒ௝ℎ௝ൿ௥௘௖௢௡௦௧௥௨௖௧௜௢௡ 

 

4.5.2 Supervised fine-tuning 

After all layers are pre-training completes the network perform the second phase of training for fine-

tuning. This supervised fine-tuning is performed to minimize the overall prediction error of the entire 

deep learning network. To achieve this, a LR layer (or in generic scenario a soft-max regression classifier) 

is added on top of the network [46]. Later, train the entire network as we would train a multi-layer 

perceptron, where the encoding parts of each auto-encoder are used. This stage is supervised since now 

we use the target class during training. 
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The network represented in Fig. 6, symbolized a two-category classification problem, with two output 

classes, where the decoding part of SDAE is removed while the encoding part of SDAE is retained to 

produce the initial features. Also, the output layer of the whole network, known as LR layer, is added. 

Sigmoid function is incorporated as activation function in the LR layer: 
 ℎ(ݔ) = ଵ௘షೈೣష್		                                                                   (12) 
 

where, x represents output of the last encoding (ݕ௟) layer, in other words features are pre-trained by the 

SDAE network. The output of the sigmoid function ranges between 0 and 1, denotes the classification 

results in case of two-class classification problem. Thus, we can utilize the errors between the true labels 

and the predicted classification results associated with the training data points to fine-tune the whole 

network weights. The cost function can be defined following the cross-entropy function: 
ݐݏ݋ܥ  = − ଵ௠	ቂ∑ ݈௜௠௜ୀଵ logቀℎ(ݔ௜)ቁ + (1 − ݈௜) logቀ1 − ℎ(ݔ௜)ቁቃ		                              (13) 

 

where ݈௜	represents the label (ݔ௜) of the sample. We update the network weights by minimizing the cost 

function. 

 

 

5. Modality Specific and Multimodal Recognition 

The modality specific sub-dictionaries ( ௝݀௜) contain feature vectors generated by deep learning network 

using the modality specific training data of each individual subject; where i represents the modality, 	݅	߳	1,2, … ,5; and j stands for the number of training video sequence. 

Later, we concatenate the modality specific learned sub-dictionaries ( ௝݀௜) of all the subjects in the 

dataset to obtain the modality specific (e.g., frontal face, left profile face, right profile face, left ear, and 

right ear) dictionary	ܦ௜, as follows. 
௜ܦ  = ൣ݀ଵ௜ ; ݀ଶ௜ ; … ;	 ௝݀௜൧; ∀݅߳	1,2, … , 5	                                                    (14) 

 

5.1 Sparse Representation for Classification 

For each training video sequence, the modality specific sub-dictionaries	 ௝݀௜ ∈ 	ℝ௣, are formed using the 

feature vectors generated by deep learning network utilizing the modality specific detected regions of the 

jth training video sequence, where p is the length of the feature vectors learned by the DNN. Similarly, 

features learned by the DNN,	ݕ௜ ∈ 	ℝ௣ , using modality specific detected regions in the test video, is then 

represented as a linear combination of the feature vectors learned from the training video sequences: 
௜ݕ  = 	݀ଵ௜ ∗ ଵ௜ߙ	 + 	݀ଶ௜ ∗ ଶ௜ߙ 	+ 	…+ 	 ௝݀௜ ∗  ௝௜                                               (15)ߙ	
 

where ߙ௝௜′ݏ are the coefficients corresponding to the training data of the ith modality in the jth training 

video sequence. Eq. (15) can be represented by using the concatenated modality specific dictionary	ܦ௜, 
defined in Eq. (14), as: 
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௜ݕ = 	ݔ௜ܦ ∈ 	ℝ௣			                                                                  (16) 
 

where x is the coefficient vector, and the test data 	ݕ௜	belongs to the ith modality. In our approach we 

used Smoothed l0 (SL0) [49] norm to solve Eq. (16). SL0 algorithm is utilized to obtain the sparsest 

solution of under determined systems of linear equations by directly minimizing the l0 norm. SL0 has 

proven to be more efficient than l0 and l1 in space and time complexity [49]. 

Using majority voting on the sparse classification coefficients obtained from the individual sub-

dictionaries for all the modality specific regions detected from a specific test video, the modality specific 

classification decisions are made. Later, the final classification of the subject present in the video 

sequence is made based upon the score level fusion of the modality specific classification. Some of the 

modalities may not be available in the video used for recognition, in these cases the available modalities 

will be used to generate the Rank-1 match. We tested the algorithm when all the modalities are available 

during the recognition phase and also all possible combinations of missing modalities, i.e., 1, 2 or 3 

modalities are absent, detailed in the experimental section. 

 

5.2 Multimodal Recognition 

The recognition results from the five modalities—frontal face, left profile face, right profile face, left 

ear, and right ear—are combined using score-based fusion. Score-based fusion possess flexibility of 

fusing various modalities upon their availability. To prepare for fusion, the matching scores obtained 

from the different matchers are transformed into a common domain using a score normalization 

technique. Later, the weighted-sum technique is used to fuse the results at the score level. We have 

adopted the Tanh score normalization technique [50], which is both robust and efficient, defined as 

follows: 
௝௡ݏ  = ଵଶ ቊ݊ܽݐℎ ቆ0.01 ቀ௦ೕିఓಸಹఙಸಹ ቁቇ + 1ቋ		                                                 (17) 

 

where ݏ௝	and ݏ௝௡ are the match scores before and after normalization, respectively. ீߤு and ீߪு	are the 

mean and standard deviation estimates of the genuine score distribution given by Hampel estimators [51], 

respectively. Hampel’s estimators are based on the influence functions ψ which are odd function and can 

be defined for any x (matching score,	ݏ௝, in this paper) as follows: 

 

ψ = ۔ۖەۖ
0																																									,ݔۓ ≤ |ݔ| < ܽ																									,(ݔ)݊݃݅ݏ	ܽ,ܽ ≤ |ݔ| ≤ ܾ,௔(௥ି|௫|)௥ି௕ ܾ																,(ݔ)݊݃݅ݏ ≤ |ݔ| ≤ ݎ																																				,0,ݎ ≤ ,|ݔ| 		                                           (18) 

where 
(ݔ)݊݃݅ݏ  = ൜+1,								݂݅	ݔ ≥  (19)                                                								݁ݏ݅ݓݎℎ݁ݐ݋					,0−1

 

In Eq. (18), the value of a, b, and r in ψ, reduces the influence of the scores at the tails of the distribution 

during the estimation of the location and scale parameters. The standardized match accuracy scores later 

fused utilizing weighted-sum technique: 
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                                                            				ܵ௣ = ∑ ௜ݓ ∗ ௜௡ெ௜ୀଵݏ	 			                                                              (20) 
 

where ݓ௜  and  ݏ௜௡  are the weight and normalized match score of the ith modality specific classifier, 

respectively, such that ∑ ௜ݓ = 1ெ௜ୀଵ . In this study, the weights	ݓ௜, ݅ = 1, 2, 3, 4, 5; correspond for the 

frontal face, left profile face, right profile face, left ear, and right ear modalities, respectively. These 

weights can be obtained through brute force exploration or based on the separate performance of these 

classifiers [50]. Later, the weights for the modality specific classifiers in the score level fusion were 

determined by using a separate training set with the goal of maximizing the fused multimodal recognition 

accuracy. 

 

 

6. Experimental Results 

First, we outlined the constrained, WVU dataset [7] and the unconstrained, HONDA/UCSD [8] dataset 

contents. Then, we demonstrate the results of the modality specific and multi-modal recognition 

experiments on both datasets. 

 

6.1 WVU Dataset 

The WVU data set [7] contains video sequences obtained by a camera moving in a semicircle around 

the face, starting from the extreme left face profile, i.e. 0o, then proceed towards right face profile up to 

180o rotation, for a total of 402 subjects. Video clips in the WVU database are collected at different times 

under the same environmental constraints, e.g., illumination and distance from the camera. Three of the 

subjects had their left and right ears fully occluded, and therefore, they were removed from the dataset. 

Fifty-nine subjects have two or more video sequences with widely varied appearance with and without 

facial hair, glasses, and long hair, which partially occluded the ear, while the remaining 340 subjects only 

have one video sequence. 

To perform the multimodal recognition, we trained modality specific dictionaries for each of the five 

modalities using the training video sequences. In cases of missing modalities in the test video, we are still 

able to perform multimodal recognition using the available modalities. In order to evaluate our algorithm, 

we prepared two instances of datasets from the available video sequences in the WVU dataset. 

 

6.1.1 Dataset-1 

In dataset 1, we use one video sequence for each subject, which results into a total of 399 video 

sequences. The detected modality specific regions from the video sequence of each subject are separated 

for training and testing in a non-overlapping fashion. Detection of the left ear and the left profile face is 

performed between 0° to 30° rotations of the camera in the video. The detected regions in the first 100 

frames were used for training and the detected regions in the next 100 frames were used for testing. 

Detection of frontal face is performed on frames between 75° to 105°, where the detected regions in the 

first 100 frames were used for training and the detected regions in the next 100 frames for testing. 

Detection of right ear and right profile face performed between 150° to 180°, where the detected regions 

in the last 100 frames in the video clip utilized in training and preceding 100 frames utilized during 

testing. 
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6.1.2 Dataset-2 

In dataset 2, we use only the subjects who have more than one video sequence, which results into a 

total of 121 video clips, with one subject having three video sequences, one subject having four 

sequences, and the rest of the 57 subjects having two video sequences. The detected different modality 

specific regions from one video utilized during training, the regions detected from the second video 

applied in testing in cross-fold fashion. Detection of the left ear and the left profile face is performed 

between 0° to 30°, where detected regions in the first 200 frames are used. Detection of the frontal face 

is performed between 75° to 105° where detected regions in the first 200 frames are used. Detection of 

the right ear and the right profile face is performed between 150° to 180° where detected regions in the 

last 200 frames are used. 

 

Table 2. State-of-the-art 2D multimodal (profile and frontal face, ear) rank-1 recognition accuracy 
comparison 

 Kisku et al. [22] Pan et al. [23] 
Boodoo and 

Subramanian [21] 
This study 

Modalities 
 

Ear & Frontal face
 

Ear & Profile face
 

Ear & Frontal face 
 

Ear, Frontal face, 
and Profile face 

Fusion performed Decision level Feature level Decision level Score level 
Best reported Rank-1 

accuracy (%) 
    

Ear 93.53 91.77 90.70 95.04 
Frontal face 91.96 NA 94.70 97.52 
Profile face NA 93.46 NA 93.39 
Fusion 95.53 96.84 96.00 99.17 

 
Table 3. Recognition result of multimodal recognition with all possible combinations of 2, 3 and 4 
modalities using dataset-1 and dataset-2 (WVU) 

 
Rank-1 (%) 

Dataset 1 Dataset 2 
Test done with combining any 2 modalities   

FF + Lt. PF/Rt. PF  97.52 91.23 
FF + Lt. ear/Rt. ear 98.35 94.74 
Lt. ear/Rt. ear + Lt. PF/Rt. PF 98.35 94.74 

Test done with combining any 3 modalities   
FF + Lt. PF + Lt. ear 97.52 92.98 
FF + Rt. PF + Rt. ear 97.52 91.23 
FF + Lt. PF + Rt. PF 97.52 91.23 
FF + Lt. ear + Rt. ear 98.35 94.74 
FF + Rt. PF + Lt. ear 97.52 92.98 
FF + Lt. PF + Rt. ear 97.52 91.23 
Lt. PF + Lt. ear + Rt. PF 94.21 89.47 
Rt. PF + Rt ear + Lt. PF 95.04 89.47 
Rt. PF + Lt. ear + Rt. ear 98.35 94.74 
Lt. PF + Lt. ear + Rt. ear 98.35 94.74 

Test done with combining any 4 modalities   
FF + Rt. ear + Lt. ear + Lt. PF 98.35 94.74 
FF + Lt. PF + Rt. PF + Lt. ear 97.52 92.98 
Rt. ear + Lt. ear + Lt. PF + Rt. PF 98.35 94.74 
FF + Rt. ear + Lt. ear + Rt. PF 98.35 94.74 
FF + Lt. PF + Rt. PF + Rt. ear 98.35 91.23 

FF=frontal face, PF=profile face, Rt.=right, Lt.=left. 
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To compute the multimodal Rank-1 recognition result, score level fusion is performed using majority 

voting of Rank-1 recognition accuracy from these five different modalities. The multimodal recognition 

accuracy of our approach is as follows: for dataset-1 at average we obtained 99.17% Rank-1 recognition 

accuracy, and in dataset-2, at average we obtained 96.49% Rank-1 recognition accuracy. The best Rank-

1 recognition rates, using ear, frontal and profile face modalities for multimodal recognition, compared 

with the results reported in [21-23] is shown in Table 2. Recognition accuracies for all the modality 

specific and multimodal framework in this study outpaces the other multimodal recognition techniques 

that uses ear, frontal face and profile face. 

Later, we performed experiments when all the modalities were available during the training and only 

some of the modalities were available during the testing. The accuracy of the recognition results using 

all possible combinations of the different modalities in the test video, for dataset-1 and dataset-2 been 

listed in Table 3, correspondingly. The results indicate that, among all possible combinations of different 

modalities, frontal face with ear, i.e., right and left ear modalities, have the best recognition rate. 

 

6.2 HONDA/UCSD Dataset 

The publicly available HONDA/UCSD dataset [8], contains facial video clips with non-planar head 

rotations as well as varying illumination. The dataset has two parts, dataset-1 and dataset-2, that consist 

of separate training and testing facial video clips of 20 and 15 unique subjects, respectively. 

HONDA/UCSD dataset consists of 89 facial video clips of 35 unique individuals, where each subject has 

two or more video clips. In our experiments, we used one facial video sequence for training and the rest 

for testing in cross-fold approach. 

The AdaBoost detector results in a few false detections when applied to the HONDA/UCSD 

unconstrained dataset. To quantify how the false detections affect both the unimodal and multimodal 

recognition accuracies, comparison of the results in applying the trained detector on all the frames is 

performed, including the ones with false positives, with the performance while using the trained detector 

to only the frames with true positives. Tables 4 and 5 show the comparisons, where the multimodal 

recognition accuracy obtained when using all the frames is 97.14% (34 out of 35 subjects), and 100% 

when using only the true positive detected regions. 

 

Table 4. Modality specific and multimodal Rank-1 recognition accuracy (%) using all detected regions 

Gabor feature length Frontal face
Left profile 

face 
Right profile 

face 
Left ear Right ear Multimodal 

No feature reduction 91.43 71.43 71.43 85.71 85.71 88.57 

1,000 91.43 71.43 74.29 88.57 88.57 97.14 

500 88.57 68.57 68.57 85.71 82.86 91.42 

 

Table 5. Modality specific and multimodal Rank-1 recognition accuracy (%) using only accurately 
detected regions 

Gabor feature length Frontal face
Left profile 

face 
Right profile 

face 
Left ear Right ear Multimodal 

No feature reduction 91.43 80.00 82.86 91.43 91.43 94.29 

1,000 97.14 82.86 82.86 94.29 94.29 100 

500 91.43 81.19 80.00 91.43 91.43 94.29 
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The feature vectors automatically learned using the trained deep learning network resulted in length of 

9,600 for frontal and profile face; 4,160 for ear. In order to decrease the computational complexity and 

to find out most effective feature vector length to maximize the recognition accuracy, the dimensionality 

of the feature vector is reduced to a lower dimension using PCA [13]. Using PCA, the number of features 

is reduced to 500 and 1,000. In Tables 4 and 5, the modality specific recognition accuracy obtained for 

the original feature vector and for the reduced feature vector of 500, 1,000 is shown. Feature vectors of 

length 1,000 resulted in best recognition accuracy for both modality specific and multimodal recognition. 

Table 2 contains the best Rank-1 recognition rates, using ear, frontal and profile face modalities for 

multimodal recognition, compared with the results reported in [10-12]. 

 

6.3 Comparison with Baseline Algorithms 

Due to the unavailability of proper datasets for multimodal recognition studies [6], often virtual 

multimodal databases are synthetically obtained by pairing modalities of different subjects from different 

databases. To the best of the authors’ knowledge, the framework of extracting multiple modalities from 

a single data source that belongs to the same subject, have not been performed before in the state-of-the-

art. Thus, we compare the performance of the proposed technique of learning automatic robust features 

using deep learning network and using sparse representation for classification with the following baseline 

algorithms due to their close relationships. It is also worth noting that all the comparisons are based on 

the same training/test set. 

1) SRC [6] with extracted Gabor features. 

2) SRC with K-SVD dictionary learning [52] and Gabor features. K-SVD is an iterative method that 

alternates between sparse coding of the examples based on the current dictionary and an update 

process for the dictionary atoms to better fit the training data. Therefore, SRC with K-SVD is better 

than conventional SRC to train models with variable number of training samples in the different 

classes. 

 

Table 6. Comparison of multimodal recognition with the baseline algorithms 

Modality WVU Honda/UCSD 

SRC 95.24 51.43 

SRC with K-SVD 97.52 68.57 

This study 99.17 97.14 

 
In Table 6, the comparisons of multimodal recognition accuracy of the baseline techniques and the 

proposed method are provided for both WVU and HONDA/UCSD datasets. The comparison shows that 

the proposed technique performs better on both the constrained and unconstrained datasets compared 

with the other baseline algorithms. However, we can see that the performance of the two baseline 

algorithms are relatively satisfactory on the constrained (WVU) dataset, but on the unconstrained 

(HONDA/UCSD) dataset, the performance of the two baseline algorithms is very poor. As expected SRC 

with K-SVD performs better than conventional SRC, but both have much lower performance than our 

proposed algorithm. We believe that the reason behind this is HONDA/UCSD database consists of faces 

with non-planar movements (shown in Fig. 7). 
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Fig. 7. Non-planar movement in HONDA dataset compared with WVU: left profile, left frontal, and right 
profile. 

 

6.4 Parameter Selection for the Deep Neural Network 

We have tested the performance of the proposed multimodal recognition framework against different 

parameters of the deep neural network. We varied the number of hidden layers from three to seven. By 

using five hidden layers we achieved the best performance. To incorporate the sparsity in the hidden 

layers, we also conducted experiments by changing the number of hidden nodes from two to five times 

of the input nodes. By using twice the hidden nodes of the input nodes in the five hidden layers we obtain 

the best accuracy of the multimodal recognition system. The pre-training learning rate of the DBN is used 

as 0.001 and the fine-tuning learning rate of the SADE is used as 0.1 to achieve the optimal performance. 

While training the SADE network in a Core i7-2600K CPU clocked at 3.40 GHz Windows PC using 

Theano Library (Python programming language) pre-training of the DBN takes approximately 600 

minutes and the fine-tuning of the SADE network converged within 48 epochs in 560.2 minutes. 

 

 

7. Conclusions 

We proposed a system for multimodal recognition using only a particular biometrics source of data, 

face video surveillance. Using the AdaBoost detector, we automatically detect modality specific regions. 

We use Gabor features extracted from the detected regions to automatically learn robust and non-
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redundant features by training a Supervised SDAE (deep learning) network. Classification through sparse 

representation is used for each modality. Then, the multimodal recognition is obtained through the fusion 

of the results from the modality specific recognition. We trained the algorithm using all modalities and 

tested the system when the test video clips contain all the modalities and when there are only some of the 

modalities are available. The results indicate that among all possible combinations of different modalities 

frontal face and ear, i.e., right or left ear, together produce the best recognition rate. In future additional 

biometrics modalities can be easily integrated to extend this generic framework. This framework will 

also be used to perform multimodal recognition using low-resolution video footages collected by the 

closed-circuit video surveillance system. 
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