
 

www.kips.or.kr                                                                                           Copyright©  2025 KIPS 

       

 

 

 

 

 

Anomaly Detection of Power Load Based on Robust PCA 

and Improved K-Means Clustering Algorithm  
 

Xinjian Zhao1,*, Weiwei Miao1, Song Zhang1, Youjun Hu2, and Shi Chen1 

 

 

 
Abstract 
The interaction of power load information provides reliable data support for accessing user-side electrical 

energy storage devices and distributed renewable energy sources. However, owing to the large volume of 

interactive information and the numerous security threats faced during the interaction, anomaly detection has 

become one of the most challenging problems in smart grids. To address this issue, an anomaly detection 

method was developed that consists of three stages. First, feature extraction is performed based on the power 

load information. Then, a robust principal component analysis method is used for the preliminary classification 

of the extracted features. Finally, an improved K-means clustering algorithm is employed to refine the 

classification results into completely non-overlapping groups and detect anomalies from the classified data. 

Experimental results demonstrate that the proposed method can effectively and accurately detect anomalies 

from power load data. 
 

Keywords 
Anomaly Detection, K-Means, Feature Extraction, Power Load, Robust Principal Component Analysis 
 

 

 

1. Introduction 

With the gradual increase of the construction of new power systems, an increasing number of user-side 

electrical energy storage devices and distributed renewable energy sources have been integrated into 

power systems through third-party aggregation platforms [1]. These multisource, heterogeneous, 

distributed resources generate massive amounts of power load information [2]. Efficient anomaly 

detection for power load interaction information is essential for providing reliable data support for the 

scheduling and control of new power systems.  

In recent years, researchers have proposed various solutions to the problem of anomaly detection for 

power load data. Regarding specific implementation methods, the research results can be categorized into 

two types: traditional machine-learning-based and deep-learning-based anomaly detection. Anomaly 

detection algorithms based on deep learning have better detection abilities, but their performance often 

depends on the size of the dataset, and their computational overhead is large [3–5]. In practice, the power 

load has certain regional characteristics and imbalances, which makes the dataset always have similar 
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characteristics to a small data volume. However, it is usually necessary to perform simple and fast 

anomaly detection at the edge of the network. Therefore, in comparison, traditional machine-learning-

based anomaly detection methods can detect anomalous data on a limited dataset with a lower overhead, 

which is more suitable for the existing power grid environment. In anomaly detection for power data, the 

main methods based on machine learning include isolation forest [6], one-class support vector machine 

(SVM) [7], local outlier factor (LOF) [8], density-based spatial clustering of applications with noise 

(DBSCAN) [9], local correlation integral (LOCI) [10], connectivity-based outlier factor (COF) [11], and 

histogram-based outlier score (HBOS) [12]. Existing machine-learning-based anomaly detection methods 

typically use different combinations of algorithms to obtain anomaly detection results by classifying or 

clustering the original power load dataset. However, the actual accessible power load data often have 

uncertainties in such issues as data integrity and synchronization, and these uncertainties affect the data 

detection results significantly. 

In this study, an anomaly detection scheme for power loads was developed based on robust principal 

component analysis (PCA) and clustering algorithms. First, user power load data are collected and analyzed 

to extract features. Then, a robust PCA algorithm is used for preliminary classification, categorizing the 

power load data into suspected abnormal and suspected normal groups. Based on this classification, an 

improved clustering algorithm is used to refine further and extract the results. 

The main contributions of this study are as follows. 

⚫ A phased anomaly detection scheme for power load data was developed that realizes anomaly 

detection using a robust PCA algorithm and an improved K-means algorithm. 

⚫ The proposed scheme was tested with public datasets, and the results show that the scheme has a 

better detection performance than similar mainstream schemes. 

 

 

2. Phased Anomaly Detection Method for Power Load Data 

 

Fig. 1. Framework of the proposed scheme. 
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A phased anomaly detection method for power load data was developed, and its framework is shown 

in Fig. 1. First, intelligent terminals obtain the user power load data and extract features from these data, 

including Kullback–Leibler (KL) score, flat points, Canberra distance, and crossover points. Second, the 

robustness-enhanced PCA algorithm is used to analyze the features of power load data, preliminarily 

dividing them into abnormal and normal groups. Finally, the improved K-means algorithm is used to 

remove outliers from the classification results obtained from the preliminary classification in the previous 

stage and to obtain a classification of the power load data with clear boundaries. 

 

2.1 Feature Extraction 

In this study, the monthly power load was used to represent the electricity usage of each user, which is 

defined as the power load of the user every 30 days. Feature extraction is the process of extracting the 

intrinsic features of a dataset, which reduces the dimensionality of the data and saves computational 

resources. The extracted features include the average load (the average power load of each platform 

during this period), variance (the variance of the power load of each platform during this period), 

horizontal displacement difference (the maximum difference in average load between days), variance 

difference (the maximum difference in variances between months), KL score (the maximum difference 

in KL divergence between consecutive months), flat spot (the length of the largest flat interval within 

each month), and Canberra distance (a numerical measure of distance between points in vector space). 

Two of the most essential features are the Canberra distance and flat point. The Canberra distance is 

considered a weighted version of the Manhattan distance and is calculated using Eq. (1): 
 

CD = ∑
|𝑥𝑖 − 𝑦𝑖|

|𝑥𝑖| + |𝑦𝑖|

𝑛

𝑖

, (1) 

 

where 𝑥𝑖 and 𝑦𝑖 are different data points in the real value. 

 

2.2 Preliminary Classification based on Robust Principal Component Analysis 

A robust PCA algorithm [13] is used to preliminarily classify the users reflected by the power load 

information into suspected abnormal and normal groups with the following workflow. 

Step 1: The feature matrix of the power load data, 𝑌𝑛×𝑝, is input, where 𝑛 is the number of users, and 𝑝 is 

the number of features for each user. The algorithm first normalizes the given matrix and then 

transforms it into an affine space based on singular value decomposition. 

Step 2: The anomaly index of each data point 𝑦𝑖(𝑖 = 1,2, . . . , 𝑛) is calculated, as shown in Eq. (2): 
 

𝑜𝑢𝑡𝐴(𝑦𝑖) = 𝑚𝑎𝑥𝑣∈𝐵
|𝑦𝑖

𝑇𝑣−𝑎𝑀𝐶𝐷(𝑦𝑖
𝑇𝑣)|

𝑠𝑀𝐶𝐷
,  (2) 

 

where B contains all nonzero vectors, and 𝑎𝑀𝐶𝐷 and 𝑠𝑀𝐶𝐷 are the mean and standard deviation 

calculated using the minimum covariance determinant (MCD) method, respectively. 

Step 3: The covariance matrix 𝑆0 = 𝑃0𝐿0𝑃0
𝑇  is calculated, where 𝐿0 = 𝑑𝑖𝑎𝑔 (𝑙

~

1, . . . , 𝑙𝑟

~

) , 𝑟 < 𝑟1 is the 

feature value matrix, and 𝑃0 is an orthogonal matrix of 𝑟1 rows and 𝑟 columns. The data points 

are projected on the subspace spanned by the first 𝑘0 eigenvectors of 𝑆0, as shown in Eq. (3): 
 

𝑌𝑛×𝑘0

∗ = (𝑌𝑛×𝑘0
− 1𝑛𝜇

∧

1
𝑇) 𝑝𝑟1×𝑘0

, (3) 

where 𝑝𝑟1×𝑘0
 consists of the first 𝑘0 columns of 𝑃0. 
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Step 4: The MCD estimator is used to estimate the scatter matrix of data points in of 𝑌𝑛×𝑘0
∗  robustly. The 

robust covariance matrix 𝑆 = 𝑃𝑝×𝑘𝐿𝑘×𝑘𝑃𝑝×𝑘
𝑇 , so the robust principal component matrix can be 

rewritten as 𝑇𝑛×𝑘 = (𝑌𝑛×𝑝 − 1𝑛𝜇̂𝑇)𝑃𝑝×𝑘. 

Step 5: Orthogonal distance is defined as the distance between each observation and its projection onto 

the new subspace, as shown in Eq. (4): 
 

𝑂𝐷𝑖 = ||𝑦𝑖 − 𝑦̂𝑖||, (4) 

 

where 𝑦𝑖 is the i-th data, and 𝑦̂𝑖 is the projection data point on the k-dimensional subspace. The 

score distance is calculated using Eq. (5): 
 

𝑆𝐷𝑖 = √𝑡𝑖
𝑇𝐿−1𝑡𝑖 = √∑(

𝑡𝑖𝑗
2

𝑙𝑗
)

𝑘

𝑗=1

, (5) 

 

where 𝑙𝑗 is the set of eigenvalues, and 𝑘 is the number of principal components. 

Step 6: Two threshold values are calculated for the sum of the dataset to separate normal observations 

from abnormal observations. These are calculated separately using Eqs. (6) and (7): 
 

𝑐𝑂𝐷 = (𝜇̂ + 𝜎̂𝑌0.975)
3

2⁄ , (6) 

𝑐𝑆𝐷 = √𝑋𝑘,0.975
2 , (7) 

 

where 𝜇̂  is the average value, 𝜎̂  is the variance for the given data point, 0.975 means 97.5% 

quantile of the Gaussian distribution, and 𝑋𝑘
2 is the square of the Mahalanobis distance. Based on 

the threshold values, the power load data are preliminarily classified into two major groups. 

 

2.3 Anomaly Detection based on the Improved K-Means Algorithm 

Because the traditional K-means algorithm initializes cluster centers randomly [14], the results of the 

algorithm depend highly on the initial selection of cluster centers, and the final result is likely to have a 

high error. The method of selecting clustering centers based on the relative distance and density between 

data points makes a better separation of outliers possible. Based on this, an improved K-means clustering 

algorithm was developed to detect anomalies and generate distinct load types with apparent boundaries 

to address the slight overlap between the two categories of load data identified in the previous stage. The 

specific flow of the algorithm is shown in Algorithm 1. 

First, the relative distances and densities of the data points are calculated. The 𝐷(𝑥𝑖) values are ranked 

in descending order, and the data point 𝑐𝑖 with the maximum density is selected as the initial clustering 

center. The thresholds are then calculated separately for different cases based on the range of the center 

node density values. The clustering process of the nodes is completed by iteration to obtain the optimal 

number of clusters 𝐾. In the second stage, an outlier factor 𝑜𝑖 is computed for each observation in the 𝐾 

clusters, which depends on its distance from the clustering center. The value of 𝑜𝑖 ranges from 0 to 1, and 

the value of μ is 0.95 in this algorithm, which means the data with 𝑜𝑖 ≥ 0.95 are considered abnormal. 

This algorithm is used to remove outliers for each of the two categories of users derived in Section 2.1, 

the data exceeding the thresholds among the suspected normal and suspected abnormal users are finally 

categorized as abnormal data, and all the rest are finally categorized as normal data. 
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Algorithm 1. Anomaly detection based on the improved K-means clustering algorithm 

1. Calculate the relative distance 𝑑𝑖𝑗 between data points 𝑥𝑖 and 𝑥𝑗, then generate a distance matrix M. 

2. For each data point 𝑥𝑖, calculate its density 𝐷(𝑥𝑖) =
1

∑ 𝑑𝑖𝑗𝑥𝑗∈𝐺𝑡(𝑥𝑖)
, where 𝐺𝑡(𝑥𝑖) is a set containing 

the t closest elements to 𝑥𝑖, and calculate the average density 𝐷𝑎𝑣𝑒. 

3. Select the data points with the largest 𝐷(𝑥𝑖) values as the initial clustering centers 𝑐𝑖.  

4. If 𝐷(𝑐𝑖) ≥ 𝐷𝑎𝑣𝑒,  

set the threshold for the first clustering center, which is selected as 𝛿𝑖 =
𝑛

𝐾
+

𝐷𝑖−𝐷

𝐷𝑖+𝐷
×

𝑛

𝐾
, 𝑖 = 1. 

5. Remove 𝑆1 from the dataset and divide the remaining equally into K−1 clusters, where 𝑆𝑖 is the 

neighboring node set of 𝑐𝑖, and the threshold is 𝛿𝑖 =
𝑛−∑ |𝑆𝑗|𝑖−1

𝑗=1

𝐾−𝑖+1
+

𝐷𝑖−𝐷

𝐷𝑖+𝐷
×

𝑛−∑ 𝑆𝑗
𝑖−1
𝑗=1

𝐾−𝑖+1
, 𝑖 = 2,3, . . . , 𝐾. 

6. If 𝐷(𝑐𝑖) < 𝐷𝑎𝑣𝑒, set the threshold as 𝛿𝑖 = {

𝑛

𝐾
+

𝐷−𝐷𝑖

𝐷+𝐷𝑖
×

𝑛

𝐾
, 𝑖 = 1

𝑛−∑ |𝑆𝑗|𝑖−1
𝑗=1

𝐾−𝑖+1
−

𝐷−𝐷𝑖

𝐷+𝐷𝑖
×

𝑛−∑ |𝑆𝑗|𝑖−1
𝑗=1

𝐾−𝑖+1
, 𝑖 = 2,3, . . . , 𝐾

. 

7. Remove the corresponding data points of 𝑆𝑖 continuously until the initial cluster centers are selected 

and apply the improved K-means algorithm based on the selected cluster centers until it converges 

to the optimal K value. 

8. Calculate the maximum distance of all data points to their cluster centers, 𝑑𝑚𝑎𝑥 = max {‖𝑥𝑖 −

𝑐𝑝𝑖‖}, where 𝑐𝑝𝑖 is the cluster centers. 

9. Calculate the anomaly factor for each of the data 𝑜𝑖 =
||𝑥𝑖−𝑐𝑝𝑖||

𝑑𝑚𝑎𝑥
; the data points for which 𝑜𝑖 ≥ 𝜇 are 

considered anomalous and separated from the rest of the data, where 𝜇  is the threshold of the 

anomaly factor. 

10. Repeat the process until the clusters no longer overlap. 

 

 

3. Experiment and Result Analysis 

The experimental environment was based on the Ubuntu environment using Python. The CPU was 

Intel Xeon Silver 4208R with 16 GB RAM. 

 

3.1 Experimental Dataset 

This experiment used power consumption load data from the Los Alamos Public Utility Department in 

New Mexico, USA [15]. The data were collected using Landis+Gyr smart meter devices from 1,757 

households in North Mesa, Los Alamos, NM, USA. The sampling rate was one observation every 15 

minutes. For most customers, the data span approximately 6 years, from July 30, 2013 to December 30, 

2019. 

Affected by extreme weather, production, life, and equipment failure, and other uncertainties, the 

power load is characterized by randomness, volatility, and sudden changes. Power load data often show 

abnormal jumps, manifesting as fluctuation anomalies and extreme value anomalies. The fluctuation 

anomaly load curve shows a large number of burrs and frequent fluctuations in a short period compared 

with the normal load fluctuation law, which has a significant jump, as shown in Fig. 2(a). The extreme 

anomaly load curve is manifested as a load data extreme value abnormality in a certain period (duration 

is usually minutes) of load spike, valley, or significant peak–valley difference, destroying the curve 

similarity and periodicity, as shown in Fig. 2(b). 
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(a) (b) 

Fig. 2. Schematic diagram of anomalies of power load data: (a) fluctuation anomalies and (b) extreme 

value anomalies. 

 

3.2 Evaluation Metrics 

Owing to the abnormal detection of power load information, the interaction is a binary classification 

problem. For binary classification problems, the performance of a classification model can be evaluated 

using a confusion matrix, as shown in Table 1. The rows in the table represent the predicted classes, 

whereas the columns represent the actual classes. Based on the confusion matrix, one can obtain 

evaluation metrics, including accuracy (ACC), recall rate (RR), false positive rate (FPR), false negative 

rate (FNR), precision, F1-score, and Bayesian detection rate (BDR). 

 

Table 1. Confusion matrix in anomaly detection 

  
Predicted label 

Anomaly Normal 

True label 
Anomaly TP (True Positive) FP (False Positive) 

Normal FN (False Negative) TN (True Negative) 

 

3.3 Results and Discussion 

Experiments were conducted using the proposed approach, and the results were analyzed and compared 

with some commonly used anomaly detection methods. In the performance metric scores shown in Table 

2, the first six performance metrics are directly derived from the confusion matrix, and the last metric, 

BDR, is calculated using prior knowledge of fraud probability. The proposed approach achieved an 

accuracy of 91% and a recall rate of 81%, indicating that it could detect the types of user and most of the 

actual abnormalities. 

ACC and recall are commonly used metrics in almost all abnormal electricity usage detection systems. 

However, these two metrics cannot be used as decisive indicators of scheme performance. The drawback 

of ACC is that, when the proportions of different categories of samples are highly unbalanced, the larger 

proportion category often becomes the main factor affecting ACC. For example, when defective samples 

account for 99% of the total, the classifier predicts that all samples are defective, resulting in an accuracy 

of 99%. Therefore, it is necessary to verify the performance of the scheme further by calculating and 

comparing the values of FNR and FPR. Under the same conditions, the FPR value of the proposed scheme 

is the lowest, and the FNR value is only slightly higher than that of one-class SVM. This indicates that 



Anomaly Detection of Power Load Based on Robust PCA and Improved K-Means Clustering Algorithm 

 

324 | J Inf Process Syst, Vol.21, No.3, pp.318~327, June 2025 

the proposed scheme can only classify a small portion of the normal electricity consumption as abnormal. 

Another critical performance metric used for qualitative analysis of anomaly detection methods is the F1-

score. It helps strike a proper balance between precision and recall because these two metrics are 

contradictory. The higher the value, the better the predictability of the model, and vice versa. The F1-

score obtained by the proposed method is 75%, the highest among the compared techniques. Because a 

reliable anomaly detection model has a high BDR value, the BDR score is used for the evaluation. In this 

study, the fraud probability was 16%, and the BDR value of the scheme was 63%, which were much 

higher than those of the other anomaly detection algorithms. Compared with the deep-learning-based 

detection model [5], the proposed method still has some advantages for most metrics because of the 

limited dataset volume. 

 

Table 2. Performance metrics of proposed approach compared with commonly used anomaly detection 

algorithms 

  ACC RR FPR FNR PR F1-score BDR 

Proposed method 0.91 0.81 0.07 0.16 0.7 0.75 0.63 

Isolation forest [6] 0.86 0.73 0.12 0.31 0.62 0.74 0.55 

One-class SVM [7] 0.84 0.81 0.32 0.16 0.45 0.62 0.41 

LOF [8] 0.81 0.67 0.22 0.32 0.49 0.59 0.48 

DBSCAN [9] 0.77 0.64 0.26 0.47 0.43 0.58 0.43 

LCI [10] 0.75 0.62 0.25 0.52 0.45 0.51 0.32 

COF [11] 0.69 0.57 0.39 0.5 0.36 0.48 0.26 

HBOS [12] 0.55 0.45 0.44 0.61 0.39 0.37 0.21 

Bi-LSTM-AE [5] 0.89 0.8 0.09 0.18 0.72 0.73 0.65 

The bold font indicates the best performance in each test. 

 

 

Fig. 3. ROC curves for different schemes. 

 

Fig. 3 shows the receiver operating characteristic (ROC) curves of the proposed scheme, isolation 

forest, and one-class SVM. The ROC curve of the proposed scheme is closer to the upper left corner. The 

area under the curve (AUC) scores of these three schemes are provided to give a more comprehensive 

view of the performance of the method. The AUC values of the three algorithms are 0.81, 0.75, and 0.72, 

respectively. This implies that the detection effect of the scheme described in this section is better than 

that of the isolation forest and one-class SVM. 
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4. Conclusion 

A phased anomaly detection method was developed to improve the efficiency of anomaly detection in 

power load data. First, the most important features of the power load were extracted from the data. Then, 

the power load was preliminarily classified into normal and abnormal groups based on the robustness-

enhanced PCA algorithm. Based on the preliminary classification, an improved K-means clustering 

algorithm was used to obtain the final classification results. The experimental results show that the 

proposed method can improve the shortcomings of a single machine-learning method in terms of anomaly 

detection performance to some extent and provide more reliable anomaly detection results. 

However, limited by the K-means algorithm itself, the clustering process cannot reflect the temporal 

characteristics of the data, which can affect the detection performance. Therefore, in future work, more 

attention should be paid to the temporal characteristics of power load data to improve the anomaly 

detection performance. 
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