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Abstract 
Enterprises in the coastal regions of China release abundant pollutants that have considerably deteriorated the 

air quality. To address this issue, an information fusion technology has been proposed herein for predicting 

coastal air quality in Liaoning Province. To this end, real-time data analysis of water, air, and soil pollutants 

emitted from diverse coastal enterprises was performed using a multi-model selection strategy for ensemble 

learning. This approach integrated meteorological information and considered the unique learning principles 

and observational disparities among various algorithms. The proposed approach explored the influence of 

collaborative early warning of multi-feature pollution source emissions on the surrounding environment. By 

combining the base learner and meta-learner in the multi-model fusion strategy, the ensemble model yielded 

better prediction results, particularly using strong learners at the primary level and linear mode at the secondary 

level. This optimal combination strategy was used to develop a collaborative monitoring and early warning 

model, which incorporated multi-feature data from water, air, and soil sources in the coastal environment. This 

multi-feature collaboration enhanced the prediction accuracy compared with that of single-feature models and 

further amplified the early warning capabilities enabled by multi-model fusion. 
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1. Introduction 

Since the economic reform, China’s GDP has grown rapidly due to rapid industrialization and 

urbanization. The acceleration of coastal and heavy industries has fostered developments in the coastal 

areas of the country. However, steel, oil refining, and chemical industries mainly distributed in coastal 

areas discharge industrial pollutants and domestic wastewater. This has caused serious pollution and 

threatened sustainable urban development. Therefore, early warning systems based on deep learning must 

be urgently developed to ensure effective and accurate supervision and governance of marine 

environment. Existing monitoring systems for marine pollution provide data on pollutant discharge; 

however, these data are not representative of coastal environmental conditions. Excessive amounts of 

data can cause information overload, thereby preventing efficient data processing that can eventually 

impact disaster management. Moreover, the migration and exchange of pollutants in water, air, and soil 
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have not been sufficiently studied. By analyzing the factors that influence these mechanisms and 

identifying the correlation between these three media, coastal pollution management and emission 

reduction measures can be devised. Additionally, a water–air–soil coordinated warning system must be 

developed for coastal environments such that coastal ecological issues can be detected and mitigated in 

advance using modern and intelligent reasonable countermeasures. This will help the government to 

undertake timely decisions during emergencies. 

Several methods that utilize statistical data have been proposed for air pollution prediction, which offer 

insights into evolving environmental conditions and facilitate informed decision-making and proposing 

mitigation strategies. Wu and Lin [1] proposed a hybrid VMD-SE-LSTM prediction model to reflect the 

characteristics of the original air quality index (AQI) sequence. Wang et al. [2] designed an L1-norm for 

air pollution monitoring and analysis. Wang and Yang [3] developed a warning system that integrated 

time-varying filtering-based empirical mode decomposition for air pollution forecasting. Song et al. [4] 

quantitatively and comparatively analyzed the effectiveness of environmental management in the coastal 

countries of Northeast Asia. They offered guidance methods and practical experience for developing a 

marine environmental management system in China. Urban air quality can also be predicted via 

numerical simulation and statistical methods [5]. Although numerical simulation is highly scientific, its 

application is limited by limited data; it is also difficult to use. Statistical methods can be categorized into 

simple empirical statistics and machine learning. Machine learning involves using models for air quality 

prediction based on pollution indicators such as meteorological indicators as well as remote sensing and 

terrain data. As mechanistic mathematical models are difficult to use, information fusion technology has 

emerged as a novel alternative for predicting the impacts of environmental pollution. 

The optimization problem of a single model has relatively reached its performance limit in the process 

of continuous improvement of algorithm models used for pollution prediction. Consequently, ensemble 

learning is used for such predictions as it combines the predictions of multiple machine learning models 

or classifiers to offer highly accurate and stable results. For instance, Zhou [6] reported that low 

correlation among single models can enhance error correction in ensemble leaning, thereby yielding 

highly accurate and robust results. Ensemble learning is categorized into boosting, bagging, and stacking. 

The stacking algorithm effectively uses predictions generated by different classifiers as the input to the 

next layer of learning algorithms. It can integrate the learning mechanisms of different learning 

algorithms, establish prediction models based on the differences between them, and obtain the final 

prediction results by employing appropriate combination strategies. Although ensemble learning offers 

good results, it can be considerably improved [7] for wide applicability in remote sensing, facial 

recognition, disease detection, and other fields [8-11]. The fusion strategy that combines predictions from 

base-learners and meta-learners in stacking has been scarcely studied and must be further explored to 

enable multi-model fusion with ensemble learning. 

The air quality in the coastal regions of China has considerably deteriorated due to high-pollutant 

emissions from various industries such as coal, metallurgy, and petrochemical. As these industries are 

crucial for China’s economy, a comprehensive approach to managing pollutants must be devised. Air–

water exchange is the most active pathway for the exchange of pollutants [12,13] such as petroleum 

hydrocarbons and microplastics. The migration and transformation of these pollutants have been 

analyzed in several studies, which revealed that they dissolve in water vapor or permeate and migrate to 

the soil under the action of gravity as a free phase [14-17]. Water and soil contamination exacerbate air 

pollution, particularly in coastal regions; therefore, these factors must be studied in depth to devise 

comprehensive and effective environmental strategies for holistically addressing coastal air pollution. 

In this study, a multi-model fusion technology that integrates detailed information on coastal 
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environmental pollution is proposed for predicting the AQI in coastal areas. This technology uses water, 

air, and soil pollutant emission data from different coastal enterprises to analyze their impact on 

environmental pollution. By leveraging the unique learning principles and observation nuances of various 

machine learning algorithms, a collaborative monitoring and alerting framework for coastal environments 

was developed that focused on water, air, and soil properties. This framework employs the multi-model 

fusion technology for providing ecological security early warning in coastal environments. 

 

 

2. Research Method 

Soil contaminants in coastal environments undergo complex transformations and migrations influenced 

by wind and water dynamics and migrate into the atmosphere and aquatic systems, causing air, surface 

water, and groundwater pollution. Similarly, waterborne pollutants transform and disperse into the 

atmosphere and soil, causing further contamination. As these pollution sources are interdependent, poor 

coastal air quality is not caused not only by atmospheric emissions alone but also by water and soil 

pollutants. Herein, air, water, and soil pollution data were integrated and a collaborative early warning 

model was developed based on multi-feature information fusion. Real-time monitoring data were 

leveraged to develop an optimal pollutant diffusion model for accurately predict the impact of pollutants 

on the coastal air environment, thereby fostering a more comprehensive and proactive approach to 

environmental management. 

 

2.1 Proposed Methods 

Taking model information as the core, a framework for collaborative monitoring and early warning of 

water–air–soil multi-feature is established, focusing on solving prominent coastal environmental 

problems. By combining information from different modalities, multi-model fusion enabled achieving 

good prediction accuracy. By obtaining early warnings of the coastal ecological environment, the 

government can proactively respond to pollution in such areas. A prediction method based on supervised 

learning and multi-model fusion was proposed. A selection strategy for ensemble learning multi-model 

was proposed to explore the collaborative warning of water–air–soil multi-feature based on multisource 

information fusion technology for coastal enterprises’ pollution source emissions on surrounding air 

environmental pollution. The prediction accuracy was considerably improved by employing multi-model 

selection strategies and multi-feature fusion methods. The proposed framework can flexibly and 

effectively coordinate the early warnings of atmospheric heavy pollution events in coastal areas, thereby 

guiding enterprise pollution source emissions. 

 

2.1.1 Evaluation criteria and influencing factors 

To prevent pollution and safeguard the quality of coastal environments, the potential consequences of 

environmental pollutants emitted from construction projects on coastal regions must be analyzed 

thoroughly. This study focused on the Liaodong Peninsula, a region characterized by a continental 

monsoon climate within the northern temperate zone. This region experiences continental and marine 

climates due to its unique geographical position, i.e., surrounded by sea on three sides, rendering it 

susceptible to both marine and monsoon influences. Wastewater and waste residue also considerably 

impact the coastal air quality besides atmospheric pollutants. Herein, the primary factors that contribute 

to coastal environmental pollution have been studied based on the characteristics of water, air, and soil 
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emission sources and meteorological factors. The emission sources mainly come from pollution sources 

in production and daily life. The diffusion of pollutants is influenced by the meteorological environment 

in the region such as atmospheric turbulence. Atmospheric dilution and diffusion vary with 

meteorological conditions, resulting in different influence ranges and intensities of pollutants. The main 

meteorological factors that affect atmospheric conditions include temperature, pressure, humidity, wind 

direction, and wind speed. 

 

2.1.2 Coastal air collaborative early warning model based on multi-feature and multi-model 

fusion 

For predicting coastal ecological environment pollution, the air quality dynamics are intricately 

intertwined with both pollutant emission sources and meteorological variables. For predicting coastal air 

pollution, the analysis scope must be broadened beyond solely examining the emission characteristics of 

atmospheric pollutants. To this end, the emission profiles of water and soil pollutants and meteorological 

factors such as temperature, humidity, and wind direction were comprehensively evaluated herein. This 

multi-feature approach enabled providing highly accurate and timely air pollution level warnings, thereby 

enhancing the understanding and preparedness during disasters in coastal regions. A collaborative coastal 

air quality early warning system based on multi-feature and multi-model fusion was developed, as shown 

in Fig. 1. 
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Fig. 1. A multi-feature and multi-model fusion approach for establishing a collaborative coastal air quality 

early warning system. 

 

The technical approach for developing this system can be summarized as follows. First, the data on 

diverse water–air–soil and meteorological factors emanating from coastal industrial pollution sources 

undergo comprehensive acquisition and denoising procedures. Then, a collaborative warning system was 

developed by leveraging multi-model fusion that was tailored to the water–air–soil characteristics of 

coastal ecosystems. Herein, an array of characteristic parameters such as air pollutants (SO2, NOx, CO, 

and smoke); waste water contaminants (sulfides and petroleum); solid pollutants (particulate matter); and 

meteorological factors (wind speed, wind direction, atmospheric pressure, and temperature) were 

considered as a parameter set. These were used for assessing the level of atmospheric pollution within 

coastal monitoring areas in terms of AQI, which is a quantifiable metric for air quality assessment. 
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2.2 Stacking Ensemble Learning Fusion Strategy 

2.2.1 Selection of multi-model fusion 

First, a single model was applied to forecast the coastal air pollution using the mean absolute error 

(MAE) as a metric to evaluate the prediction performance of the model on the test set. 
 

MAE =
1

𝑚
∑  

𝑚

𝑖=1

|(𝑦𝑖 − 𝑦̂𝑖)| (1) 

 

where 𝑦𝑖  and 𝑦̂𝑖 denote the real and predicted values of AQI. 

Aiming at the differences between different learning algorithms in training and reasoning, a prediction 

method based on a multi-model fusion ensemble learning mode was proposed to achieve better learning 

performance than a single algorithm. It fully leveraged the advantages of each model. To achieve optimal 

ensemble learning performance, the learning capabilities of multi-model algorithms were analyzed. As 

show in Fig. 2, XGBoost, gradient boosting machine (GBM), and kernel ridge regression (KRR) exhibit 

lower MAE values. This indicated their enhanced performance, and they were classified as “strong 

learners.” In contrast, decision trees (DT), linear regression with Lasso regularization, and support vector 

regression (SVR) models exhibited weaker performance and were classified as “weak learners.” 

 

 

Fig. 2. Efficacy multiple models in predicting air quality by MAE. 

 

2.2.2 Multi-model fusion strategy 

When training the model on excessive data, a more powerful combination strategy known as the 

“learning method” that combines basic and meta-learners can be used. If the basic learner has strong 

ability, its predicted results are not considerably different than the real result; this indicates their linear 

relationship. To prevent model over fitting and reduce the impact of classification errors of these learners, 

the meta-learner uses a relatively simple linear regression model to yield accurate prediction results [18]. 

However, if the base learner has weak learning ability, the predicted results may differ considerably from 

the real results and may not be linearly related. In such cases, the meta-learner chooses a nonlinear 

regression model. When the base-learner has strong learning ability and the meta-learner is nonlinear, it 

is equivalent to repeating the learning twice. Such cases were therefore not considered in the fusion 

strategy design. The impact of stacking ensemble learning with only one layer of structural learners 
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(Stack_1) on the prediction performance was also analyzed, i.e., the case wherein the base learner is a 

strong learner and there is no meta-learner. The strength of the base-learner and the linearity of the meta-

learner, as well as how different combinations affect the final prediction performance of stacking 

algorithm, were determined to classify the base-learner and meta-learner used in multi-model fusion 

strategy. Table 1 shows the multi-model fusion strategy of the stacking algorithm. 

This multi-model fusion strategy improves the accuracy and stability of prediction. By combining 

various base learners, ensemble learning performance of the stacking algorithm was improved [19]. By 

selecting a base-learner with strong learning ability in the first layer, the predictive ability of the stacking 

model improved. Herein, the XGB algorithm was also used (Fig. 2). As the base-learner, the GBM 

adopted the boosting algorithm’s ensemble learning method, with strong learning generalization ability. 

It completed causal mathematical interpretation and was used as the base learner herein. DT used the 

ensemble learning method of the bagging algorithm. SVR has unique advantages in solving small-sample, 

nonlinear, and high-dimensional pattern recognition problems, making it an effective regression tool. The 

second layer used this linear regression model to correct the inductive bias of several learning algorithms 

and reduce the risk of model overfitting. 

 

Table 1. Multi-model fusion strategy of stacking algorithm 

Integrated model Integration strategy Algorithms included 

Stack_1 Base-learner Strong regression model XGB; GBM; Light GBM 

Meta-learner  - 

Stack_2 Base-learner Strong regression model XGB; GBM; Light GBM 

Meta-learner linear regression model Lasso regression 

Stack_3 Base-learner Weak regression model DT; Linear regression; SVR 

Meta-learner linear regression model Lasso regression 

Stack_4 Base-learner Weak regression model DT; Linear regression; SVR 

Meta-learner Strong regression model XGB 

 

 

3. Empirical Research 

3.1 Experimental Data 

Herein, AQI data spanning from August 10, 2020 to June 30, 2022, in D City, were acquired. After 

pruning invalid records, a dataset of 643 observations was established to evaluate the efficacy of the 

model. Six key air pollutants were assessed, namely O3, PM10, PM2.5, CO, SO2, and NO2, along with the 

ambient AQI sourced from the data center of the local environmental monitoring station. Emission 

characteristic data of industrial pollutants (air, water, and solid pollutants) were procured from the self-

monitoring information disclosure platform of major pollutant-discharging units in Liaoning Province. 

Moreover, 33 enterprises located within the city’s effective coastal region were focused on, and 204 

emission data features were extracted from this platform; these comprised 128 gas emission features, 66 

water emission features, and 10 soil emission features. By leveraging information fusion techniques, the 

study aimed to analyze and provide dynamic alerts on the coastal environmental pollution status within 

specified areas. The extensive dataset of pollutant emissions from coastal enterprises was used for this 

purpose. Table 2 shows the sample monitoring data. 
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Table 2. Sample data emission features and meteorological features in the study area 

Monitor time 

Air (A)-Water (W)-Soil (S) 

Emission characteristic parameters 

Meteorological characteristic 

parameters 

SO2 NOx COD pH DUST 
… 

Atmospheric 

pressure 
Temperature … 

-A1 -A2 -W1 -W2 -S1 

2020/8/10 0:00 11.49 67.58 19.67 7.1 2.60695 … 99.5 23.2 … 

2020/8/10 2:00 2.3 73.1 19.21 7.13 2.53756 … 99.5 22.9 … 

2020/8/10 4:00 7.79 74.82 19.49 7.28 2.64507 … 99.5 22.4 … 

2020/8/10 6:00 11.63 69.91 18.46 7.35 2.54572 … 99.6 23.5 … 

2020/8/10 8:00 22.09 68.96 18.07 7.37 2.34194 … 99.7 26.2 … 

2020/8/10 10:00 3.37 62.27 29.36 7.28 2.25389 … 99.6 26.2 … 

2020/8/10 12:00 3.26 60.32 23.33 7.29 2.2633 … 99.7 25.6 … 

2020/8/10 14:00 3.1 66.48 21.41 7.26 2.27371 … 99.6 25.8 … 

2020/8/10 16:00 2.63 67.59 19.34 7.17 2.15278 … 99.6 25.5 … 

2020/8/10 18:00 18.31 70.73 37.04 7.21 2.33118 … 99.6 24.4 … 

2020/8/10 20:00 9.95 70.66 40.55 7.23 2.42917 … 99.7 23 … 

2020/8/10 22:00 15.11 58.52 26.11 7.22 2.60341 … 99.7 22.1 … 

2020/8/11 0:00 23.08 60.74 24.11 7.21 2.5758 … 99.8 22.6 … 

2020/8/11 2:00 5.21 57.75 24.94 7.21 2.49957 … 99.8 23.1 … 

2020/8/11 4:00 4.1 57.83 24.32 7.22 2.47865 … 99.9 22.6 … 

2020/8/11 6:00 20.07 68.38 22.33 7.17 2.41544 … 100 23.1 … 

2020/8/11 8:00 16.35 66.07 23.08 7.14 2.30051 … 100.1 25.9 … 

2020/8/11 10:00 9.18 60.89 22.94 7.13 2.02514 … 100.2 26.4 … 

2020/8/11 12:00 9.67 60.57 22.49 7.13 2.10234 … 100.2 27.9 … 

2020/8/11 14:00 5.93 55.34 22.5 7.12 2.24038 … 100.2 26.5 … 

 

3.2 Experiment and Analysis 

The gas, water, soil emission features and meteorological indicators were consolidated into a 

comprehensive parameter set to assess the likelihood of atmospheric pollution at the monitoring 

stations located within core coastal residential zones. The ultimate output, denoted as parameter y, 

represents the AQI that provides a quantitative measure of environmental health. In addition to the 

representative machine learning algorithm provided for single model prediction and the multi-model 

fusion strategy (Table 1), the stacking algorithm was trained and tested via five-fold cross-validation. 

The performance of various integrated models was evaluated based on MAE, and the results are shown 

in Fig. 3. 

The combination strategies of ensemble learning have different impacts on prediction performance. 

Among them, Stack_2, which uses a strong learner as the input to the base-learner and linear regression 

as the meta-learner, yields the best prediction results. Traditionally, ensemble learning fully leverages 

the advantages of multiple models and adopts various strategies to integrate different learning 

outcomes to improve prediction results. However, herein, the MAE did not improve considerably 

under Stack_4 and the prediction results were not better than that obtained using a single learner. 

These results indicate that the combination strategy of base-learners and meta-learners impacts the  
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Fig. 3. Performance of machine learning algorithm in water–air–soil multi-feature cooperative early 

warning system (MAE). 

 

results of ensemble learning. Stack_2 yields better prediction results for most scenarios. Stack_2 had 

higher MAE than high-performance single models. This indicated that not every type of stacking offers 

“quality assurance.” Multi-model fusion may not necessarily yield good prediction results when applied 

to certain specific and specific scenarios. 

The red bars in Fig. 3 show that with all other parameters constant, the characteristic data of air 

pollutant emissions has been broadened to encompass multi-feature emissions spanning water, air, and 

soil, facilitating the assessment of pollution potential in coastal core residential areas’ current monitoring 

points. A comparative analysis revealed that the MAE for water–air–soil multi-feature collaborative 

warnings was generally lower than that of air pollutant emission warnings, indicating superior predictive 

performance. This underscores that atmospheric environmental forecasting is influenced by not only air 

pollutant emissions but also pollutant migration, transformation, as well as wastewater and waste residue 

discharges; these parameters collectively impact environmental quality and may induce secondary 

pollution. Consequently, the establishment of a water–air–soil multi-feature collaborative warning model 

enhances prediction outcomes. 

The impact of characteristic factors on collaborative warning was further evaluated by defining Influe, 

where featuresMAE represents the single-feature model performance (MAE) and coordinatingMAE 

represents the collaborative feature model performance (MAE). 

 

Influe =
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝐴𝐸 − 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑛𝑔𝑀𝐴𝐸

𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑖𝑛𝑔𝑀𝐴𝐸
. (2) 

 

The performances of different models in predicting atmospheric pollutants, water pollutants, and solid 

pollutants are compared in terms of MAE in Table 3. Among them, influe_air (%), influe_water (%), and 

influe_soil (%) represent the degree to which the sample prediction accuracy of the water–air–soil 

collaborative model has been improved in training compared to the air, water, and soil feature models, 

respectively. 

The improvements of the water, air, and soil feature models were averaged to determine the model 

performance. The degree of impact is shown in Fig. 4. 
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Table 3. Prediction and improvement performance of different pollutant features 

 influe_air (%) influe_water (%) influe_soil (%) 

DT 8.09 26.79 54.14 

KRR 5.89 –10.25 13.90 

lasso 1.24 0.63 3.45 

SVR 3.81 0.75 4.17 

XGB 3.44 –4.20 4.70 

GBM 10.86 9.01 23.4 

ENet 2.64 0.00 3.24 

Stack_1 17.27 33.96 52.98 

Stack_2 1.73 –0.78 6.19 

Stack_3 2.35 0.03 4.12 

Stack_4 3.99 0.78 6.09 

 
 

 

Fig. 4. Performance comparison of different feature factors in the model. 

 

Water–air–soil multi-feature model yields better prediction results compared with single pollutant 

emission characteristics. The degree of influence of the analyzed features were in the following order 

from highest to lowest: air > water > soil. 

The performance of the ensemble model is determined based on the goodness of fit (R2). This metric 

reflects the degree of fitting between the regression line and the observed value. The closer the R2 value 

is to 1, the better the fit. 
 

𝑅2 = 1 −
 ∑ (𝑦𝑖 − 𝑦𝑖̂)

2
𝑖

∑ (𝑦‾ − 𝑦𝑖̂)
2

𝑖  
. (3) 

 

Fig. 5 shows the prediction performance of multiple features used in the proposed warning model and 

the single-feature (water, air, soil). Stack_2 performed well and Stack_4 performed poorly. The 

developed warning model with water–air–soil multi-features exhibited better prediction performance 

than the single pollutant emission characteristic model. 

The impact of selection strategies for primary and secondary learners on different ensemble learning 

outcomes was discussed in the previous section. The proposed model performed effectively on the fixed 

dataset and on other data, indicating its robustness and enhanced generalization ability. Therefore, the 

dataset was further divided using different strategies, and the performance of Stack_2 was considered as 

the benchmark. In Strategy 1, the dataset was divided into two datasets with high and low temperatures. 

In Strategy 2, the dataset was divided into two datasets with high and low wind speeds. 
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Table 4. Improvement in MAE of Stack_2 for different temperatures and wind speeds 

 High_temperature (%) Low_temperature (%) High_wind_speed (%) Low_wind_speed (%) 

DT 65.36 38.32 55.36 60.88 

KRR 24.43 18.79 3.86 27.18 

lasso 21.46 –3.52 –0.07 8.93 

SVR 63.31 29.48 49.14 33.34 

XGB 78.62 31.26 26.49 25.74 

GBM 56.53 31.51 50.89 39.64 

ENet 87.15 78.26 79.00 80.54 

 

As shown in Table 4, the prediction bias (MAE) of Stack_2 improved, except for lasso. This indicates 

that the ensemble learning model in Stack_2 can exhibit better prediction performance in most scenarios 

than most base models. 
 
 

4. Conclusion and Enlightenment 

In this study, various learning principles and observation discrepancies of machine learning algorithms 

were analyzed in depth. Then, information fusion technology was leveraged for regional air pollution 

forecasting. By leveraging the advantages of each machine learning model, a multi-model fusion strategy 

was developed. Then, the influence of pollution emissions from coastal enterprises in Liaoning Province 

on the AQI was determined. The selection and fusion of multiple models and integration strategy 

employed for developing the collaborative early warning framework for coastal air environments were 

discussed. The proposed framework incorporates dynamic, data-driven water–air–soil multi-feature 

collaboration and accurately forecasting the environmental impact trends of emissions. Compared with 

those of a single-feature prediction model, the multi-feature multi-model framework exhibited higher 

MAE and R2 values, as well as enhanced stability and fusion reliability. This framework was developed 

to solve coastal ecological and environmental problems, as well as improve the effectiveness and 

accuracy of environmental monitoring and governance. It offers a well-grounded forecast of the influence 

trajectory of emissions on the ambient air quality, thereby helping government agencies with a data-

driven interpretation of mitigation measures. Ultimately, it helps in alleviating coastal ecological and 

environmental pollution and devise strategies for ensuring environmental quality management. The 

proposed system addresses the following critical issues: 

1) It furnishes a solid data-based rationale for the regulation of emissions from coastal enterprises, 

thereby enhancing the effectiveness of pollution source control measures. Unlike traditional methods 

employed for calculating the AQI, the correlation between multi-feature pollutant emissions from coastal 

enterprises and environmental quality in surrounding areas was explored herein by employing big data 

fusion analysis. Based on the varying degrees of impact of these emissions, a list of key regulatory 

enterprises and key pollutant discharge outlets can be proposed. Drawing upon the outcomes of coastal 

environmental quality, this study advocates for the targeted regulation of corporate pollution discharges. 

It also quantifies the respective contributions of these pollution sources to the environmental quality, 

leveraging the degree of impact exerted by water, air, and soil pollutant features. It thus guides the 

formulation of scientific and efficient preventive governance strategies aimed at overseeing the discharge 

outlets of various enterprises situated along coastal regions. 

2) The collaborative early warning model captures coastal air pollution dynamics and exhibits 

enhanced prediction accuracy. By adopting this model, scientific and effective responses can be obtained 
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to address severe pollution events in coastal environments. In instances where moderate to severe 

pollution warnings are issued for coastal areas, it signifies that the concentration of pollutants emanating 

from nearby enterprises may be elevated. Under such conditions, coupled with meteorological factors 

such as high temperatures and low humidity, the model underscores the importance of strengthening 

safety production management within the region to prevent the escalation of chain reactions such as 

marine pollution accidents. Furthermore, the predictive models facilitate the identification of potential 

hazards, thereby offering novel perspectives for early warning and dynamic collaborative governance of 

coastal ecological environment pollution incidents. 
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