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Abstract 
In order to address the issue of taxi carpooling path planning on urban roads, this study suggests an improved 

A* algorithm and a model based on node weight. The path planning model enables us to implement carpool 

path planning after carpool passengers, taxi passengers, and taxi drivers have gathered. It uses a vector city 

traffic road network, city road vector map topology, dynamic road weight functions, node weight tables of the 

road, and an improved A* algorithm. Our evaluation of the model involves comparing its path planning 

computation time and total travel time with the traditional A* algorithm using Nanjing taxi trajectory data.  The 

comparison shows that the proposed algorithm significantly outperforms the traditional A* algorithm.  Results 

show that the taxi path planning model proposed in this paper can provide a reference for carpool passengers, 

taxi passengers, and taxi drivers in choosing a carpool. 
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1. Introduction 

Urban areas are experiencing increased traffic congestion and environmental degradation due to rapid 

urbanization, which has caused widespread concern. To alleviate urban traffic congestion, many cities 

have implemented a variety of traffic measures. One such measure is taxi carpooling, which is being used 

in many cities, including Beijing, Shanghai, and Guangzhou. The waiting time of taxi arrival and the 

probability problem are worth studying. Research on these topics can provide a reference for establishing 

rapid and convenient carpooling, increase the carpooling income of city taxi drivers, improve the 

efficiency of city taxi carpooling, and contribute to alleviating urban congestion and reducing 

environmental impacts [1].  

The path problem is the key problem in vehicle navigation systems. To tackle this problem, several 

algorithmic strategies have been created. Traditional shortest path algorithms mainly include the Dijkstra 

algorithm, A* algorithm, Floyd’s algorithm and other extended or improved algorithms. Although these 

algorithms each have unique benefits, they also exhibit limitations. The Dijkstra algorithm is relatively 

perfect in application theory and strong practical performance. However, current road traffic is becoming 

increasingly complicated, leading to slightly low computational efficiency, low applicability and high 

space and time complexity of the algorithm and preventing path search. At present, the rapid development 
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of artificial intelligence technology, ant colony algorithm, and genetic algorithm provide new ideas for 

solving the shortest path problem. The new simulated evolutionary ant colony algorithm was proposed 

by Dorigo. The ant colony algorithm has good parallelism and positive. 

In the ant colony algorithm, cooperating ants find the shortest path between the nest and the food. The 

ant colony foraging behavior is similar to the shortest path search problem.  Thus, the ant colony 

algorithm is introduced to search for the shortest path to improve search efficiency and accuracy. 

Most studies on vehicle path planning use the block method to improve the data reading efficiency and 

reduce the number of nodes [2-5]. For emergency rescue operations, fire escape, and other unique path 

planning problems, Rajagopalan and Mehrotra [6] suggested a hierarchical path planning algorithm. 

Finding high-level abstract graphs is at the heart of the algorithm. The graph’s nodes correspond to pre-

estimated risk estimates, the search space is calculated by drastically cutting the path, and the cumulative 

risk value linked to each node determines the path's quality. In order to increase the efficiency of data 

reading, Song and Wang [7] employed the block method to decrease the number of nodes for navigation 

system path planning. Nordbeck and Rystedt [8] proposed the shortest path ellipse algorithm, which 

considers only the nodes within the ellipse range. The nodes outside the ellipse do not participate in the 

operation, and the elliptic algorithm can reduce the computation significantly. Hirtle and Jonides [9] 

proposed a data model for road network decomposition and classification. Car and Frank [10] used the 

hierarchical strategy to plan paths in large-scale street networks and proved that using a hierarchical 

structure can lead to finding the fastest path. Sanders and Schultes [11] proposed acceleration techniques 

for path planning and computed more accurate shortest paths with an inherent hierarchical structure. 

Goodchild [12] proposed the concept of hierarchical space. Sanders and Schultes [13] introduced the idea 

of hierarchical network reprocessing to deal with the low computational efficiency of large-scale road 

networks. In the 1990s, Maniezzo and Colorni [14] developed the ant system. Dorigo and Gambardella 

[15] solved the problems of low efficiency, local optimal solution and slow convergence of the ant colony 

algorithm. By comparing the Dijkstra algorithm’s and the ant colony algorithm’s use in a vehicle 

navigation system from different angles, Dramski [16] was able to ascertain the relative advantages of 

each algorithm. Cong et al. [17] applied the ant colony algorithm in the path planning problem of 

freeways and reported the advantage of high-grade road networks in four aspects due to the use of this 

algorithm. 

In situations involving taxi path planning, artificial intelligence algorithms like the ant colony, particle 

swarm, and genetic algorithms have proven useful. However, artificial intelligence algorithms require 

complex calculations and can easily fall into local optima. As a result, they can theoretically implement 

path planning and passenger matching for taxis and carpools. However, they are difficult to apply in 

actual road navigation. Modern navigation apps like Uber, Google Maps, and Baidu Maps plan their 

routes using the Dijkstra, Floyd, and A* algorithms. When it comes to finding practical and ideal routes 

across discrete road network topologies, these algorithms demonstrate strong search capabilities [18]. In 

the current work, given the Dijkstra algorithm, the Floyd algorithm for network topology multi-node 

network calculation and the disadvantages of high complexities and long operation times, the path 

planning problem of a selected taxi is solved using the A* algorithm. 

In urban taxi carpool path planning, the carpool starting position, carpool destination, taxi passenger’s 

current location, taxi passenger’s destination, location factors of the city road network and dynamic traffic 

status analysis must be considered [19,20]. According to a vector map structure of an urban road network 

electronic map, the dynamic road weighting function is combined with the improved A* algorithm to 

formulate a specialized urban taxi carpool path planning model. 

The remainder of this paper is organized as follows. Section 2 introduces the urban taxi carpool path 
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planning mode, and the improved A* algorithm model methodology is proposed. Experiments based on 

taxi dataset are shown in Section 3, and a comparison with conventional A* approaches is provided. The 

conclusion and future work are presented in the last section. 

 

 

2. Urban Taxi Carpool Path Planning Model 

2.1 Urban Road Weight Index Construction 

2.1.1 Analysis of the influencing factors of urban road dynamic path planning 

The dynamic planning of urban road path is mainly affected by the following factors. 

Length of road section: Vehicle travel time in a city is determined by the length of the road between 

road nodes. The longer the road between nodes, the longer the vehicle travel time. 

Speed of vehicle: In the city, the travel time is shortened by increased vehicle speed. Likewise, vehicle 

speed, road vehicle density, travel time, weather, traffic accidents and other related factors affect the 

travel time. During peak traffic periods, vehicle speed is low, and the running time is long. In addition, 

road traffic accidents affect vehicle speed. Thus, vehicle speed determines the transport time. 

Grade of road: Expressways, trunk roads, secondary roads, and branches are the four tiers into which 

urban road networks are divided. Different road grades have different driving speeds and road widths. 

Generally speaking, a high road grade corresponds to high vehicle traffic speeds and short travel times. 

Waiting time at intersections: Traffic lights at intersections regulates vehicular flow to prevent 

congestion. The frequency of the change in traffic lights is decided by the running time of the vehicle. 

The vehicle waiting time is long for central city roads and road intersections, and the city road carpool 

should focus on the effect of traffic lights on path planning. 

Other factors: In addition to the preceding factors, road construction, temporary traffic control, and 

major natural disasters affect the running speed of vehicles. However, these factors are not considered in 

the road resistance function model because of their uncertainty. 

 

2.1.2 Urban road weight model 

The analysis of the factors that affect vehicle speed shows that the planning of urban road path is mainly 

affected by the length of the road between nodes, the speed of vehicles on the road, the grade of the road, 

and the traffic lights, and the establishment of the road weight model is shown in Formula (1): 
 

𝑊𝑖𝑗 = 𝛼𝐿𝑖𝑗 + 𝛽𝑉𝑖𝑗 + 𝛾𝐺𝑖𝑗 + 𝜂𝑇𝑖𝑗 , (1) 
 

𝑊𝑖𝑗  represents the weight value between the nodes on the road, 𝐿𝑖𝑗  represents the length of the road 

between nodes 𝑖 and 𝑗, 𝐺𝑖𝑗  is the grade of road between the nodes 𝑖 and 𝑗, 𝑉𝑖𝑗 is the average speed of the 

vehicle between the nodes 𝑖 and 𝑗, and 𝑇𝑖𝑗 is the average waiting time at traffic lights between the nodes 

𝑖 and 𝑗. Parameters 𝛼, 𝛽, 𝛾, 𝜂 represent the weights of the different influencing factors.
 

Definition: The smaller the 𝑊𝑖𝑗 value, the better the vehicle passing ability, and the larger the 𝑊𝑖𝑗 

value, the worse the vehicle passing ability. Therefore, carpooling path planning does not take the 

traditional distance and time as the basic path planning index. Instead, the path weight, which we compute 

using the road dynamic traffic information through the road weight function, is taken as the path planning 

index to achieve the path planning of the urban taxi after the carpool.  
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2.1.3 Determination of road index weight 

Subjective, objective, and combination weighting are the primary methods used in the current process 

of determining the weight of indicators. However, the complex systems engineering required to determine 

index weights for urban traffic segments makes it vulnerable to subjective elements like experience, 

policy, and environment [21,22]. Furthermore, it is challenging to quantify the weights of the indicators 

using the aforementioned method for determining the weights of the indicators because human thought 

is inherently ambiguous and uncertain. To prevent the influence of subjective factors in determining the 

index weight, the entropy method is employed in this study. 

To determine index weights, the entropy method assesses system-intrinsic factors and their 

interactions. If the information entropy is small, which indicates that the variation degree index value is 

large, more information is provided and its weight is larger. On the contrary, if the information entropy 

is large, the variation degree index value is small, the amount of information available is low, and its 

weight is small. The index weight is determined by assessing the variation in the index value, and the 

concrete calculation process is as follows: 

 

Data standardization 

The definitions of the four road indices: 𝑋1  is the road length, 𝑋2  is the vehicle average speed in 

road,  𝑋3  is road grade, and 𝑋4  is the traffic light waiting time at the intersection. 𝑋1 =

{𝑙11, 𝑙12 ⋯ 𝑙𝑛𝑚}, 𝑋2 = {𝑣11, 𝑣12 ⋯ 𝑣𝑛𝑚}, 𝑋3 = {𝑔11, 𝑔12 ⋯ 𝑔𝑛𝑚}, 𝑋4 = {𝑡11, 𝑡12 ⋯ 𝑡𝑛𝑚} , we establish the 

road weight index matrix 𝑅𝑖𝑗.  

 

𝑅𝑖𝑗 = [

𝑙11 𝑣11 𝑔11 𝑡11

𝑙12 𝑣12 𝑔12 𝑡12

…
𝑙𝑛𝑚 𝑣𝑛𝑚 𝑔𝑛𝑚 𝑡𝑛𝑚

] = [

𝑥11 𝑥21 𝑥31 𝑥41

𝑥12 𝑥22 𝑥32 𝑥42

…
𝑥1𝑚 𝑥2𝑚 𝑥3𝑚 𝑥4𝑚

]. (2) 

 

In the standardized processing of each index in matrix 𝑅𝑖𝑗, we obtain the road index weight matrix 𝑅̃𝑖𝑗. 

 

𝑅̃𝑖𝑗 = [

𝑦11 𝑦21 𝑦31 𝑦41

𝑦12 𝑦22 𝑦32 𝑦42

⋯
𝑦1𝑚 𝑦2𝑚 𝑦3𝑚 𝑦4𝑚

]. (3) 

 

In Formula (3), 𝑦𝑖𝑗 =
max𝑥𝑖𝑗−𝑥𝑖𝑗

max𝑥𝑖𝑗−min𝑥𝑖𝑗
, 1 ≤ 𝑖 ≤ 4,1 ≤ 𝑗 ≤ 𝑚. 

  

 

Solving the entropy weight of index 

According to the definition of entropy in information theory, the index entropy can be expressed by 

Formula (4). 
 

𝐸𝑖 =
∑  𝑀

𝐽=1  𝑝𝑖𝑗ln𝑝𝑖𝑗 .

−ln 𝑛
. (4) 

 

In Formula (4),

 

𝑝𝑖𝑗 =
𝑦𝑖𝑗

∑  𝑚
𝑗=1  𝑦𝑖𝑗

, when 𝑝𝑖𝑗 = 0,  ln𝑝𝑖𝑗 is meaningless, thus 𝑝𝑖𝑗ln𝑝𝑖𝑗 = 0.
 

 

The weight coefficient of each index was determined 

The entropy of each index calculated using the information entropy Formula (4), is 𝐸1, 𝐸2, 𝐸3, 𝐸4, and 

the weight coefficient of each index is calculated using Formula (5): 
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𝑓𝑖 =
1 − 𝐸𝑖

4 − ∑  4
𝑖=1  𝐸𝑖

 (𝑖 = 1,2,3,4) (5) 

 

For 𝛼 = 𝑓1, 𝛽 = 𝑓2, 𝛾 = 𝑓3, 𝜂 = 𝑓4, the weights of urban roads are calculated using Formula (6): 
 

𝑊𝑖𝑗 = 𝑓1𝐿𝑖𝑗 + 𝑓2𝑉𝑖𝑗 + 𝑓3𝐺𝑖𝑗 + 𝑓4𝑇𝑖𝑗 . (6) 

 

2.2 Improved A* Algorithm Model 

2.2.1 A* algorithm model 

A* algorithm is a fast search method for shortest path in static road networks. As a heuristic algorithm, 

it primarily employs the A* heuristic function, 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) to estimate and solve the shortest 

path [23,24]. 𝑓(𝑛) represents the estimated distance from state n to the destination, 𝑔(𝑛) represents the 

actual distance from the initial state to the state 𝑛 , and ℎ(𝑛)  represents the optimal path distance 

estimation from state n to destination, the algorithm flow chart is shown in Fig. 1.  

 

 

Fig. 1. Flow chart of A* algorithm. 
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A) Initialize the OPEN table and store starting point S in OPEN. 

B) Create the CLOSE table, which is initially empty. 

C) Determine whether the OPEN table is empty and exit when it is empty. If not empty, select the 

OPEN table of the node deleted and stored in the CLOSE table. If the selected point is the target 

point, exit E, otherwise, select and calculate the adjacent node set V of the node 𝑔(𝑣). 

D) Determine whether the node is in the OPEN table, and update the G in the node V if it is in the 

OPEN table, and as a new parent node. If the node is not in the OPEN table, then judge whether it 

is in the CLOSE, if not in the CLOSE table, then put the node set V into the OPEN table, and 

calculate the estimated value of the node, and return to C. If the node is in the CLOSE table, update 

its G value in the new node V, remove it from the CLOSE table, add it to the OPEN table, expand 

it, and return to C. 

E) Sort the last remaining nodes in the OPEN table, and determine the shortest path. 

The flow chart of the A* algorithm illustrates that the algorithm relies on the A* heuristic function 

estimation. However, the process shows that the A* algorithm usually estimates the distance between the 

target point and the point of state using the Euclidean distance. As a result, a large number of pointless 

nodes are examined and searched, increasing the algorithm's execution time. Additionally, the repeated 

traversal of the OPEN table further increases the search time. In this study, an improved A* algorithm 

based on the weight table query between nodes is proposed to achieve the effective path search, in 

conjunction with the features of carpool path planning. 

 

2.2.2 Improved A* algorithm based on inter node weight matrix 

To eliminate the repeated traversal issue in the A* algorithm’s search process, the A* algorithm based 

on the weight table query between the link nodes is proposed, that is, the evaluation value of the A* 

heuristic function is substituted with the weight table between queried nodes. To decrease computation 

and search time and increase path search efficiency, we can assess the weights of the initial state to the 

state point and the state point to the target point. 

 

1) Weight matrix between any two nodes 

Definition:
 
𝐺 = (𝑉, 𝐸, 𝑊) represents a directed topological network structure in urban road networks, 

𝑉 = {1,2, ⋯ 𝑛} represents the set of nodes in a graph, 𝐸 ⊆ 𝑉 × 𝑉 denotes the edge set of the directed 

topological graph, and 𝑊  denotes the weight of the directed edges between the nodes 𝑖  and 𝑗 . We 

construct the direct weight matrix (𝐿) of the directed topological graph. 
 

𝐿 = {

𝑤𝑖𝑗 (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸, 𝑖 ≠ 𝑗

0 (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸, 𝑖 = 𝑗

∞ (𝑣𝑖 , 𝑣𝑗) ∉ 𝐸

 (7) 

 

𝐿 denotes the direct weight matrix between the nodes of the directed graph, and 𝑤𝑖𝑗 denotes the weight 

between nodes i and j. If 𝑣𝑖 and 𝑣𝑗 are adjacent nodes, the weight is 𝑤𝑖𝑗. If the 𝑣𝑖 and 𝑣𝑗 are the same 

nodes, the weight is 0. If the 𝑣𝑖 and 𝑣𝑗 are non-adjacent nodes, the weights are infinite. 

Definition operation rules: 

• ⊕ operation rules 
 

∨ 𝐿1, 𝐿2 ∈ 𝐿𝑛×𝑚, 𝐿1 ⊕ 𝐿2 = 𝐿3 ∈ 𝐿𝑛×𝑚 (8) 

𝐿1 = (𝑥(𝑖, 𝑗))𝑛×𝑚, 𝐿2 = (𝑦(𝑖, 𝑗))𝑛×𝑚, 𝐿3 = (𝑧(𝑖, 𝑗))𝑛×𝑚 (9) 
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𝑧(𝑖, 𝑗) = 𝑥(𝑖, 𝑗) ⊕ 𝑦(𝑖, 𝑗) = min(𝑥(𝑖, 𝑗), 𝑦(𝑖, 𝑗)). (10) 

 

The objects of the operation are the two sets 𝐿1 and 𝐿2, which are both elements of the set of matrices 

𝑛 × 𝑚. This means that 𝐿1 and 𝐿2 can be seen as a matrix of numbers in 𝑛 rows and 𝑚 columns. The 

operator symbol is ⊕, and this symbol here represents a specific operation rule, not the traditional 

addition, subtraction, or multiplication. The result of this operation is another set, 𝐿3, which also belongs 

to the set of 𝑛 × 𝑚 matrices. Operation rule: For each corresponding element 𝑥(𝑖, 𝑗) and 𝑦(𝑖, 𝑗) in the 

two sets 𝐿1 and 𝐿2, the result of operation ⊕ is to take the smaller value of the two elements, that is, the 

corresponding element 𝑧(𝑖, 𝑗) in the set 𝐿3 is equal to min(𝑥(𝑖, 𝑗), 𝑦(𝑖, 𝑗)). 

 

• ⊗ operation rules 
  

∨ 𝐿1 ∈ 𝐿𝑛×𝑚, 𝐿2 ∈ 𝐿𝑚×𝑠, 𝐿1 ⊗ 𝐿2 = 𝐿3 ∈ 𝐿𝑛×𝑠 (11) 

𝐿1 = (𝑥(𝑖, 𝑗))𝑛×𝑚, 𝐿2 = (𝑦(𝑖, 𝑗))𝑚×𝑠, 𝐿3 = (𝑧(𝑖, 𝑗))𝑛×𝑠 (12) 

𝑧(𝑖, 𝑗) = ∑  

𝑚

𝑘=1

  ⊕ (𝑥(𝑖, 𝑘) ⊗ 𝑦(𝑘, 𝑗)) (13) 

 

𝑧(𝑖, 𝑗) means that the weight of the road is calculated, and each corresponding element 𝑥(𝑖, 𝑗) and 𝑦(𝑖, 𝑗) 

in the two sets 𝐿1 and 𝐿2 is multiplied first, and then the minimum value is taken according to the ⊕ 

operation rule. 

  

• Power operation rule 
 

∨ 𝐿1 ∈ 𝐿𝑛×𝑛, 𝐿1
𝑘 = 𝐿1

𝐾−1 ⊗ 𝐿1(𝑘 ≥ 2) (14) 

𝐿1
𝑘 = (𝑥𝑘(𝑖, 𝑗))𝑛×𝑛 (15) 

𝑥𝑘(𝑖, 𝑗) = ∑  

𝑚

𝑠=1

 ⊕ 𝑥𝑘−1(𝑖, 𝑠) ⊗ 𝑥(𝑠, 𝑗) (16) 

 

• The direct weight matrix realizes the minimum weight matrix between any two points by 𝑘 steps, 

and obtains the shortest weight matrix 𝐿𝑘. After 𝑘 iteration, the Formula (17) is obtained: 
 

𝑘 − 1 <
lg(𝑛 − 1)

lg 2
≤ 𝑘. (17) 

 

• Any two nodes weight matrix 𝐿 is defined by Formula (18): 
 

𝐿𝑘 = 𝐿 ⊕ 𝐿2 ⊕ 𝐿3 ⊕ ⋯ ⊕ 𝐿𝑛 (18) 
 

𝐿𝑘 represents the shortest weight matrix between any two nodes in a directed graph and is stored in the 

database as the result of direct query in the heuristic function evaluation of the improved A* algorithm. 

 

2) Improved A* algorithm flow 

Based on node weights, the results of the weight matrix table query between linked nodes are used in 

the improved A* algorithm to replace the estimated value of the A* heuristic function. The improved 

algorithm reduces the A* algorithm’s search time and increases path efficiency. The flow chart for the 

algorithm is displayed in Fig. 2, and the particular steps are as follows: 
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A) Determine the starting and end points. Starting point S is stored in OPEN, while the CLOSE table 

is established. 

B) Determine whether the OPEN table is empty. If it is empty, then quit to I. 

C) Save the new nodes in the OPEN table into the CLOSE table. 

D) Determine whether the OPEN table contains the target node. If it does, then go to H; otherwise, go 

to the next step. 

E) If a neighbor node exists in the CLOSE table, go to the next step; otherwise, quit to I. 

F) Establish neighbor node set V. The node weight matrix table is called, and the corresponding results 

of 𝑔(𝑣1), 𝑔(𝑣2), … , 𝑔(𝑣𝑛) and ℎ(𝑣1), ℎ(𝑣2), … , ℎ(𝑣𝑛) in adjacent nodes are searched.
 
 

G) Calculate adjacent node 𝑓(𝑣1), 𝑖 = 1,2, … , 𝑛. Store the node corresponding to the min𝑓(𝑣1), which 

is a new parent node, and store it in the OPEN table. Then, go B. 

H) Sort the nodes in the OPEN table and determine the path. 

I) End of search. 

 

(a) 

 
(b) 

 
Fig. 2. (a) Flow chart and (b) pseudo-code diagram of A* algorithm based on road node weights 
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2.2.3 Comparative analysis of two algorithms 

1) The two algorithms differ in the calculation method and search efficiency of the heuristic function 

estimate. 

The core principle of the A* algorithm is to evaluate paths based on the A* heuristic function. The 

heuristic function 𝑓(𝑛) in the A* algorithm typically has two parts, 𝑔(𝑛) and ℎ(𝑛), where 𝑔(𝑛) is the 

actual distance between the initial state and state 𝑛  and ℎ(𝑛)  is the optimal path estimated distance 

between state 𝑛  and the target state. During the search process, the A* algorithm must calculate the 

estimated value from each node to the target node, which usually involves calculating the Euclidean 

distance. Since nodes in the OPEN table must be traversed and evaluated multiple times, the A* algorithm 

can exhibit prolonged search times when dealing with a large number of nodes. 

The improved A* algorithm avoids the repeated computations and node traversals that are present in 

the A* algorithm’s search procedure. The improved A* algorithm uses the query result of the weight 

matrix table between the nodes to replace the estimate of the A-inspired function. By calculating and 

storing the weight matrix between any two nodes beforehand, the improved A* algorithm eliminates the 

need to calculate Euclidian distance and repeatedly traverse nodes by allowing the weight matrix table to 

be directly queried during the search process to determine the weight value between nodes. This 

improvement improves the search efficiency. 

 

2) The difference between the two algorithms in terms of operational efficiency. 

Throughout the search process, A* algorithm must determine the estimate from each node to the target 

node and repeatedly iterate and update the nodes in the OPEN table. When working with a large number 

of nodes, the A* algorithm may display prolonged search times due to the use of Euclidean distance 

calculations and repeated node traversals, which results in decreased efficiency. 

In contrast, the improved A* algorithm replaces the estimate of the A*inspired function by using the 

result of the query of the weight matrix table between the nodes, which avoids the calculation of Euclidean 

distance and repeated traversal of nodes. This improvement enables the improved A* algorithm to find 

the optimal path faster in the search process, thus improving the operation efficiency. Therefore, the 

improved A* algorithm is typically more advantageous than the A* algorithm in situations where the 

shortest path needs to be found quickly. 
 
 

3. Experimental Analysis  

3.1 Experimental Data 

In this study, the experimental data for the city taxi in Nanjing on September 16, 2014 after the arrival 

of the carpool passengers, passengers can carpool taxi matching scheme, as shown in Fig. 3. 

Fig. 3 illustrates that P1 and P2 are the starting point and destination of the carpool, respectively. The 

following taxi numbers are available for carpooling close to P1: 1, 2, 7, 10, 16, 18, 20, 24, 26, and 30. 

The taxi at destination P2 annex is the destination of the taxi driving near the P1 point. From the point of 

view of distribution, taxi No.10, No.16, and No. 24 are relatively far away from the destination of P2, 

and we think the travelling destination near the two taxi and carpool passengers; Taxis at each point are 

relatively close to the P2 destination, and we think that the taxi and carpool passengers have the same 

purpose. 

In order to implement carpool path planning, we use the MAPINFO software to digitize the coordinate 

system and the urban road in Nanjing in Fig. 3, as illustrated in Fig. 4. 
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Fig. 4 shows that ★ represents the destination and destination of the carpool passenger, and ▲taxi’s 

driving point at the P1 annex and the destination of the taxi driving near P2. The thickness of a line in a 

graph indicates the grade of a road, that is, the thicker the line is, the higher the grade of the road is, and 

the thinner the line is, the lower the grade of the road is. Taxis 1 to 133 in the figure correspond to road 

segment node numbers.  According to the function of the table in the MAPINFO database, the table 

structure is established, and the type and range of the related fields are defined, as shown in Table 1. 

 

 

Fig. 3. Schematic diagram of carpool passenger matching scheme. 

 

 
Fig. 4. Vectorization diagram of urban road structure. 



Qiang Xiao, Guoqing Song, and Ziyi Wang 

 

J Inf Process Syst, Vol.21, No.3, pp.255~270, June 2025 | 265 

Table 1. Urban road database table 

Route 

number 

Road 

grade 
Origin Destination 

Distance between 

road nodes (km) 

Two way 

road 

Average 

speed (km/hr) 

Waiting time for 

traffic lights (s) 

z1 2 1 2 1.572 111 33 25 

z4 2 2 3 0.66 111 35 25 

z2 2 2 4 0.893 111 34 25 

z5 2 3 5 0.301 111 35 25 

z8 2 3 7 1.141 111 30 25 

z3 2 4 5 1.257 111 26 25 

k1 1 4 39 2.693 111 50 15 

z6 2 5 6 1.068 111 25 35 

z7 2 6 7 0.352 111 29 25 

z12 2 10 8 1.006 111 33 25 

··· ··· ··· ··· ··· ··· ··· ··· 

c43 3 132 26 0.359 111 13 45 

c41 3 132 41 0.279 111 12 45 

z143 2 133 118 0.454 111 35 25 

 

Table 1 presents a city road database table that details various road attributes. The columns in Table 1 

are defined as follows: route number indicates the number of each road; road grade indicates the grade 

of the road, such as the main road and secondary road; origin indicates the area or place where the road 

starts; destination indicates the area or place where the road ends; distance indicates the distance between 

the start point and the end point; two way road indicates a two-way road; average speed indicates the 

average speed of vehicles traveling on this road; and waiting time for traffic lights specifies the average 

time vehicles spend waiting at traffic lights. 

 

3.2 Experimental Parameters 

Table 1 shows that the MAPINFO database table stores the following data: road number, road grade, 

road length, and road signal waiting time. Using these parameters and the entropy weight method to 

determine the parameters of the road weight model, we can obtain road weight Formula (19): 

 

𝑊𝑖𝑗 = 0.2423𝐿𝑖𝑗 + 0.26𝑉𝑖𝑗 + 0.2556𝐺𝑖𝑗 + 0.2422𝑇𝑖𝑗 . (19) 

 

The road weight data of the urban road is calculated, and the weight matrix table between any nodes is 

established, as shown in Table 2. 

Table 2 illustrates the weights between any two nodes, with the weight value signifying the strength of 

the relationship between nodes. By analyzing these weights, we can evaluate nodal connectivity strength 

and enable the identification of critical nodal junctions or optimal pathways in transportation networks. 

Due to space limitations, the weight relationship between some nodes is not listed. Therefore, Table 2 

uses ellipsis to mark (...). The weights of each node that arrives at its destination can be queried from 

Table 2. Based on the weights, we can determine the optimal path. This table is used as the basis for 

improving the A* algorithm to select the intermediate segment in the segment estimation process, and is 

called directly by the A* algorithm through the database query. 
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Table 2. Weight table between any two nodes of road 

Nodes\ 

weight 
1 2 3 4 5 ··· 131 132 133 

1 30.7642 15.3821 31.0383 30.8433 44.3543 ··· 134.0918 77.0067 234.6342 

2 15.3821 30.7642 15.6562 15.4612 28.9722 ··· 118.7097 61.6246 219.2521 

3 31.0383 15.6562 29.0064 29.0739 15.5629 ··· 132.3224 75.2373 232.8648 

4 30.8433 15.4612 29.0739 27.022 13.511 ··· 103.2485 46.1634 203.7909 

5 44.3543 28.9722 15.5629 13.511 27.022 ··· 116.7595 59.6744 217.3019 

6 59.584 44.2019 28.5457 29.1388 15.6278 ··· 128.3245 75.3022 232.9297 

7 45.5415 30.1594 14.5032 43.1813 29.6703 ··· 142.367 89.3447 246.9722 

8 32.5458 45.2706 29.6144 58.2925 44.7815 ··· 143.7641 102.1807 257.5353 

9 61.9384 58.1549 42.4987 43.0918 29.5808 ··· 114.3715 72.7881 228.1427 

10 47.7807 60.5055 44.8493 57.2495 43.7385 ··· 128.5292 86.9458 242.3004 

11 16.9218 32.3039 45.2384 47.7651 60.4055 ··· 151.0136 93.9285 251.556 

12 75.7266 71.9431 56.2869 56.88 43.369 ··· 100.5833 58.9999 222.0973 

13 89.8853 86.1018 70.4456 71.0387 57.5277 ··· 86.4246 44.8412 207.9386 

··· ··· ··· ··· ··· ··· ··· ··· ··· ··· 

129 76.322 60.9399 74.5526 45.4787 58.9897 ··· 70.6381 29.3953 192.1521 

130 152.687 137.3049 150.9176 121.8437 135.3547 ··· 29.7988 100.0573 106.4913 

131 134.0918 118.7097 132.3224 103.2485 116.7595 ··· 27.2144 70.2585 121.514 

132 77.0067 61.6246 75.2373 46.1634 59.6744 ··· 70.2585 29.5272 191.7725 

133 234.6342 219.2521 232.8648 203.7909 217.3019 ··· 121.514 191.7725 31.0482 

 

3.3 Experimental Result Analysis 

3.3.1 Quantitative comparison of algorithm efficiency 

When determining the shortest path between the starting and end points, the traditional A* algorithm and 

other extended A* algorithms (like the bidirectional A* algorithm, multi-level landmark based A* 

algorithm, etc.) mainly consider distance. These algorithms will also look into and search some useless 

nodes during the calculation, which will make the algorithm run too long. Road segment length, vehicle 

speed within road nodes, road grade, and traffic light impact are the factors that the algorithm presented in 

this paper uses to create a road weight function. This function generates road weight values, which are stored 

in a database. In the improved A* algorithm, the road weight value of the sorted nodes can be directly sorted 

to obtain the optimal path and reduce the running time of the algorithm. In the experiment, we randomly 

selected five sets of data on the destination to destination distance in the map: 1 km, 3 km, 6 km, 10 km, 

and 15 km. Based on this data, we use algorithm A* and improved A* algorithm for path planning. 

 
Table 3. Time-consuming comparison table of A* algorithm and improved A* algorithm 

Place of departure Destination Distance 

(km) 

Algorithm time (ms) 

Longitude Latitude Longitude Latitude A* Improved A* 

118.7788 32.0545 118.7809 32.0438 1 33 31 

118.7729 32.0613 118.7681 32.0355 3 361 146 

118.7787 32.0587 118.7163 32.0391 6 583 210 

118.7068 32.0019 118.7675 32.0823 10 921 272 

118.7947 32.0993 118.7475 31.9775 15 1640 384 
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To compare the A* algorithm with the proposed algorithm, the effectiveness of the proposed algorithm 

is verified using VB6.0 to write two algorithms. We conduct experimental verification in the WINXP 

system on a 3.1 GHZ main frequency, 2.9 GB memory platform. 

Table 3 demonstrates that the improved A* algorithm exhibits shorter computation times than the 

traditional A* algorithm. This is due to the fact that the traditional A* algorithm usually calculates the 

Euclidean distance between the target point and the current state. The traditional A* algorithm inspects 

and searches for many useless nodes, thereby extending the run time. To show the contrast effect clearly, 

a time-consuming contrast diagram between A* algorithm and improved A* algorithm is established, as 

shown in Fig. 5. 

 

 

Fig. 5. Time-consuming comparison of A* algorithm and improved A* algorithm. 

 

The path planning and travel time of five groups of experimental data are computed using the  

traditional A* algorithm and the improved A* algorithm, respectively, based on the length of road nodes, 

the traffic light waiting time, and the average driving speed of vehicles in Table 1. Since the traditional 

A* algorithm relies solely on distance for path calculations, whereas the improved A* algorithm 

incorporates comprehensive road weights. It can be seen from Table 4 that the improved A* algorithm is 

superior to the traditional A* algorithm in travel time. Especially in the upper distance travel, the 

improved A* algorithm is obviously superior to the traditional A* algorithm. 

 
Table 4. Travel time comparison of A* algorithm and improved A* algorithm 

Place of departure Destination Distance 

(km) 

Algorithm travel time (ms) 

Longitude Latitude Longitude Latitude A* Improved A* 

118.7788 32.0545 118.7809 32.0438 1 2.7 2.7 

118.7729 32.0613 118.7681 32.0355 3 7.4 7.1 

118.7787 32.0587 118.7163 32.0391 6 16.9 15.7 

118.7068 32.0019 118.7675 32.0823 10 21.5 19.3 

118.7947 32.0993 118.7475 31.9775 15 33.6 30.1 

 

3.3.2 Empirical comparison of algorithms 

By comparing the A* algorithm and the improved A* algorithm under the same test environment and 

conditions, the improved A* algorithm is superior to the traditional A* algorithm in computing efficiency 

and time dimension, which proves the effectiveness of the proposed algorithm in considering time cost. 

In order to further verify the practical applicability of the proposed algorithm, this paper selected the No. 

2 taxi from the experimental data, and used the two algorithms to plan and calculate the combined route, 

and obtained the calculation results as shown in Fig. 6. 
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The variations in route selection between the two algorithms are shown in Fig. 6. According to the road 

vector diagram, the driving path of the traditional A* algorithm can be seen as follows: 

55→53→54→126→127→108→109→34→33→32→31→24→9→6, the driving distance is 5.045 km, 

and the driving time is about 24 minutes. The driving path of the improved A* algorithm is: 

55→53→54→126→127→108→109→34→38→28→23→12→9→6, the driving distance is 5.667 km, 

and the driving time is about 21 minutes. In terms of time cost, the algorithm proposed in this paper is 

superior to the traditional A* algorithm, because the traditional A* algorithm only considers the shortest 

path in the path planning process, and does not consider the actual situation of the road. The algorithm 

proposed in this paper no longer takes the distance or time as the basic path planning index. Instead, the 

dynamic road traffic information obtained in real time in the city, such as road length, vehicle speed on 

node roads, road grade and traffic lights in the road, is calculated by the road weight function and its road 

weight value is used as the path planning index to realize the path re-planning after the city taxis share 

the ride. Therefore, the improved A* algorithm turns out to be more efficient in terms of both time 

efficiency and practical application. 

 

  

(a) (b) 

Fig. 6. Comparison of the application effect of two algorithms: (a) road vector map and (b) real map. 

 
 

5. Conclusion 

The network topology of urban roads is constructed by the layer method, an electronic map is 

established, and the urban road network database is constructed. We calculated the road weights of the 

data on the road network database using the road weighting function, combined the improved A* 

algorithm to determine the weight table between nodes and achieved a carpool path planning. 

Using VB6.0 and MAPINFO, we created the urban taxi ride path planning simulation experiment 

platform based on the improved A* algorithm model. According to the simulation results, the suggested 

algorithm can be a useful guide for taxi drivers and carpool passengers when it comes to planning the 

best routes. 

Future studies will further optimize the road weight index and offer a useful reference for carpooling 

passengers by combining the findings of this study with other factors that affect taxi carpooling, such as 

cost, distance, load balance between passengers, etc., to investigate the application of multi-objective 

optimization (e.g., time and cost) or combined objective function. 
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