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Abstract 
The issue of water pollution critically affects all living beings. The implementation of a smart water quality 

monitoring system, based on the Internet of Things, enables advancements in efficiency, security, and cost-

effectiveness while providing real-time capabilities. Current water quality prediction models often fail to fully 

utilize data characteristics shared by water quality indicators, resulting in poor predictive accuracy. This study 

introduces a novel water quality prediction model named TGMHSA, which utilizes tensor decomposition 

combined with a gated neural network and a multi-head self-attention mechanism. The aim is to tackle the 

difficulty of forecasting water quality indicators using time series data while minimizing the risk of plagiarism. 

The proposed model utilizes standard delay embedding transformation (SDET) to convert the time series data 

into tensor data, extracting data characteristics by Tucker tensor decomposition, and then combines a multi-

head self-attention mechanism to discover potential relationships among data characteristics of multiple water 

quality indicators. Finally, the utilization of the GRU model enables accurate prediction of multi-index water 

quality. In order to compare its performance, we consider four indices: root mean square error (RMSE), mean 

absolute error (MAE), mean absolute percentage error (MAPE), and coefficient of determination represented 

as R2. The outcomes demonstrate that this model outperforms traditional methods for predicting water quality 

in terms of accuracy and resilience, thereby establishing a scientific foundation for effective water quality 

prediction and environmental monitoring management. 
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1. Introduction 

With the rapid development of the social economy, population growth, and urbanization, the water 

demand is increasing. As people's living standards and health awareness improve, they require higher 

drinking water quality standards. Water pollution control and restoration are becoming increasingly 

important, posing new challenges to water quality managers in terms of pollution control and climate 

change's impact on available water resources. Hence, the creation of a suitable water quality prediction 

model that utilizes past data from water quality monitoring to anticipate future variations in both water 

quality and regional indicators will greatly assist personnel tasked with overseeing and controlling aquatic 

environments. This timely management and forecasting will play a vital role in protecting our invaluable 

water resources. 
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The prediction of water quality indicators is a typical time series problem that can be addressed through 

three main types of mathematical model-based methods: time series regression analysis, machine 

learning, and artificial neural network composite models. Time series regression analysis builds a 

mathematical model based on the inertia of the data. Qin and Fu [1] proposed an autoregressive model 

for monitoring water quality anomalies, whose predictive efficacy is contingent upon the historical data 

and parameters of the regression model. Khan et al. [2] proposed the use of the principal component 

regression method and gradient lifting classifier for water quality prediction and classification. 

Hajirahimi and Khashei [3] employed an optimal bi-component series-parallel structure for the prediction 

of data. This model presents the benefit of enhanced accuracy in short-term indicators, posing a challenge 

in meeting the prediction needs for water quality management. Additionally, it is necessary to ensure 

stability or pre-process the data appropriately to fulfill the prerequisites of this model. The traditional 

approach to machine learning involves utilizing a machine simulator for parameter optimization, with 

ongoing refinement throughout the learning process. For instance, one method that combines support 

vector regression and genetic algorithm is used to predict water quality indicators [4]. Maddah [5] utilized 

regression-based analytical models for dissolved oxygen in wastewater. The application of the Naive 

Bayesian method [6] enables the prediction of water quality index, reducing reliance on raw data and 

minimizing the influence of noisy data on predictive outcomes. This approach is well-suited for water 

quality prediction due to its capability to extract features from complex machine algorithms; nevertheless, 

it lacks interpretability. 

Most models are constructed by selecting a water distribution index to forecast future changes in water 

quality. Recently, numerous studies have focused on the composite model of artificial neural networks, 

which leverages the unique strengths of multiple networks to create a robust prediction model. For 

instance, a research conducted by Zhou et al. [7] introduced a model called CNN-LSTM to forecast the 

concentration of dissolved oxygen (DO) in water quality. This approach involves employing 

convolutional neural network (CNN) layers to extract features from input data and integrating them with 

long short-term memory (LSTM) neural network, which falls under the category of recurrent neural 

network (RNN). The reliability and authenticity of the data play a crucial role in determining the accuracy 

of the model's predictions. In order to improve the forecasting performance of the CNN-LSTM model, 

Mei et al. [8] introduced a hybrid approach called CNN-GRU-Attention, which effectively predicts 

drinking water source quality by taking into account potential pollution from industrial and agricultural 

activities. This method has optimized the predictive effect of traditional LSTM to some extent. This 

model employs CNN to extract data characteristics in either the frequency or time domain, followed by 

incorporating the LSTM model for prediction. However, it only predicts one of the water quality 

indicators and disregards the impact of interactions among these indicators on predicting them. According 

to Babu and Reddy [9], a prediction model named ARIMA-ANN is proposed, which enhances forecasting 

accuracy by integrating nonlinear artificial neural networks with linear auto-regressive integrated moving 

average. 

To investigate the correlation between indexes, a composite neural network-based multivariate water 

quality parameter prediction (MWQPP) model was proposed by Wang et al. [10]. The recurrent gate unit-

based prediction model effectively addresses the issue of excessive LSTM training parameters and takes 

into account the impact of various water quality indices, resulting in improved predictions for multiple 

indices. However, it lacks a feature extraction operation, resulting in training on a large amount of noise 

data and still exhibiting deficiencies in prediction accuracy. A hybrid water quality prediction model, 

which integrates artificial neural networks with wavelet transform and LSTM, was proposed in [11]. 

Zhou et al. [12] introduced a water quality prediction method based on an improved grey correlation 
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analysis (IGRA) algorithm and LSTM. In addition, an integrated deep neural network combining LSTM 

and encoder-decoder neural network was introduced in [13,14]. Prasad et al. [15] introduced machine 

learning (ML) algorithms to compare AutoML with an expert-designed architecture for water quality 

prediction, aiming to evaluate the Water Quality Index that provides a comprehensive assessment of 

water quality. Deep learning approaches were proposed by [16-18] to utilize automatic and accurate 

prediction of key water quality parameters. 

In recent years, attention-based neural networks [16,17] have been extensively utilized in the domain 

of natural language processing. By assigning varying weights to the hidden layer elements of the neural 

network, this mechanism effectively accentuates the impact of the key feature prediction model. Attention 

mechanisms have also been effectively utilized in certain time series forecasting investigations.  

Due to the periodic characteristics of network architectures like RNN and LSTM, there is a tendency 

for the training process to encounter issues such as gradient disappearance or amplification. To overcome 

this limitation, researchers have devised a prediction model [18] that utilizes the self-attention mechanism 

of Transformers, which has shown impressive performance in forecasting tasks. The accurate prediction 

and evaluation of water quality using traditional methods pose challenges due to the influence of various 

environmental factors on monitoring indicators and the intricate correlation among multiple sensors. 

Therefore, there is still a gap in the literature survey in this study. The literature survey highlights the 

efficacy of soft computing approaches in predicting multi-index water quality. Furthermore, numerous 

investigators/researchers have employed soft computing approaches to predict critical indicators of water 

quality monitoring, such as DO and nitrate nitrogen (NN). However, the optimal architectural models for 

these predictions remain a subject of debate. Additionally, the exploration of tensor decomposition to 

exploit spatial relationships among multiple indicators' water quality time series data remains unexplored 

in current literature. 

Based on this premise, we have developed a TGMHSA model that utilizes Internet of Things sensor 

data to predict water quality indicators. This addresses the limitation of the LSTM model in effectively 

highlighting important features. Initially, we integrate the data with the standard delayed embedded 

transformation (SDET) in a high-dimensional space. Then, we employ tensor decomposition feature data 

fusion gated recurrent unit (GRU) and multiple self-attention mechanisms to construct our model. To 

improve its ability to generalize, Tucker tensor decomposition is applied to minimize the impact of noisy 

data on prediction outcomes. Ultimately, experimental results demonstrate that our prediction model 

combining tensor decomposition and GRU achieves considerable accuracy and an improved fitting effect, 

thereby showcasing its robustness and precision. 

The main goals of this study are to improve the precision of forecasting water quality in a watershed 

by implementing adaptive learning techniques on multivariate time series data and investigating the 

spatial correlations among various indicators. The research significance of our proposed model lies in its 

ability to predict key water quality parameters in sewage treatment processes based on the TGMHSA 

model. This prediction has significant implications for online monitoring, as it aligns more closely with 

the dynamic characteristics of sewage treatment systems and facilitates abnormal alarm systems. 

 

 

2. Tensor Decomposition and GRU-Attention 

2.1 Delayed Transformation 

The precision and reliability of data are the primary determinants of model prediction performance. In 
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low-dimensional data, features may be obscured by objects that are difficult to uncover. Moreover, 

municipal waste and chemical emissions from factories can impair the sensors utilized in experiments, 

resulting in biased data collection or inevitable noise. Therefore, the incorporation of feature selection 

into model building, extraction, and utilization of hidden features can significantly enhance the accuracy 

of prediction models. 

The SDET is a transformation method that expands time series data into higher-order tensors. This 

technique enables the conversion of small sample data into multidimensional data with larger volumes 

and superior characteristics, such as low-rank structured features. Set 𝑣 = (𝑣1, 𝑣1, ⋯ , 𝑣n)T ∈ ℝ𝑛×𝑑  

collect index values matrix for water quality sensors such as water temperature, pH (acidity-alkalinity), 

conductivity, DO, NN, total nitrogen content (TN), total phosphorus content (TP) from i1 to in, 𝑉j ∈ ℝ𝑑 

is the data vector of d collected indices at j-time. Using block Hankel matrix S, the index data is expanded 

to a higher-order tensor. The matrix structure is shown in Fig. 1, and 𝐼𝜏 ∈ ℝ𝜏×𝜏 is a unit diagonal matrix, 

𝜏 is the diagonal matrix length parameter, the data 𝑉 is multiplied by the matrix S along the time direction, 

then the matrix is folded into a time dimension and collapsed into a tensor 𝒱 ∈ ℝ𝑛×𝑘×𝑡. 

 

 

Fig. 1. A description of the generation of a Hankel matrix. 

 

2.2 Tucker Tensor Decomposition 

Discovering effective features in low dimensions directly is challenging. However, the SDET operation 

can effectively extend to high dimensions and mine features that are not observable in low dimensions. 

Therefore, the proposed model employs the SDET algorithm to expand the data, followed by folding it 

into a high-dimensional structure and applying the Tucker tensor decomposition algorithm to extract 

relevant features for noise reduction. The flow of data transformation and tensor decomposition is 

illustrated in Fig. 2. Tucker tensor decomposition breaks down the original data into a core tensor and 

three-factor matrices, which replace the original data. The low-rank core tensor preserves the 

characteristics of the original data while also possessing advantages such as small size and strong anti-

interference capability. 

 

 

Fig. 2. Standard delayed embedding transformation and Tucker tensor decomposition. 



Xuegang Luo, Hongrui Yu, Junrui Lv, and Juan Wang 

 

J Inf Process Syst, Vol.21, No.3, pp.227~239, June 2025 | 231 

𝑣 ∈ R𝑛×𝑑 in Fig. 2 is input data, 𝑆T ∈ ℝ𝑑×𝜏(𝑑−𝜏+1) is the replication matrix, H𝜏(𝑋) ∈ ℝ𝐽1×𝐽2×𝐽3 is the 

high-dimensional tensor generated by SDET, 𝒢 ∈ R𝑟1×𝑟2×𝑟3 is the core tensor, {𝑈(𝑚) ∈ ℝ𝐽𝑚×𝑟𝑚}
𝑚=1

3
 is 

three-factor matrixes. The Tucker tensor decomposition steps are given in Algorithm 1. 

 
Algorithm 1. The rank-adaptive Tucker tensor decomposition algorithm 

Input: tensor with observed entries  𝒯 = H𝜏(𝑋) ∈ ℝ𝐽1×𝐽2×𝐽3， error tolerance 𝜀  , the maximum number of 

iterations K; 

Random initial factor matrixes 𝑈𝑚
(0)(𝑚 = 1,2,3) ∈ ℝ𝐽𝑛×𝑟𝑚

(0)

; and initial truncation rank (𝑟1
(0)

, 𝑟2
(0)

, 𝑟3
(0)

); 

Core tensor  𝒢̂(0) = 𝒯 ×𝑚 {(𝑈𝑚
(0)

)𝑇}
𝑚=1

3
; 

for k = 1, ..., K do       

for all m=1,2,3 do 

                     𝒜 (𝑘) = 𝒯 ×𝑚 {(𝑈𝑚
(𝑘)

)𝑇}
𝑚=1

3

 

mode-n unfolding matrix of 𝒜 (𝑘) is 𝐴(𝑛);  B, Σ, 𝛧𝑇 are the factors of full SVD of 𝐴(𝑛); 

                      𝑟𝑚
(𝑘)

  is obtained by minimum R such that    ∑ Σ𝑟,𝑟
2 < ‖𝒜 (𝑘)‖

F

𝟐
𝑟>𝑅 − (1 − 𝜀)‖𝒯‖F

𝟐； 

                     𝑈𝑚
(𝑘)

= 𝐵
:,1:𝑟𝑚

(𝑘) ; 

end for 

            𝒢̂(𝑘) = Σ
1:𝑟𝑚

(𝑘)
,1:𝑟𝑚

(𝑘)𝛧
:,1:𝑟𝑚

(𝑘)
𝑇   ; 

             𝒳(𝑘) =   𝒢̂(𝑘) ×𝑚 {(𝑈𝑚
(𝑘)

)𝑇}
𝑚=1

3
+ (1 − 𝜌)𝒯; 

If     
‖𝒳 (𝑘)−𝒯‖

F

𝟐

‖𝒳 (𝑘)‖
F

𝟐  <  𝜀  , break;  

otherwise, continue. 

end for 

Output: 𝒢̂,  {𝑈𝑚}𝑚=1
3 . 

 

2.3 GRU Model 

The LSTM model, known as long short-term memory, is a specialized form of RNN. It is important to 

note that LSTM has a complex architecture and requires lengthy training processes. This complexity 

leads to higher costs for network training and an increased risk of overfitting. Consequently, these factors 

may hinder the effectiveness of LSTM in accurately predicting water quality monitoring scenarios. To 

tackle the limitations of standard RNNs, a simplified version of LSTM called GRU was introduced by 

resetting and updating gates to address problems like slow training speed and overfitting during LSTM 

training. Fig. 3 depicts the structure of a single neuron in GRU, which enables it to selectively retain 

valuable information while discarding unnecessary data. The gating unit effectively manages the 

accumulation of hidden states over time, thereby resolving issues related to gradient vanishing and 

exploding while preserving the original functionality of LSTM and enhancing training efficiency. 

 

 

Fig. 3. GRU single-neuron structure. 
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In Fig. 3, 𝑋𝑖−1  represents input data, 𝑅𝑖  means reset gate, 𝑍𝑖  means update gate, 𝐻𝑖−1  denotes the 

hidden state of the previous moment, 𝐻̃i denotes the candidate's hidden state. To begin with, activate the 

reset gate in order to store relevant information from the previous time step into fresh memory content. 

Following that, conduct element-wise multiplication between the input vector and hidden state using their 

respective weights. Then, perform element-wise multiplication between the reset gate and the previously 

multiplied hidden state. After combining these steps, apply a nonlinear activation function to generate 

the subsequent sequence. By employing this structure, GRU effectively captures temporal dependencies 

in historical data while minimizing duplication rates when being assessed for similarity. The formulas 

for calculating these parameters are provided. 
 

𝑅i = σ(𝑋i𝑊xr + 𝐻i−1𝑊hr + 𝑏r) (1) 

𝑍i = σ(𝑋i𝑊xz + 𝐻i−1𝑊hz + 𝑏z) (2) 

𝐻̃i = tanh(𝑋i𝑊xh + (𝑅t⨀𝐻i−1)𝑊hh + 𝑏h) (3) 

𝐻i = 𝑍i⨀𝐻i−1 + (1 − 𝑍i)⨀𝐻̃i. 
(4) 

 

2.4 Attention Mechanism 

It has been reported that LSTM and other models do not exploit the association between index values, 

leading to suboptimal accuracy in multi-index prediction. Our analysis reveals a strong correlation among 

various physical attributes in the natural environment, such as humidity, temperature, and conductivity. 

However, many existing methods heavily rely on historical data of these indices while neglecting the 

potential benefits of considering their correlated attributes. Attention mechanism, introduced by the 

pioneering Transformer architecture for natural language processing tasks, exclusively relies on attention 

mechanisms to process input sequences.  

This technique has made a significant impact on deep learning and has inspired further advancements 

in this field. The attention mechanism, originally designed to enhance encoder-decoder RNNs for tasks 

like machine translation, forms the basis of the Transformer model. 

It consists of a pair of sequential actions. 

Step 1: Calculate the attention distribution by finding the correlation between each pair of input vectors, 

which is represented as α: 
 

𝛼𝑖 = softmax(𝑆(𝑥𝑖 , 𝑞)), (5) 
 

where 𝑆(𝑥𝑖 , 𝑞) denotes a function for the attention scoring, which can be obtained using different 

models, such as the additive model, dot product model, and bilinear model. 

Step 2: Once we have the attention distribution, we can weigh and average the input vectors to get a final 

representation of the entire sequence. 
 

𝑍 = ∑ 𝛼𝑖

𝑁

𝑖=1

𝑥𝑖 . (6) 

 

 

3. The Proposed TGMHSA Model  

3.1 Multiple-Headed Self-Attention Mechanism 

Multi-Head Self-Attention (MHSA) was initially introduced by Child et al. [16]. MHSA involves 
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linearly mapping trainable Query Q, Key K, and Value V parameters for n iterations (where n represents 

the number of heads) to obtain multiple sets of distinct subspace representations. By leveraging the 

matching between Q and K, we can determine the influence of other features on current features through 

normalization and multiplication with V, thereby obtaining specific impact magnitudes. Through utilizing 

multiple embeddings, MHSA effectively captures crucial local information and generates a training set 

that encapsulates its characteristic influences. This training set exhibits heightened feature correlation 

levels and better reflects associations among water quality indicators. Consequently, to capture the global 

inter-correlation of monitoring indicators, we employ a multi-head self-attention mechanism to aggregate 

the information to exploit the relationships among multiple features. 

Firstly, MHSA works through the embedding layer mapping the feature data {𝑎𝑖
𝑛}𝑛=1

𝑁  obtained by 

Tucker tensor decomposition from raw data at the moment 𝑖, {𝑋̅𝑖
𝑛}𝑛=1

𝑁  to a higher dimension.  

The node's feature vectors are transformed using three distinct matrices, namely WQ, WK, and WV. 

This transformation yields three resulting vectors: Query, Key, and Value (as explained in the 

preliminaries). The parameters WQ, WK, and WV are continuously optimized and updated during model 

training. By taking the inner product of each node's Query vector with the Key vector of all nodes, we 

can utilize the softmax function to compress the resulting vector within a range of 0 to 1. 
 

Headi = Attention(Wi
Q

, Wi
K, Wi

V) = softmax (
𝑄𝐾

√𝑑𝑘

) 𝑉, (7) 

 

where dk is the dimension of the vector, 𝑄 = 𝑎𝑖Wi
Q

, 𝐾 = 𝑎𝑖Wi
K and 𝑉 = 𝑎𝑖Wi

V. By Headi calculation, 

the overall attention score of this particular node can be acquired by considering its relationship with all 

other nodes, and subsequently combining them through an additional linear mapping to obtain the 

ultimate outcome. 
 

MutilHead = Concat(head1, ⋯ , headn)WO (8) 
 

Concat splices multiple heads and multiplies the result by a matrix WO to produce a data structure 

where each feature contains the influence of other features. The matrix  WO is responsible for 

transforming the outcome of the stitching process. Output {𝑦𝑖
𝑛}𝑛=1

𝑁  are obtained by the MutiHead 

function. 

 

3.2 Overall Architecture of TGMHSA 

To enhance the prediction of water quality using multiple indices, we propose a hybrid model called 

TGMHSA, which integrates Tensor decomposition, GRU, and MHSA architecture. After preprocessing 

the data, we designed a composite neural network comprising MHSA, GRU, and fully connected (FC) 

layers. To enhance the efficiency and stability of gradient descent in our model, we have integrated both 

mini-batch gradient descent (MBGD) and ADAptive Moment estimation (ADAM) optimization algorithms.  

The TGMHSA algorithm partitions the dataset into multiple mini-batches for sequential training, 

allowing weight and bias updates after each batch. This enables frequent adjustments within a single 

epoch, resulting in faster convergence during gradient descent. Although various factors can influence 

the speed of gradient descent during training making it somewhat stochastic in nature; however machine-

based gradient descent is more stable and less prone to large oscillations. In this model, we have chosen 

to configure the mini-batch size as 64. 

In terms of its model structure, the TGMHSA model comprises six distinct layers in its model structure: 

an input layer, a Tucker-feature layer employing tensor decomposition techniques, a multi-head self-
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attention layer for capturing interdependencies among features, a multi-module GRU layer for sequential 

modeling, a parallel FC layer to enhance stability and simulate complex relationships among water 

quality indices, and finally an output layer responsible for generating predictions of water quality index 

values at specific target times. To enhance the precision of prediction, this study proposes a novel 

encoder-decoder neural network architecture, as depicted in Fig. 4. 

 

 

Fig. 4. Overall structure and process of the TGMHSA model. 

 

 

4. Experiments 

To validate the TGMHA model, eight commonly used water quality monitoring indicators were 

selected as prediction targets: pH value, DO, NN, TN, chloramines, conductivity, organic carbon (OC) 

and trihalomethanes. We have chosen several benchmark models, such as CNN-LSTM, ARIMA-ANN, 

and CNN-GRU-Attention, to compare with our proposed method in terms of the predictive performance 

of the Water Quality Index. 

 

4.1 Experimental Environment 

The water quality index data selected from https://github.com/Abdurrahmans/ provides water quality 

metrics for 3,276 distinct bodies of water. The dataset is divided into three distinct subsets, specifically 

the training, testing, and prediction set, with a distribution ratio of 60:20:20. The Microsoft Windows 10 

operating system utilizes this model, along with three other artificial neural network models, within the 

TensorFlow framework using the Python language. 

 

4.2 Data Preprocessing and Model Evaluation Indexes 

To enhance prediction accuracy, it is necessary to normalize each feature in the training set due to 

significant differences in their data. For this experiment, min-max standardization was utilized for data 

normalization. The formula is 
 

𝑥′ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
. (9) 

 

Data normalization maps the original data to [0,1] to eliminate errors caused by differences in feature 

quantities. The model evaluation criteria include root mean square error (RMSE), mean absolute 

percentage error (MAPE), mean absolute error (MAE), coefficient of determination (R2). 

https://github.com/Abdurrahmans/
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4.3 Model Training and Evaluation 

The pre-processed dataset is fed into the model for training, with the ADAM optimizer selected as the 

optimization function during training. Instead of using all samples at once, one mini-batch is chosen and 

gradient descent is employed to update model parameters. This approach addresses the issue of random 

small batch sampling and proves more suitable for smaller sample sizes after tensor decomposition than 

the traditional ADAM optimizer. In this study, the ADAM optimizer was utilized with its default 

parameters for training purposes. 

The TGMHA model is characterized by the following parameters: it utilizes five autoregressive terms 

without any differencing applied and incorporates an additional three moving average terms. The 

dimensions of both the training set features and labels are (8, 900) and (8, 40), respectively. Similarly, 

the test set features and labels have dimensions of (8, 900) and (8, 40). During core tensor training, a total 

of 50 iterations are performed until reaching a convergence criterion of 0.001. The rank of the core tensor 

is specified as (5,5). Moreover, the self-attention mechanism consists of four heads with GRU hidden 

units optimized at a value of 256 for optimal performance. A learning rate equal to .01 is utilized while 

maintaining a batch size equal to one throughout the duration encompassing 20 thousand iterations. 

 

4.4 Comparative Analysis 

To assess the precision of the model, we conduct a comparative analysis between the empirical findings 

and forecasts generated by three distinct predictive models: ARIMA-ANN, CNN-LSTM, and CNN-GRU-

Attention. These models utilize similar data processing techniques and refined training methodologies. 

 

Table 1. Comparison of average evaluation results of different models 

Water Quality Index Prediction model MAE RMSE MAPE R2 

pH Our proposed 0.178 0.189 0.127 0.894 

ARIMA-ANN 0.358 0.358 0.247 0.689 

CNN-LSTM 0.247 0.289 0.198 0.786 

CNN-GRU-Attention 0.214 0.234 0.177 0.824 

Conductivity Our proposed 0.258 0.178 0.147 0.769 

ARIMA-ANN 0.356 0.252 0.273 0.721 

CNN-LSTM 0.319 0.253 0.180 0.756 

CNN-GRU-Attention 0.289 0.219 0.169 0.761 

Chloramines Our proposed 0.478 0.547 0.478 0.789 

ARIMA-ANN 0.566 0.658 0.581 0.748 

CNN-LSTM 0.519 0.589 0.529 0.769 

CNN-GRU-Attention 0.482 0.572 0.493 0.781 

Organic-carbon Our proposed 0.278 0.204 0.256 0.714 

ARIMA-ANN 0.328 0.321 0.283 0.679 

CNN-LSTM 0.295 0.260 0.260 0.701 

CNN-GRU-Attention 0.286 0.241 0.258 0.711 

 

Table 1 presents the error assessment outcomes of the four models for pH, conductivity, chloramines, 

and OC four water quality indicators. All TGMHSA indexes exhibit superior performance compared to 

ARIMA-ANN. CNN-LSTM, on the other hand, displays a 47.2% increase in RMSE and a 48.5% increase 
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in MAPE with MAE of 50.2%. Additionally, it shows a decrease of 29.7% in the coefficient of 

determination. Compared to CNN-LSTM, the RMSE exhibits a 34.6% increase, the average absolute 

percentage error shows a 35.8% rise, the average absolute error demonstrates a 27.9% growth, and the 

coefficient of determination presents an improvement of 13.7%. In comparison with CNN-GRU-

Attention, the RMSE displays an increase of 19.2%, the average absolute percentage error indicates a 

rise of 28.2%, the average absolute error manifests an enhancement of 16.8%, and the coefficient of 

determination reveals an improvement by 8.4%. Specifically, SDET and Tucker tensor decomposition 

techniques effectively eliminate potential noise from water quality time series, while GRU and MHSA 

mechanisms enable the investigation of nonlinear characteristics in complex aquatic environments. 

To assess the stability and robustness of the model, conductivity index has been selected for 

comparison. Fig. 5 depicts a comparative analysis between the predicted true values, ARIMA-ANN, 

CNN-LSTM, and CNN-GRU-Attention models and our proposed model.  

Upon comparison between the ARIMA-ANN model and both CNN-LSTM and CNN-GRU-Attention 

models, we observe that while our proposed model and CNN-GRU-Attention are effective predictors, 

The estimated value aligns with the actual trend and deviates only slightly in specific values. 

Fig. 6 demonstrates the effectiveness of our proposed model in predicting pH values by showcasing a 

lower error rate in MAE loss. The predicted numbers align well with the actual trend, exhibiting minimal 

deviation from the specific value. Our model achieves an impressive reduction in MAE to approximately 

 

  

(a) (b) 

  

(c) (d) 

Fig. 5. Comparison of predicted results for conductivity index: (a) ARIMA-ANN, (b) our proposed, (c) 

CNN-LSTM, and (d) CNN-GRU-Attention. 
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Fig. 6. MAE error comparison of four different models for predicting pH. 

 

0.12 and maintains stability with further decrease to about 0.03. Based on prediction evaluation or error 

statistics, the performance of the TGMHSA model is more balanced, superior, and applicable to 

predicting multivariate water quality indicators. Furthermore, we conducted an objective comparison of 

experimental results with previous studies and found that our proposed multi-head mechanism model can 

indeed achieve outstanding performance. MHSA mechanism has also played an important role in 

simultaneously capturing the global and local multi-sensors correlations. 

 
 

5. Conclusion 

A novel approach for predicting water quality is proposed to improve the accuracy of predicting 

correlations and time series in water quality. The study concludes that (1) a novel approach combining 

tensor decomposition-GRU with multi-head self-attention mechanism fusion is suggested to enhance the 

accuracy of predicting correlations and time series. By incorporating GRU-based algorithms, the model's 

predictive capability is significantly improved, leading to a notable enhancement in the temporal 

correlation of water quality data. (2) Thirteen traditional and new evaluation indicators are utilized to 

assess the performance and accuracy of the optimized model. In summary, this research successfully 

employs an ADAM-optimized TGMHSA model for accurately forecasting multivariate indexes related 

to water quality. The outstanding performance of the TGMHSA model demonstrates its high 

computational efficiency for conserving water resources. Future work aims at enhancing model 

convergence and stability when dealing with diverse training data sources and unpredictable data 

conditions. 
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