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Slicing-Based Resource Optimization in
Multi-Access Edge Network Using Ensemble
Learning Aided DDPG Algorithm

Yu Gong, Yifei Wei, F. Richard Yu, and Zhu Han

Abstract—Recently, the technological development in edge
computing and content caching can provide high-quality services
for users in the wireless communication networks. As a promising
technology, multi-access edge computing (MEC) can offload tasks
to the nearby edge servers, which alleviates the pressure of
users. However, various services and dynamic wireless channel
conditions make effective resource allocation challenging. In
addition, network slicing can create a logical virtual network
and allocate resources flexibly among multiple tenants. In this
paper, we construct an integrated architecture of communication,
computing and caching to solve the joint optimization problem of
task scheduling and resource allocation. In order to coordinate
network functions and dynamically allocate limited resources,
this paper adopts an improved deep reinforcement learning
(DRL) method, which fully jointly considers the diversity of user
request services and the dynamic wireless channel conditions to
obtain the mobile virtual network operator (MVNO) maximal
profit function. Considering the slow convergence speed of the
DRL algorithm, this paper combines DRL and ensemble learning.
The simulation result shows that the resource allocation scheme
inspired by DRL is significantly better than the other compared
strategies. The output of the result of DRL algorithm combined
with ensemble learning is faster and more cost-effective.

Index Terms—Content caching, deep reinforcement learning,
ensemble learning, multi-access edge computing, network slicing.

I. INTRODUCTION

N recent years, smart devices and mobile users of wireless
communication have been exponentially growing. The con-
tinuous development of mobile networks, wireless technology
and the Internet of things (IoTs) have brought us a variety
of powerful multimedia services and mobile applications.
The fifth generation (5G) network provides a completely
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new vision of mobile networks, and contributes to meeting
the different demands of various businesses. Network slicing
refers to the flexible allocation of network resources. It is
devoted to dividing multiple logical subnets with different
characteristics according to requirements, and these subnets
are isolated from each other [1]. Each end-to-end network slice
that composed of the access network, transmission network,
and core network sub-slices is managed uniformly through the
slice management system. The technology of soft defined net-
work (SDN) and network functions virtualization (NFV) [2],
which are the basis of network slicing will lead the digital
transformation of network infrastructure in the communication
industry. In core networks or traditional cellular networks,
entire systems are designed to support numerous types of
services. However, a virtual wireless network composed with
mobile virtual network operators (MVNO) is dedicated to
one type of services (e.g., video transcoding and map down-
loading), which will give a better user experience. MVNO
mainly focuses on abstracting and virtualizing the physical
resources of the infrastructure provider (InP) into multiple
network slices to satisfy the quality of service (QoS) of the
network slice provider (SP) [3]. The role of MVNO, InP, and
SP can be summarized as follows: 1) MVNO leases resources
such as physical resources and backhaul bandwidth from InPs,
generates virtual resources into different slices according to
different users’ requests, and performs operations leases virtual
resources to SPs. 2) InP that owned the radio resources of
the physical networks (such as backhaul and spectrum) can
operate the physical network infrastructure. 3) SP leases virtual
resources to users for different services and various QoS
requirements.

With the vigorous development of wireless communication
networks and beyond, multi-service network supports a variety
of application scenarios of diverse service requirements, and
consequently generate a huge amount of contents and data [4].
These attractive services and applications heavily depend on
low-latency transmission and high-speed data rates. However,
the long distance between the users and the cloud server as
well as the limited capacity of the backhaul link are significant
challenges for satisfying the low-latency need of wireless
communication networks and massive content delivery [5].
Therefore, with the continuous expansion of the number of
users and the diversification of equipment application require-
ments, MVNO urgently needs to design systems that consist
of QoS and quality of experience (QoE) to provide users with
satisfaction services.
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Multi-access edge computing (MEC) that deployed edge
servers with certain computing resources and caching re-
sources in small base stations (SBSs) is a promising paradigm.
This technique can make full use of the network resources
and satisfy the QoS of users [6]. It is placed part of the
communication, computing and caching resources at the SBS
equipped with the MEC server [7]. Consequently when the
user requests resources, the MEC server can perform the
corresponding tasks in a distributed manner, which will save
backhaul bandwidth. The edge server in SBSs is lightweight
and has limited resources, which compared with the central
base station (BS). Therefore, it is urgent to find feasible re-
source allocation schemes for the computing and caching tasks
requested by users. In addition, 5G technology guarantees the
QoE of users and the QoS of network, but it is still a challenge
to find the optimal scheme to allocate channel resources and
bandwidth in a dynamic environment [§].

To overcome the challenge, as a crucial branch of artificial
intelligence field, deep reinforcement learning (DRL) has the
ability to recognize dynamic environments and has broad
application prospects in solving resource allocation problems.
It is different from convex optimization [9] and game the-
ory [10] (assuming that the conditions of dynamic environment
are fully already known) to solve the problems of resource
allocation. The DRL method can widely solve the problem
of complex resource allocation in the network slicing time-
varying network. Some studies have applied DRL methods
to manage resources, such as Deep-Q-Network (DQN) which
is an effective approach to jointly schedule the resources
for users [11]. DQN is suitable for solving discrete action
space problems. However, the action space in our work is
continuous. Therefore, this paper adopts the deep deterministic
policy gradient (DDPG) [12] method that combines the actor-
critic architecture with deep neural network (DNN) to solve
the resource allocation problem.

Based on the method of DRL, an agent can choose the
optimal action in a fairly complex environment. However,
deep reinforcement learning has few practical applications
in industry, mainly due to the very expensive computational
cost and the black-box nature of its model [13]. In [13],
it is proposed that the solution obtained through deep rein-
forcement learning can be converted into a gradient boosting
decision tree (GBDT) model by the distillation methods that
are widely used in the imaging field. GBDT is a member of
the family of boosting algorithms and it is also a sub-branch
of ensemble learning [14], which is the process of combining
multiple single models to form a better model. It can show the
importance of input parameters as well as calculate the output
more economically and faster in the GBDT model, compared
with the DRL method. Therefore, considering the limitations
of DRL and the high computational cost, this paper proposes
the ensemble learning aided DRL algorithm.

This paper studies the joint problem of edge computing
and content caching, and builds a comprehensive architecture
that is integrated by communication, computing and caching
resources. Furthermore, we put forward a problem that jointly
optimizes the task scheduling and resource allocation. We
weight the QoS of users and the benefit of operator with
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the purpose of maximizing the profit of operator. In order
to coordinate network functions, dynamically allocate limited
resources, and fully consider the diversity of user service
requests and the time-varying state of the channel, we use
an improved DRL method to obtain the MVNO maximized
profit function. The main contributions of this article can be
summarized as follows:

o We propose a model of MEC and caching, which jointly
considers the resources of communication, computing,
and caching. In this model, the SBS can perform com-
putation tasks and deliver caching content, and the BS
equipped with a controller will complete task scheduling
and resource allocation.

o We design a novel profit function to measure the perfor-
mance of MVNO, which takes the revenue of MVNO and
the QoE of users into account. Furthermore, we propose
a joint optimization problem that is used to maximize the
revenue of MVNO by allocating tasks and resources in
wireless communication network.

o We adopt a solution of the edge computing and caching
based DDPG algorithm. This solution considers the di-
versity of services requested by users and dynamic com-
munication conditions between MEC servers and users to
jointly optimize task scheduling and resource allocation
in a continuous action space.

o We use the data set generated by the DDPG algorithm to
train the GBDT model. After training, the GBDT model
can completely imitate the behavior of the DDPG agent
and the output of results is faster and more cost-effective.

The remainder of this paper can be organized as follows. We
review the related works in Section II. The system model is
presented in Section III. We describe the edge computing and
caching scheduling as an optimization problem in Section IV.
And the GBDT-based DDPG algorithm designed to solve the
proposed optimization problem is shown in Section V. Simu-
lation results are proposed in Section VI and the conclusion
is provided in Section VIL.

II. RELATED WORK
A. Research on Slicing-Based Resource Optimization

In academia and industry, there are a large number of
researchers have great interest in studying the applications
of network slicing technology and resource optimization for
MEC systems. Jointly considering the tasks of computation
offloading and power allocation, some studies have proposed
a new framework that combined the MEC system with net-
work slicing. The authors in [15] formulated the problem
as a mixed integer nonlinear programming problem that is
solved by convex optimization method. The authors in [9]
used the Lyapunov optimization technology to optimize the
task of computing offloading and power allocation, which
can maximize the average income of operators. There are
also some studies that solved the problem of computing and
communication resource allocation among multiple tenants.
The problem can be solved by various algorithms such as
the upper-tier first with the latency-bounded over-provisioning
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prevention (UFLOP) algorithm proposed in [16], the convex
optimization used in [17], and the computational load distri-
bution algorithm adopt in [18]. In addition, the authors in [19]
jointly considered communication and computing resources
and used the DQN algorithm to maximize the utility of
MVNO.

The diversification of 5G network scenarios requires effec-
tive allocation of multi-dimensional resources such as commu-
nication, computation, and cache in terms of delay, bandwidth,
and connectivity according to different service requirements.
Therefore, there are a large number of researches have focused
on the resource allocation in network slicing. The works
in [20] and [21] were jointly optimizing caching resources and
communication resources. The studies in [22] and [23] were
jointly optimizing computing resources and communication
resources, which have adopted the algorithm of Q-Learning
and convex optimization respectively. In fact, the integration
and collaboration between communication, computing and
caching resources are the main research direction in the future.
However, most of existing research focus on optimization of
communication and computing, caching and communication
or computing and power allocation. This paper describes a
joint optimization problem of these three resources allocation,
and proposes the DDPG algorithm to maximize the profit
of MVNO while ensuring the QoS of users in our wireless
communication system.

B. Research on GBDT

On the other hand, tree models and neural networks are
like two sides of a coin. In certain cases, the performance
of the tree model is even better than the performance of the
neural network. The authors evaluated the model with the
robot verification system as the opponent in [24], which proved
that the model combined GBDT and neural network have the
best win-rate compared with GBDT-only and neural network-
only. GBDT is one of the best algorithms for fitting the true
distribution among traditional machine learning algorithms.
The authors in [25] proposed that the future travel time can be
predicted based on the information of historical taxi trajectory.
The authors in [26] used the GBDT model to construct the
multi-dimensional basic features with original data to further
improve the prediction accuracy. The risk prediction model
proposed in [27] is based on the combination of GBDT and
logistic, which is used to solve the problem of bad debts of
telecom operators caused by fraudulent account overdraft fees
of some mobile communication users.

In fact, as far as we know, few works apply the GBDT
method to solve the problems of resource allocation, or
even other problems of regression in the communication
systems. The authors in [28] used the DQN algorithm to
effectively solve the problem of resource allocation in the
high-dimensional state. In addition, in order to solve the
problem that DQN is difficult to obtain rewards under low-
delay conditions, a tree-based gradient-enhanced decision tree
is used to approximate the second order cone programming
(SOCP) solution. However, in our system model, the problem
that needs to be optimized is almost impossible to approximate
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Fig. 1. The system model.

the optimal solution through GBDT. The authors in [13] pro-
posed a method that combines GBDT and deep reinforcement
learning. It used XGBoost (usually used as a GBDT model)
to build a model, and proved that the GBDT model has more
than five-fold the speed advantage while performing on par
with deep reinforcement learning agents. We learn from this
idea and apply this method to solve the problem of resource
allocation in our system. The goal is maximizing the benefits
of MVNO.

III. SYSTEM MODEL
A. Network Model

As shown in Fig. 1, we consider that the network consists
of one BS deployed with the controller and several SBSs
equipped with MEC servers for serving multiple users. Users
can request multiple types of services, and different services
can be treated as different slices of the network. Furthermore,
the coverage areas of SBSs are overlapped, so as to ensure that
each user with a service request is associated with an SBS. We
assume that each user with a service request can be associated
with only one SBS in the same time slot.

Let V = {1,2,---,V} represent the set of users and
U = {1,2,---,U} represent the set of SBSs. The services
requested by users can be divided into computation offloading
and content delivery. We assume that the request packets have
flags, which can distinguish the service types of different
services [29].

Let N = {1,2,---, N} represent the set of users that request
computation offloading and M = {1,2,---, M} represent the
set of users that request content delivery. We assume that the
user can only admit one service request at the same time,
so that the number of users requested service can be defined
as N+ M = V. In addition, S = {1,2,---, S} represents
the set of SPs. For each SP s, allocated with user v can be
regarded as a set that is defined as Vy, where V = U,V and
VeNVy =0,Vs' # s.

Table I list the main parameters in this paper.

B. Communication Model

There are k users omit request service SP s, so the
set of users that omitted service s can be represented as



TABLE I
THE PARAMETERS OF THIS PAPER.

Definition

v The set of users

u The set of SBSs

M The set of users requested computation offloading task
N

S

Parameters

The set of users requested content delivery task
The set of SPs

Vs, The user v omitted request service SP s

Qvg, u The task established indicator between user vs, and SBS u

vak u The subchannels allocated to user vs, from SBS u

Fvsk u The average SINR between user vs, and SBS u

T, u The data transmission rate between user vs, and SBS u

o2 The additive white Gaussian noise

vak The transmission power of user vs,,

hvsk u The average channel gains between user vs, and SBS u

By The spectrum bandwidth which allocated to SBS u

D'Usk The input-data size of the computation task requested by
user vs,,

X v, The computing ability of the computation task requested by
user vs,,

quk u The computational capability of SBS wu assigned to user vs,,

ey The energy consumption at SBS u per CPU cycles

Rmk u The computation rate between user vs, and SBS u

Ev% u The total energy consumption between user vs, and SBS u

during the computational task
Fy The computing capability allocated to SBS
The caching content capacity of user vs,
The expected saved backhaul bandwidth between user vs,,
and SBS u by caching content

Py The probability of the content F’
The time durations of user vs, to download the required

content from SBS w via the backhaul
Cu The caching space allocated to SBS u

/\”Sk u The virtual network access fee of users vs, charged by
MVNO, is AU%’“ per bps
Bovg, u The spectrum usage cost at SBS u, paid by MVNO, is
Hug, ,u per Hz
¢”sk u The fee of computation offloading of user vs, , charged by
MVNO, is qbvb,k ,u per bps
@USk u The price of computation energy at SBS u, paid by MVNO,
is <I>v5k,u perJ
wUSk u The fee of content delivery of user vs, , charged by MVNO,
is 4y, u per bps
\IIUSIc u The price of the gains of the expected saved backhaul
bandwidth at SBS w, paid by MVNO, is ‘IJUSk u per byte
Ot The TD errors )
0 The discount factor
wt The parameter of value function
0+ The parameter of policy
Qu, g The learning rate of critic and actor
T The soft update parameter
By A Two typical hyper-parameters

Vs = {vs,,Vs5, ", Vs, }. Regard ay,,_, as the task established
indicator, where Ao, u = 1 denotes that user v requests the SP
s and associates with SBS wu; otherwise Ao, 0 = 0. Specially,
each user can be associated with only one SBS, which is
defined as ZueUaUSk,u =1,Vs € §,Vu,, € Vs.

The total spectrum bandwidth of all SBSs can be defined
as B, which is B = ) B,. B, represents the spectrum
bandwidth allocated to SBS wu. Practically, the bandwidth of
SBS B, Hz can be divided into B, /B subchannels, and the
subchannels allocated to user vy is b,, . € {1,2,---, B,/B}.
Therefore B, can be denoted as

Usps

ESESEU‘%GVsavSk,ubvsk,uB S Buavu S ua (1)

where b,, 8B is the allocated bandwidth from SBS u to
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user vs, .

We assume that SBSs belong to different InPs, so that
the licensed spectrum of each InP is orthogonal. Therefore,
there are no interference between different SBSs. However,
there exists interference between users that belonged to the
same SP and connected to the same SBS. The average signal-
interference-noise ratio (SINR) between user v, and SBS u
can be defined as

Py, hy, u

Vs
2
Zie/c,i;ﬁk P”si hvsi sU to

where P, ~ and P, represent the transmission power
of user vs, and user vs,, respectively. hvb,k,u and hvsi u
are average channel gains. o2 is additive white Gaussian
noise (AWGN).

Furthermore, the rate of data transmission between SBS «
and user v;, can be calculated by the Shannon theory, i.e.,

Blogy(1+T,, ). 3)

The quasi-static assumption have be used in this paper, which
means that the state of the environment remains unchanged
within the time slot ¢.

2

Fvsk u =

Tvgyu = bvsk )

C. Computing Model

The computing task of user vs, can be described as
Jo,,, = {Dwv,,, Xv,, }, where D, represents the input-data
size (bits) and X, represents the computing ability (i.e.,
the total number of CPU cycles to compute the task) of the
computation task requested by user v, . In addition, fku is
the computational capability of SBS u assigned to user v,
(i.e., the total number of CPU cycles per second) [30].

Therefore, the total execution time of computational task
vak at SBS u can be calculate by tvSk_,u = Xvsk /kau The
computation rate which is quantized by the amounts of bits
per second can be easily obtained by

DvslC Dvskfvsk,u.

R’U = =
s oW
k tvsk U X

Vs,

“4)

The total consumption of energy during computational task

Ju,, can be represented as

By, u=euXo,, (5)
where e, represents the energy consumption at SBS u per
CPU cycles.

Moreover, the computing ability is limited at each SBS, i.e.,
ZSESZUSkEVsavSk,ufvsk,u S Fu7vu S Z/[7 (6)

where F,, is the computing capability allocated to SBS u.
Practically, the total computing capability of all SBSs can be
defined as F, whichis FF =) F,.

D. Caching Model

The caching task of user v,, can be described as ¢, . In
this paper, it is assumed that the storage of SBSs is limited
which can store only F' type popular contents. Therefore,
the set of cached content can be regard as library, i.e.,
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F ={1,2,---, F} [29]. Without loss of generality, the number
of contents is always F'.

The probability of the content F' requested by user obeys
the Zipf distribution [31], which is modeled as

_ oy
Yo 1

where parameter ¢ indicates the popularity of content, and it is
always a positive value. In our caching model, the popularity
of content can be directly calculated from the formulation if
the content caching task omitted by the user has been known.

In addition, vau is the time to download the required
content through the backhaul. Therefore, the expected back-
haul bandwidth savings obtained by caching content can be
expressed by

Py Vf eF, (7

Cvsk,upvsk,u

T, . ®)
s>

Gu, PR
where p,,, ., can be calculated directly by (7).

In general, the content cached with a lower degree of
popularity will be cost higher price. In other words, some of
this content may not be cached in the SBS because it doesn’t
make any sense. Actually, many scholars have studied the
pricing of caching systems [32]. In our work, we consider
a caching strategy which the prices of different contents are
already known.

Moreover, the caching space is limited at each SBS, i.e.,

€))

where C,, is the caching space allocated to SBS u. Practically,
the total caching space of all SBSs can be defined as C', which
isC=>,0C,.

YsesXv,, eV, v, ulv,, u < Cu,Vu €U,

IV. PROBLEM FORMULATION

The profit function has been defined in this section and it is
used to calculate the total profits of MVNO. In order to max-
imize the profit function, this paper designs the optimization
objective that jointly considers the resource allocation and task
assignments to maximize the system performance such as the
utility of MVNO.

A. Profit Function

Particularly, the resource consumption that consists of com-
puting, caching and communication is considered in this paper.
The virtual network access fee charged by MVNO from
users Vs, is Ay, ,u per bps. After paying the fees to MVNO,
the user has the right to access the physical resource and
complete the task. On the other hand, MVNO also pays the
usage of spectrum which is f., ., per Hz for InPs. If the task
user requested is computation offloading, MVNO may charge
the fee of d)v% - per bps from users v, . Meanwhile, MVNO
will pay the computation energy cost that can be defined as
Py, . per J for SBS w. If the task is caching delivery, MVNO
may charge the fee of ¢, ., per bps. Meanwhile, MVNO will
pay the price of caching at the SBS, which is defined as ¥, ,,
per byte for SBS wu.

So the profit function between user vs, and SBS u for the
potential transmission can be defined as

Uvsk U :avsk ,u(Avsk ,urvsk u /’L’Usk ,ubvsk 7“8)
+ a’vsk 7u(¢vsk 7uR’U5k u (P'Usk 7uE'Usk 7u)
+ a’usk,u(wvsk,ugvsk,u - \I"Usk,ucvsk,u)~

The total profits of the MVNO can be divided as three
components, i.e., communication, computation, and caching
proceeds.

1) Communication proceeds: The first term of the above
profit function is the communication revenue. )‘%k ulvg, u
represents the revenue which the user vs, pay for MVNO
to access the virtual networks, and uvswubkul’)’ denotes the
bandwidth spending of MVNO pay for InP.

2) Computing proceeds: The second term of the above
profit function is the computation revenue. (;SUSk,uRUSMU rep-
resents the revenue which the user v, pay for MVNO to
execute the computation task, and <I>U5k7uEU5k7u denotes the
energy consumption spending of MVNO pay for InP.

3) Caching proceeds: The last term of the above profit
function is the caching revenue. ¢y 9o, . represents the
revenue which the user vs;, pay for MVNO to execute
the caching task, and \IJUSk,ucv%,u denotes the spending of
MVNO caching content Co,, u-

B. Optimization Objective

Mathematically speaking, the total profit of MVNO that
renting the three resources can be maximized, by contin-
uously optimizing the task assignment and resource allo-
cation between InP and NSP. Specifically, the communi-
cation proceeds (Avsk,urvsk,u — Hvsk,ubvsk,uB)’ computing
proceeds (¢u,, ultv,, u—Po,, uby,, u), and caching proceeds
(wvswugv%,u — \I!vswucﬂswu) of MVNO are influenced by
the allocation of communication, computing and caching re-
sources. Therefore, the optimization objective of this paper is
to maximize the total profits of MVNO, which is calculated
by

OP : max SN D U, (10
{erSk,wuf'usk,u7cvsk,u} sES’L}SkEVSUEU
s.t.: Cl: Zavsk,uil,VSGS,Usk e Vg,

ueU

C2:> > au,, wbv, u < Bu,Vu el
SES Vs EVs

C3: ) av, ulv, .u> ot Vs € S, v, € Vi,
ueld

C4: Z Z avsk,vsf'usk,u < Fuavu eu,
seS Vs, €V

C5: Z o, ullo,, u > Rf)ik,Vs € S,v,, € Vs,
uel

6 : Z Z Ao, o, u < Cyu,Yu e lU.
seS Vs, €V



Constraint C1 represents that user vs, can only associate
with one SBS wu. Furthermore, C2 reflects that the allocated
bandwidth from SBS u to all users associated with it cannot
exceed the spectrum resource of SBS u. Constraints C3 and
C5 ensure the requirements of each user v,, which consist
of communication rate rcm and computing rate Rvﬁ , respec-
tively. According to C4 and C6, we define that the computing
ability F’, and caching space C,, of each SBS u are limited.

V. PROPOSED SOLUTION WITH GBDT-BASED DDPG
ALGORITHM

Game theory [33] and convex optimization [6] are two
common methods which used to solve the problems of edge
computing and content caching. However, such methods need
to know key factors (e.g., content popularity, dynamic wireless
channel condition), which are unavailable and time-varying in
reality. It is a challenge to guarantee reliable and efficient
data transmissions caused by the diversity of user service
requests. Compared with the above methods, DRL can solve
the problem of high-dimensional and time-varying characteris-
tics, and can utilize deep neural network to allocate resources
efficiently [34].

In order to maximize the total profits of MVNO and
solve the optimization problem that jointly considers the task
assignment and resource allocation, we formulate it as the
stochastic sequential decision problem (SDP). The Markov
decision process (MDP) framework has been used to solve
SDP problem. Reinforcement Learning can be described as
a MDP to find the optimal strategy. Therefore, the above
optimization objective will be described as a reinforcement
learning problem.

A. Definition of Reinforcement Learning

The controller deployed at the BS can be seen as the
agent, which can interact with environment (i.e., collect all
information of the system state) and obtain a reward after
executing action (i.e., make decisions for all requests). The
target of controller is to maximize the reward not as an
immediate return but a long-term cumulative one. The process
to explore the optimal strategy can be regarded as: The agent
observes the state information s; € S at time slot ¢ and then
selects the action a; € A, based on the strategy w(a | )
(indicates the probability of choosing action under the state);
after taking action a., the agent receives the immediate return.
Generally, the target of MDP is exploring a strategy m(a | s)
to maximize the value function, which is usually expressed
by the expected discounted cumulative return calculated by
the Bellman equation [35].

Three key elements which consist of space of state, space
of action and reward in this paper are introduced as follows.

1) Space of state: In our system, the state space concludes
two components that are the available resources of each SBS
u (u € U) equipped with MEC servers and the status of each
user v (v € V). At time slot ¢ the state space can be denoted
as

st = {Fu, By, Cyu, Qp}. an

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 25, NO. 1, FEB 2023

F,, By, and C, represent the available resources (e.g., com-
puting, bandwidth, and caching) of each SBS u (u € U)
equipped with MEC servers. In addition, the status of each
user (), includes the average SINR between the user and
SBS, the input-data size (bits) of the computation task, the
computing ability (the total number of CPU cycles to complete
the task), the capacity of caching, the content popularity and
the requested service type of the user.

2) Space of action: The agent in our system decides
how many network resources will be allocated to the users.
Specifically, after receiving various requests from users, the
system will schedule the resources from the SBS that equipped
with MEC servers. The target is completing the computing
offloading or content delivery task. At time slot ¢, the action
space can be denoted as

ay = {bvsk,ua fvSk,U7cvsk,u} .

vak s fvswu, and Cu,, ,u TEpresents the amount of bandwidth,
computing resources, and caching resources that the SBS
equipped with MEC servers v allocated to user vs, , respec-
tively.

3) Reward: After taking action a., the agent will receive
reward R;. Particularly, the reward should be corresponding
with the above optimization objective function. Thus, the
reward can be defined as

=2 2 D U

SES vs, €V uel

(12)

13)

B. Policy and Value Function

Almost all reinforcement learning algorithms involve evalu-
ating state (or action) value functions to estimate the expected
return for a given state (or action performed in the given
state). In order to calculate the value of strategy m, the state
value function defined by the expectation description can be
represented by

vr(s) =

o0
Z’)’thJrkJrl | St = 31 ) (14)
k=0
where 7 € [0, 1] denotes as the discount factor that is used to
calculate the cumulative reward.

In the Markov decision process, the action value of action a
under strategy 7 and state s is often evaluated, which is defined
as an action value function and expressed as

qﬂ(57a) =Ex

oo
Z’Yth+k+1 | St = S,a+ = a] . (15)
k=0

Value-based reinforcement learning algorithms basically
learn value functions (including action and state value func-
tions), and then select actions according to the obtained
values. The goal of the agent is choosing the action that
can maximize the cumulative reward. The generalized value
function method includes two steps: Strategy evaluation and
strategy improvement. When the value function is optimal,
the optimal strategy at this time is greedy strategy. Greedy
strategy refers to selecting the action corresponding to the
maximum Q-value under state s. Another common strategy is
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€ — greedy, where the agent selects the action corresponding
to the maximum action value function with e probability.

In the value-based learning method, the value function is
calculated iteratively. In the policy-based learning method, the
strategy parameters are directly calculated iteratively until the
cumulative return is the maximum. After that, the strategy
corresponding to the parameters is the optimal strategy. The
role of the value function is to learn the parameters of
policy, not the choice of action. In the policy parameterization
method, 6 is used as the parameter factor of the policy. Then
the probability that the policy function, in state s and select
action ¢ at time slot ¢, can be defined as

m(al|s,0)=P{ar=al| s =s,0, =0}. (16)

The optimal policy 7* can be learned by the method of
policy gradient [36]. Moreover, the actual output of the policy
gradient method is the action probability distribution, so it is
also called stochastic policy gradient (SPG). When the action
is a high-dimensional vector, it is computationally intensive
to sample action for the strategy generated randomly. The
deterministic behavior strategies are directly generated by
deterministic policy gradient (DPG) that is used to solve the
calculation problem caused by frequent action sampling. After
that, each step of the action will obtain a unique deterministic
value through the policy function. It has been proved that de-
terministic policy gradient is a limit form of stochastic policy
gradient through rigorous mathematical derivation in [37].

The deterministic strategy is denoted by py, and the objec-
tive function is the accumulated return obtained by

T () = [ 9(r (s, p0() . a7
s

Combined with the objective function, the gradient expres-
sion of the deterministic strategy gradient objective function
can be obtained by

ds

WNMZ/W@WM@WW@M
s a=po(s)  (18)

= Eswp/‘ {VQMG(S)VaQ#(& a')|ll:pbg(8):| )

where pt is the discounted state visitation distribution of
deterministic policy pu.

C. Deep Deterministic Policy Gradient Algorithm

The DDPG algorithm is combined the idea of DPG with
actor-critic. The update rules of the three main parameters
involved in the algorithm are as follows:

0p = e + Q% (8441, po(st41)) — Q% (54, a4), 19)
W1 = Wt + 00 Vo, Q¥ (54, ar), (20)
Orr1 = 0r + @gVopo(st)VaQ“ (st, 0t)la=pg(sr), 2D

where J; denotes temporal-difference (TD) errors. wyy1 and
0:+1 represent the parameter of value function and policy,
respectively. o, and g denotes the learning rate of critic and
actor, respectively.

The method of value function approximation is used to
update the parameters of J; and w41, and the parameter of
policy 6,1 is updated by the deterministic strategy gradient
method.

The DDPG algorithm is based on the actor-critic struc-
ture: the actor uses the deterministic policy gradient method
to learn the optimal behavior strategy; the critic uses the
Q-learning method to evaluate and optimize the action value
function. The two functions are fitted by the convolutional
neural network, and the samples need to be independently
and identically distributed. However, the samples generated in
reinforcement learning are collected sequentially and have the
Markov characteristics. Additionally, it is important to learn in
mini-batches, rather than the online manner [12]. In the DQN
algorithm, the replay buffer is used to solve these problems.
Inspired by the advantages of DQN, the DDPG algorithm
applies experience relay and target network (Target-Q) to
improve the stability of convergence.

1) Experience replay: The agent obtains the data tuple
(st, at, T, St+1) by interacting with the environment and stores
it in the experience pool (replay buffer). When the actor and
critic networks need to be updated, minibatch sampling is per-
formed from the experience pool denoted as (s;, a;, T, Si+1)-
If the amount of data stored in the experience pool reaches
a peak, the old data will be automatically discarded. DDPG
is an off-policy algorithm, and so the replay buffer should be
sufficiently large to achieve as far as possible that the samples
selected during the update process are completely irrelevant.

2) Target network: There exists two target networks in
DDPG, corresponding to the actor and critic. Different from
the parameter update mode of the Target-Q network in DQN
(the value network parameters are directly copied after a
fixed interval), DDPG adopts a soft parameter update mode.
Assuming that the parameter of the actor target network is
6" and the parameter of the critic target network is 6<". The
parameter update rule in soft mode is:

0" 70"+ (1— 7)o",
09 769 + (1 - 7)6%,

(22)
(23)

where 7 is the soft update parameter and the condition 7 < 1
improves the training stability.

This parameter update method is similar to supervised
learning, which can greatly improve the stability of learning,
but the problem is that the update speed is slow.

D. Gradient Boosting Decision Tree Algorithm

Gradient boosting machine (GBM) is a very commonly
ensemble learning algorithm. It can be regarded as a gradient
enhancement framework composed of various classifiers or
regressors or regarded as a collection of basic estimators. The
basic estimator such as naive Bayesian estimators, K-nearest
neighbor and neural network can be fitted to GBM [28]. It is
worth mentioning that the better the basic estimator, the higher
the system performance.

There are many types of GBM, the most classical is GBDT
that is based on decision trees. GBDT is an iterative deci-
sion tree algorithm that is very different from the traditional



Adaboost algorithm. The authors in [38] proposed a scalable
end-to-end tree boosting system which is called XGBoost. It is
an improved GBDT algorithm. In particular, GBDT only uses
the information of the first-order derivative in optimization,
while the XGBoost algorithm uses the first-order and second-
order derivatives to perform a second-order Taylor expansion
of the cost function. In addition, a regular term contained the
number and the score function of each tree leaf nodes is added
to the cost function and it can control the complexity of the
model.

In our framework, we use the improved GBDT algorithm
which is applied to regression tasks. Given a dataset of n
samples. The dataset can be represented as

D = (zs,y:)(|D| =n,z; e FUBUCUQ,y; € R), (24)

where z; expressed as the state space [F}, Fy,- -+, Fi; BY, B,
Bl Oy Oy O 0 0, -+, Q8] of our system model.
y; represented as the solution according to the reward function.
The model of tree ensemble uses the K additive function

to predict the output, which is expressed as

K
9i =Y ful(@i), fr € F, (295)
k=1
where F represents the space of CART trees.
We need to minimize the regularized objective function to
learn the function set of the model, i.e.,

L(®) = Zi Ui yi) + Zk Q(fr),

where g, represent the predicted value and y; is the true target
value corresponding to the reward function. Here the first term
of the differentiable convex function L predicts the loss of the
model, which is used to measure the gap between the true
profits and estimated profits of MVNO. The second term of
the function is a regular penalty that limits the complexity of
the model.
The penalty function can be calculated by

(26)

1
Qf) = BT + A [l @7)

where T' represents the number of leaves and w denotes the
weight owned by each leaf in the tree. There exists two typical
hyper-parameters: 3 and .

Equation (25) is difficult to optimize, and we add f; to
minimize the objective function, i.e.,

L® — Zl (yivgft_l) + fi (lz)> +Q(f). (28)
i=1

We take the second-order approximation to quickly optimize
the objective in the general setting, i.e.,

REDS {l (5 570) g1 () + his? <xi>} +Q(f),

i=1
(29)
where g; is a gradient of the loss function and h; is the second
step of the loss function.
The scoring function used to measure the quality of a tree
structure is omitted in this article, and the reader can check
the reference for the specific derivation [27].
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The final prediction result of GBDT is a linear combination
of K regression trees, represented as

K K
F@) =" fu@) = fo(@) + > Oudrl(x),  (30)
k=0 k=0

where fo(x) is the initial predicted value, and ¢y (x) and 6y,
respectively, represent the base estimator and its corresponding
weight.

E. Gradient Boosting Decision Tree Based Deep Deterministic
Policy Gradient Algorithm

In this subsection, we show how to use the previously
defined states, actions, and rewards to apply the GBDT-based
DDPG scheme to the joint consideration of real-time wireless
communication network task allocation and resource allocation
to maximize the profit.

In our system, the environment includes one BS, several
users, and some SBSs equipped with MEC servers. The agent
in this paper is a controller deployed at the BS, which is
devoted to outcropping the optimal actions and sending the
actions to users and MEC servers. After that, we can get the
state space that is composed of a lot of dynamic environment
information and the space of action containing numerous
continuous values. So the DDPG algorithm in this paper is
used to maximize the reward function. However, the DDPG
approach employs the neural network to evaluate and select
actions. Compared with the tree model, the neural network
is more complex and it is more difficult to obtain the reward
function. Therefore, we combine the DDPG algorithm with the
GBDT model, which can accelerate the rate of convergence
and achieve accurate estimation.

As shown in Fig. 2, the framework of the GBDT-based
DDPG method is consist of two parts. In the left side, it is de-
scribed as the DDPG framework, which is composed of actor
network, critic network, and replay buffer. In addition, both
actor and critic network consist of two DNNs that are used to
select actions (i.e., online network) and evaluate actions (i.e.,
target network). Specifically, the agent observes the next state
in the environment after selecting an action and immediately
receives a reward. After the step, the DDPG approach will
create a demo which is used to pre-train by the GBDT model,
which is shown in the right side. In our framework, we use the
GBDT regression for pre-training through the DDPG approach
to reach the same level of accuracy as the DRL agent.

The algorithm of GBDT-based DDPG consists of two steps
that are creating demos with the DDPG approach and using
a demo which created by the algorithm to train the GBDT
model.

1) Creating demos with the DDPG approach: It is obvious
that the training speed of the GBDT model is very fast.
However, it cannot learn directly from the environment. DDPG
approach can solve the problem that the agent can obtain the
maximum return or achieve specific goals through learning
optimal strategy in the continuous process of interaction
with the environment. However, the GBDT model that is a
kind of supervised learning requires correct labels from the
environment. Therefore, in our model, we first create an agent
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Fig. 2. The GBDT-based DDPG scheme.

through DDPG, and then create a demonstration that contains
environment and output reward information. The input data
consists of the parameters of the system model (¥, B,, and
C,,) and the parameters of each user €2, that include the SINR,
the computing ability, the capacity of caching, the content
popularity, and the service type requested by the user. The
output data includes the amount bandwidth resources bvsk,u’
computing resources fv% ~u» caching resources Cu,, s and the
total utility of MVNO. The algorithm of the first step is shown
in Algorithm 1.

2) Training the GBDT model using a demo created by
DDPG: We use the demo created by DDPG, which consists
of environment state, agent action, and reward. Therefore,
through continuous training, the GBDT model learns to get
the maximal reward for the given environmental information,
with the goal of achieving the same level of accuracy as the
DRL agent. The algorithm of the second step is shown in
Algorithm 2.

VI. SIMULATION RESULTS

This paper uses the environment of Python 3.6 and Tensor-
Flow 1.12.0 to simulate and evaluate the performance of the
proposed algorithm. In our system, the request of users can
be consisted of computation offloading and content caching,
and so we set the service-type flag which are “computation
offloading request” and “content caching request”. We will
randomly choose NN users which set the “computation of-
floading request” flag, and the other M users are set as the
flag of “content caching request”. Notably, each user has an
unique fixed service request type at each time period t. In

Algorithm 1 Creating demos with DDPG

1: Initialize the parameters 0# and 0%; u(s]0*) and Q(s, al0%) of
the primary network;

2: Initialize the parameters 0% « 0 and 09" + 02 of the target
network;

3: For each episode do

4:  Set up the environment of the wireless communication network;
5:  [Initialize a random process A for action exploration;

6:  Receive initialize observation state si;
7
8
9

For each time step ¢ do
Based on p(s|6#) and state s¢, execute the action at;
Observe next state s;+1 and the reward Ry;

10: Store the tuple (s¢, at, R¢, St+1) into replay buffer;
11: From the replay buffer, sample a mini-batch of tuples;
12: Compute the target value:

yr =R (st ar) + Q' (5141, (1) (se41(07)105):

13: Minimize the loss function to update % :
Ls(0Q) = E [(ye — Q(st, at|0g))?]:
14: Use the sampled policy gradient to update p(s|60#):

Ve,,J ~E [an(s’aleQ)|S:St,a:7\'(3t) Vo ﬂ'(slgﬂ')lszst];

15: Update the parameter of target networks:

O = Ok 4 (1 — 7)o",
09 « 709 + (1 — 7)09".

16:  End For
17: End For

this paper, we have selected three types of slices: Bandwidth-
oriented, computation-oriented, and cache-oriented. In addi-
tion, bandwidth-oriented slice refers to services with high
bandwidth requirements; computation-oriented slice refers to
computation intensive services and cache-oriented slice refers



Algorithm 2 Training the GBDT model

Initialize

: Set the iteration counter m 7 0, and initialize the additional
predictor which starting value is fl0, e.g., fIO] .= ( )i=1,...,n. And
specify the set of base-learners which is h1 (:1:1) “y hp (xp);

Until m = mstop do
Fit the negative gradient:
2:Setm:=m+1;
3: Calculate the negative gradient vector u of the previous iteration
loss function, which is:

= |m\ i=1,-.m = 1y Flm—1
Wi = (= bt Dl imriy)

4: Fit the negative gradient vector ul™! to each basic learner
separately:

ulml

u‘m| base—learner m
%

(x;) for j =1,-

Update the component:
5: Select the component j*
gradient vector:

¥ =arg, mm Z Iml _

that is most suitable for the negative

Im\

(1))

6: Update the component of additional predictor f which is:

Frmy =

In practice, the parameter sl is a small step length (0 < sl < 1)
and the typical value of it is 0.1.
done

Fr=U0) + st - E‘JT' (zj+).

to users that have a large number of tasks that need to be
cached. Each slice involves the allocation of three resources.
The goal of this paper is to jointly optimize three network
resources in these three types of slices.

The total spectral bandwidth of system is set as
B = 100 MHz, which can be divided into 1,000 subchannels
and the bandwidth of it is B = 0.1 MHz. Without loss of
generality, the value of SINR in our system can be quantized
into five levels, which is {3,7,15,31,63}, where the value
equal to 3 represents very bad wireless channel and the value
equal to 31 represents very good wireless channel [39]. In fact,
many scholars have already studied the request rate of caching
content. Since this article adopts a constant request rate, mod-
eling the request rate of caching content is beyond the scope
of this article. Therefore, the Zipf popularity distribution p
is set as the constant which is 0.68.

In order to increase stability of our system, we set two
separate target networks, i.e., actor and critic. The learning
rate of the actor and critic networks are set as ay = 0.001
and o, = 0.001, respectively. The soft update parameter 7 is
set as 0.01. In order to train the DNN, we set the values of
experience replay buffer and mini-batch to 1,000 and 32. The
values of the rest parameters are summarized in Table II.

Three schemes are compared with our proposed
algorithm, which are the DQN approach, the equal resource
allocation (ERA) approach and the random resource
allocation (RRA) approach. In order to implement the
DQN approach, continuous actions in this paper have
been discretized. In addition, two DQN algorithms,
ie., DQN (5-level) and DQN (10-level) indicate that
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TABLE II
PARAMETERS VALUES.
Parameters Value
Slice type S 3
Bandwidth B 100 MHz
Computation capability F’ 100 GHz
Capacity of cache storage C' 100 GB

[200,600] Kb
[100,200] Megacycles

Computation offloading size of each task
Computation capability of each task

Content size of each task [5,125] MB
Communication rate requirement of each user 10 Mbps
Computation rate requirement of each user 1 Mbps
Energy consumption for one CPU cycle 1 J/Gegacycles
Communication charge A1,A2,A3 50, 40,

60 units/Mbps
Computation charge ¢1,¢2,03 100, 80,

90 units/Mbps
Content charge 1,102,103 50, 70,

60 units/Mbps
30 units/MHz

60 x 10~3 units/J
40 units/MB

Price of communication resource Hug, u

Price of computation energy <I>U5k u

Price of the gains of the expected saved backhaul
bandwidth \I]“sk u

9
35210 .
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Fig. 3. Convergence performance of different schemes.

each continuous action is discrete into 5 and 10 levels,
respectively.

The convergence performance of the above-mentioned
schemes is shown in Fig. 3. It is proved that our proposed
scheme is superior to the other comparison methods in terms
of MVNO profit and convergence speed. The DDPG-based
method comprehensively considers three resource allocation
schemes, which can improve the utilization efficiency of
network resources and greatly improve the benefits of MVNO.
As shown in Fig. 3, at the beginning of the training process,
the MVNO profit value of different methods is relatively low.
As the number of episodes increased, the MVNO profit of
the three different methods reached a stable value after 300
episodes. It is worth mentioning that the agents of DDPG
and DQN constantly improve their actions during the first
50 and 70 episodes. After that, the agents of DDPG and
DQN explore the nice action-value function at about 50
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and 70 episodes, respectively. In fact, the convergence of
MVNO profits means that the agent in our proposed system
model can continuously learn to obtain the optimal resource
allocation strategy.

Fig. 4 compares the convergence performance of the
DDPG-based algorithm under different exploration decays.
In fact, the greater the exploration decay, the greater the
randomness of the action. In our simulation, we set the
exploration decay to 0.5, 0.05, and 0.005, respectively. As
shown in Fig. 4, the greater the exploration decay, the better
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the profit convergence performance of MVNO. At the same
time, a larger exploration decay can speed up the convergence
speed of the algorithm. Therefore, the value of exploration
decay is set to 0.5 in the remaining simulations.

When the bandwidth, computing and caching resources
leased from the InP change, the resources provided by the
MVNO to the SP will also change accordingly. As shown
in Fig. 5, when the subchannels leased by MVNO increase,
more communication resources will be provided to the network
slicing, and so the system utility will increase. In the same
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way, increasing computing ability will make MVNO more
profits. When the cache resources leased by MVNO increase,
it is expected that more backhaul bandwidth will be saved,
and so the revenue of MVNO will increase.

Fig. 6 plots the comparison of the profits of MVNO with
respect to the number of task requesters under different
schemes. It is obviously that the decrease of MVNO’s profit is
approximately linear with the increasing number of computing
tasks requested by the user. The reason is that as the number
of users requesting computing tasks increases, more users
will share the network resources which are composed by
computing, caching, and bandwidth. Therefore, the completion
of computing tasks causes greater computing delays, resulting
in a plummet of MVNO’s utility. However, as the number of
users requesting caching tasks increased, the system utility of
MVNO will increase. Because caching more content will save
more backhaul bandwidth, thereby increasing the revenue of
caching. The two subfigures depict that the DDPG algorithm
has good performance and surpasses the other comparison
algorithms.

Fig. 7 shows the total profit of MVNO under different
computing, caching, and bandwidth charging prices for dif-
ferent schemes. It can be seen that with the increase of the
charging price of computing tasks, the revenue of computing
offloading increases. So the agent is more inclined to perform
computing offloading to perform user’s computing-intensive
tasks. The profit of computation-oriented slice and the total
profit of the system are increasing. With the increase of content
caching charges, the revenue of caching task has increased,
and so the profit of the caching-oriented slice and the total
profit of the system are increasing. With the increase of the
bandwidth charge, the profit of bandwidth-oriented slice and
the total system profit are increasing. It can be seen that the
MVNO profit performance of our algorithm is better than other
schemes.

The DDPG algorithm is used to generate a data set of
state, action and reward, and then we use the XGBoost
model for training. We take the relationship between the total
utility of MVNO and the number of subchannels (bandwidth),
computing and caching resources leased from InP as an
example. The fitting relationship between the predicted result
of the XGBoost model and the actual value is shown in

(b) Computing

(c) Caching

TABLE III
STATE SPACE V.S. EXECUTION TIME.
State space 4 8 12
DDPG agent 708.35 1065.86 1451.59
XGBoost model 8.05 10.06 16.86

Fig. 8. From the figure, we can see that the MVNO revenue
predicted by the XGBoost model is basically consistent with
the results generated by DDPG. It is proved that the algorithm
we proposed is accurate.

After the completion of training, the execution time of the
above two algorithms is shown in Table III. Compared with
DDPG agents, the GBDT model has obvious advantages in
speed. Specifically, with the increase of state space, the speed
advantage of GBDT model becomes more prominent.

VII. CONCLUSION

This paper proposes a MEC and caching model that jointly
considers communication, computing, and caching resources.
The novel profit function is used to measure the performance
of MVNO, which takes the revenue of MVNO and the QoE
of users into account. Then, we use a DDPG-based edge
computing and caching solution. This solution considers the
diversity of user service requests and dynamic communication
conditions between MEC servers and users to jointly opti-
mize task scheduling and resource allocation in a continuous
space. Numerical simulations demonstrate the proposed DDPG
algorithm outperforms the other compared algorithms in the
literature and achieves the optimal resource allocation scheme.
In order to increase the speed of convergence, we use the
data set generated by the DDPG algorithm to train the GBDT
model. The GBDT model can fully simulate the behavior of
DRL agent and the output of results is faster and more cost-
effective.
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