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Self-Adaptive Power Control with Deep
Reinforcement Learning tor Millimeter-Wave
Internet-of-Vehicles Video Caching

Dohyun Kwon, Joongheon Kim, David A. Mohaisen, and Wonjun Lee

Abstract: Video delivery and caching over the millimeter-wave
(mmWave) spectrum is a promising technology for high data rate
and efficient frequency utilization in many applications, including
distributed vehicular networks. However, due to the short handoff
duration, calibrating both optimal power allocation of each base
station toward its associated vehicles and cache allocation are chal-
lenging for their computational complexity. Heretofore, most video
delivery applications were based on on-line or off-line algorithms,
and they were limited to compute and optimize high dimensional
objectives within low-delay in large scale vehicular networks. On
the other hand, deep reinforcement learning is shown for learning
such scale of a problem with an optimized policy learning phase.
In this paper, we propose deep deterministic policy gradient-based
power control of mmWave base station (mBS) and proactive cache
allocation toward mBSs in distributed mmWave Internet-of-vehicle
(IoV) networks. Simulation results validate the performance of the
proposed caching scheme in terms of quality of the provisioned
video and playback stall in various scales of IoV networks.

Index Terms: Deep reinforcement learning, Internet-of-vehicle
caching, video caching.

I. INTRODUCTION

HE millimeter-wave (mmWave) is a promising technol-

ogy for provisioning high-end resolution of video contents,

with superior data rate and improved efficient frequency utiliza-

tion [1]-[5]. Based on current global trends, the ratio of video

traffic among mobile data traffic is expected to increase, where

78% of the mobile traffic will be composed of video contents

in 2021 [6]. As such, video caching in mmWave networks has
been highlighted by both industry and academia [7]-[12].

In particular, it is expected that most traffic of forthcom-

ing mobile networks would consist of mmWave-based video
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Fig. 1. Considered power-cache aware video caching scheme in distributed IoV
networks.

chunks. Meanwhile, among plentiful use cases of mmWave
based video provisioning scenarios, Internet-of-vehicle (IoV)
networks are faced with multiple challenges [13]. For exam-
ple, the user equipment (UE) installed in vehicle has an intrin-
sic feature: Very high mobility. Considering that propagation in
mmWave is quite directive and with a comparatively short cov-
erage region [14], [15], the mmWave propagation of distributed
mmWave base station (mBS) for UEs is constrained for short
association time.

In realistic mmWave IoV networks, the caching scheme
should also consider proactive cache size allocation towards dis-
tributed mBSs for preventing playback stall. In addition, power
control of each mBS for energy efficiency and the number of
requested chunks from media servers for minimizing the num-
ber of dropped video chunks are investigated [16], [17]. That is,
the edge node (i.e., mBS) is responsible for providing cache size
and power allocation for supporting associated vehicles. More-
over, if the caching scheme should reflect more optimization ob-
jectives or is considered even in larger IoV networks, the clas-
sical caching scheme is limited to calibrate such optimal point
within certain amounts of delay bounds for avoid video stream-
ing stall events [5], [18]. As such, a novel caching scheme for
such mmWave based IoV networks is required. To this end, and
to address those issues, we propose a deep reinforcement learn-
ing (DRL) based caching scheme for learning an optimal power
control of each mBS in the considered IoV networks, and cache
allocation towards mBS with a realistic caching scenario. The
reason why DRL is used among various optimization and learn-
ing based algorithms is that it is one of the emerging sequential
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decision-making algorithms for solving time-varying systems
under unexpected observations. As the agent of DRL learns the
optimal action policy, the caching scheme can derive optimal
point of power and cache size allocation for UEs of each edge
node as soon as the agent observes the state of environment.

Contributions. This paper proposes DRL-based video caching
scheme in mmWave IoV networks, as illustrated in Fig. 1, for
enabling an optimal video provisioning service under highly dy-
namic and multiple dimensional learning objectives. Note that
the real-world velocity data of vehicles is utilized so that a real-
istic simulation of IoV networks is available [19]. The contribu-
tion of algorithm in this paper can be summarized as follows:

« Extended action space: Among various kinds of DRL al-
gorithms, the deep deterministic policy gradient (DDPG)
is adopted and enables us to learn continuous and a multi-
dimensional action space. DDPG learns an optimal point
of power and cache size for each mBS and for each ob-
served IoV network. The learning agent is considered as
a macro base station (MBS), which learns and controls the
constrained optimal power allocation towards distributed
edge nodes (i.e., multiple mBSs) so that their associated
vehicular user equipment (VUE) can experience qualitative
video provisioning service with optimized quality of video
and seamless playback.

o Model free and off policy: Specifically, the advantage of
the model-free property of DDPG is that the MBS does
not need to know the complete information of the vehicu-
lar network, while the model-based DRL algorithms needs
such a knowledge. The MBS interacts with the environ-
ment and accumulates the experience of the interactions
and utilizes them for learning the optimal caching policy.
In addition, the advantage of the off-policy property of
DDPG is that even though the caching policy is updated
by the learning process, it can utilize the experience, col-
lected from the previous caching policy, so that the data
efficiency is much more improved than the on-policy based
algorithms, such as SARSA [21].

Organization. The rest of this paper is organized as follows:
Section II introduces various caching schemes including the
DRL based approaches and the classical one. Next, Section III
summarizes an overview of reinforcement learning, including
DDPG. Section IV proposes the system model and description
of our caching scheme. Section V discusses the simulation set-
tings and our proposed scheme’s performance for power-cache
allocation learning in mmWave IoV networks. Finally, Sec-
tion VI concludes this paper.

II. RELATED WORK

In this section, classical video caching schemes, which in-
cludes optimization formula-based approaches and the DRL
based-methods, are introduced. First, we summarize the clas-
sical optimization formula-based approaches. Next, we review
the DRL-based video caching schemes, especially the deep-Q
network (DQN)-based approach.
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A. Optimization for Caching

The [20] proposed vehicular content centric networks
(VCCN) with mobility prediction capabilities for efficiently
electing caching nodes. Among multiple vehicles located in a
specific hot spot region, the representative vehicle is selected
based on the sojourn time. The elected caching node in the hot
spot region taking a role of mediating the caching procedure,
and the rest of the vehicles are serviced from the caching node.
The dynamic cache algorithm (DCA) is proposed in [22], which
enables adaptive bitrate (ABR) video streaming service in ve-
hicular networks. The authors considered the mobility issue of
vehicular networks, which induces time-varying state of wire-
less channel. The proposed DCA algorithm based the caching
scheme addressed the issue derived from the mobility feature
by jointly considering the quality adaptation, cache placement,
and bandwidth allocation. A distributed content caching archi-
tecture was proposed in [23] focusing on reducing delay of
content delivery. Specifically, minimizing the delay due to ad-
vent of layered-video encoding techniques such as the scalable
video coding (SVC) is NP-hard, so the authors transformed the
caching problem and derived pseudopolynomial-time optimal
caching solution. Moreover, several video caching schemes in
vehicular networks and mobile edge networks are proposed [24]
under various scenarios and caching optimizations with classical
approaches in information centric network (ICN) were proposed
in [25] and [26].

Besides, prefetching-based data dissemination in vehicular
cloud systems (VCSs) has been widely studied for vehicular ad-
hoc networks (VANETS) to satisfy various wireless communi-
cation capabilities such as multimedia streaming, vehicle infor-
mation and autonomous navigation services [27]. The authors
focused on how to exploit the local data storages (i.e., content
cache) of roadside wireless access points (APs) within VCS for
efficient data dissemination. That is, the prefetching approach
takes a role in proactively caching contents for efficient data dis-
semination in VCS. Such data dissemination can enhance the lo-
cal access to popular Internet contents via proxy servers. In [28]
proactive caching for various wireless network applications was
studied. In [28], a content prefetching technique for named data
networking (NDN), which is one of the ICN framework, was
proposed and showed to maximize the probability that a user
retrieves the desired content in a vehicle-to-infrastructure (V2I)
scenario. The authors leveraged an integer linear programming
formulation of optimally distributing content in the network
nodes while also accounting for the available storage and link
capacities.

In [29], the deployment of unmanned aerial vehicles for video
caching is discussed and the conceptor-based echo state network
is used for solving the quality-of-experience (QoE) optimiza-
tion. This approach is novel and well-discussed, however the
problem in the paper is not equivalent to ours because we as-
sume the existence of fixed infrastructure mBS for more reliable
service provisioning.

B. DRL-based Caching

The DRL-based caching schemes aim to find the optimal pol-
icy in a learning phase. The agent observes the system state. As
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the agent acquires the system state information, the agent fol-
lows its policy and interacts with the system. After the environ-
ment interacts with the actions of the agent, the environment
returns the corresponding reward value to the agent, and the
agent learns a better policy based on the reward value. The deep
Q-learning approach based mobility-aware caching and compu-
tational offloading scheme was proposed in [30]. The authors
formulated a joint optimal caching and computing resource al-
location problem to minimize the overall system cost under hard
deadline delay, dynamic storage capacities and computation re-
sources constraints with deep Q-learning approach. In addition,
deep reinforcement learning based caching schemes for variety
of application areas including interference alignment, software-
defined networks (SDNs), and 5G mobile edge computing were
proposed in [31]-[33]. An integrated framework that can dy-
namically orchestrate networking, caching, and computing re-
sources is proposed in [31] to enhance the performance of ser-
vices for smart cities. Based on the framework, a mobile edge
computing and caching scheme with SDN and network func-
tions virtualization (NFV) is proposed with deep Q-learning
based approach. Similarly, [32] proposed deep Q-learning based
resource allocation strategy for next generation vehicular net-
works. The authors formulated the resource allocation problem
and jointly considered an orchestration of content caching with
ICN, networking (e.g., SDN and NFV), and computing (e.g.,
cloud/edge computing) for optimizing the network. In addition,
cache-enabled interference alignment strategy for next gener-
ation wireless networks is proposed in [33]. Unlike most of
the previous interference alignment (IA) techniques, which as-
sumed the channel is invariant, the transition model of channel
state is designed as a finite state Markov channel (FSMC).

III. DEEP REINFORCEMENT LEARNING FOR CACHING

In this section, we review deep reinforcement learning based
video caching in mmWave based IoV networks. First, we sum up
the preliminaries of reinforcement learning. Next, DQN based
caching schemes are introduced as well. Finally, the DDPG al-
gorithm, which is appropriate for large scale of action and state
space, is introduced for proposed power-cache aware control
policy.

A. Preliminaries

A Markov decision process (MDP) is defined as M = {S,
A, T, r}, where S denotes the state space, A denotes the set of
possible actions, T denotes the transition model and r denotes
the reward value. Based on the MDP, the goal of the reinforce-
ment learning is to train a policy mp € II : S x A — [0, 1].
The policy 7 maps the state of the environment to the action to
maximize the expected reward [J (7). With a finite T process,
the expected reward J (7) can be described as the accumulation

of the reward at each time step as J(7) = E [ZtT:O 5trt|7r],

where § is a discount factor which adjusts the effect of future
rewards to the current decision. The optimal policy 7* is then
described as follows:

7 = argmax J (). (1
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Based on this equation, the objective of reinforcement learning
is described as arg maxg Egr, [r(s, m)(s))] .

B. DON

DQN utilizes a neural network to approximate state-action
functions (Q-functions). The Q-functions, which is approxi-
mated by neural network, allows the DQN to learn the policy
even in a high dimensional system state space. The concept of
DOQN is based on a classical Q-learning algorithm. In the clas-
sical Q-learning, the Q-value of a state-action pair is estimated
through iterative updates based on multiple interaction with the
environment. Therefore, in DQN the immediate reward we re-
ceive and the expected Q-value of the new state are used to up-
date the Q-functions. Therefore, the objective of DQN is de-
scribed as follows:

arg min Lpon(0) = arg H{gn(Q(St, ai; 0) — Q(st, a1;9))?,
(2)
where s; is the state at time ¢, a; is the selected action at s; and
6 is the parameters of Q-functions. Q(s¢, as; 6) is the target Q-
value which is derived from the current Q-functions at time t.
Therefore, Q(s¢, as;0) = ry + dmaxz Q(s¢41, G; 0).

C. DDPG

Although the DQN based approaches can only handle dis-
crete and low-dimensional action spaces, environments in many
realistic applications have continuous and high dimensional ac-
tion spaces (i.e., proactive caching, resource management, etc).
Moreover, the DQN algorithms cannot be straightforwardly ap-
plied to continuous actions since DQN depends on choosing the
best action that maximizes the Q-value function. When there is
a finite number of discrete actions, the action that makes the Q
value maximal is chosen, because possible Q values at the state
can be computed directly for each action. However, when the
action space is continuous, it is hard to exhaustively evaluate the
Q values. DDPG is an algorithm which concurrently learns the
Q-value function and the policy. The action-value Q function is
learned and used to learn the policy. In the DDPG, the optimal
Q-function Q(s,a) is approximated by neural network, simi-
lar to DQN. Therefore, because the action space in continuous,
the function Q™ (s, a) can be differentiable in terms of the ac-
tion. Based on that fact, a policy 7y can be updated efficiently.
The Q4(s,a) which is approximated with the parameters in ¢
is updated based on minimizing the mean-squared Bellman er-
ror (MSBE) as L(¢, D) = E [(Q(ss, ar; #) — Q(s¢, as; ))?].
where D is a set of transitions (s, a,r, s'). DDPG aims to learn
a deterministic policy 7y(s) which provides an action that max-
imizes Q4 (s, a). Because the action space is continuous, the Q-
function is differentiable in terms of the action. With respect to
the policy parameters 6, gradient ascent is performed to update
the policy 7y as maxg Esop [Qg(s, mo(s))].

IV. DDPG-BASED POWER-STORAGE-AWARE CACHING

In this section, we propose the overall architecture of a power-
cache aware video caching scheme with a DDPG algorithm,
which is introduced in the previous section. In IoV networks,
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the classical caching scheme, which needs to compute the op-
timal video caching options toward RSU (i.e., mBS cache of
edge node) for every time step through extensive calculation, is
an unrealistic caching option due to the time domain overhead.
As the duration of association time between mBS and vehicles is
short, the effect of overhead may severely affect the video provi-
sioning service, which results in degradation of QoS. Thus, we
introduce DDPG-based power and cache storage aware proac-
tive caching scheme for meeting the requirements of the consid-
ered scenario by using two ideas: (i) Calculation of the optimal
caching action through a learning process so that the optimal
caching option can be derived for seamless services after the
learning process and (ii) scale-adaptable IoV networks with sat-
isfying optimal power and preemptive cache allocation of mBS
for qualitative video provisioning service. System description
and design of DDPG based caching scheme are proposed in the
following subsections.

A. Assumptions

Before introducing the overall system description, several as-
sumptions regarding elements of the proposed caching scheme
of mmWave IoV network are denoted. The assumptions are de-
fined for the following components of the caching scheme: The
mBS, the vehicle, the MBS, and the video contents. Note that
the components fully satisfy the corresponding assumptions for
quality-cache aware video caching scheme.

o mBS: Considering most of typical highway is constructed

in rural regions and signal propagation of mBS is quite di-
rective, we assume that mBSs of the considered IoV net-
works directly orient toward the highway. Specifically, the
mBSs make beam alignment toward vehicles on highway
within range of azimuth angle, which is an appropriate for
servicing their own coverage region. In addition, each mBS
is assumed that its data transmission is not affected by oth-
ers. That is, the mBSs on the highway are independent and
identically distributed (i.i.d.) over highway with distance
of their non-overlapped coverage region so that IA is out
of scope of this paper. Finally, because the case of at least
two vehicles associated with the same mBS are located on
the same position of a highway at the same time is illogical
and does not exist, we assumed that the downlink (DL) of
each mBS is enough to transmit the entire video chunks of
its cache for each associated vehicle for a unit time step
no matter the quality of the video. That is, the capacity
of DL from mBS is sufficient to provision video toward
each associated vehicle because i.i.d. setting of mBSs and
non-overlapping position of associated vehicles with fully
available bandwidth of the air interface for each vehicle.

o Vehicle: For practical reasons, it can be envisioned that
the vehicles on the highway only move forward, i.e., a ve-
hicle can enter the coverage region of the following mBS
or stay within the coverage region of the currently associ-
ated mBS after a time step. We assume that the vehicles
move forward with probability of FSMC transition model
with the value of p in Fig. 2, which represents transition
probability of vehicles given that the average velocity of
vehicles of IoV networks and distance of mBS cell cov-
erage region are both available. As presented in [34], the
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FSMC has been widely utilized to represent the dynamic
variation of vehicular network channel. Because the chan-
nel is established between roadside mBS and UEs in the
vehicular network, the simplified position transition of ve-
hicles can be modeled with the FSMC. Note that the u; and
x; in Fig. 2 represent the ith vehicle and the jth mBS, re-
spectively. In addition, the request of vehicle is collected
by the MBS, so that currently associated mBS can provide
the corresponding video chunks, while the following mBS
proactively allocates cache size and video chunks from the
media server to prepare the handoff.

« MBS: In the proposed mmWave oV networks, the MBS
takes a role of learning agent for power and preemptive
cache allocation of mBSs for seamless video provisioning
service among the vehicles on the highway. Based on the
assumption of full knowledge of channel state information
(CSI) of MBS in vehicular network in [35] and the sig-
naling state of IoV networks through backhaul communi-
cations between MBS and mBSs within low cost [36], we
assumed that the MBS has full knowledge of the consid-
ered IoV networks in four aspects: (i) Association infor-
mation between mBSs and vehicles, (ii) cache occupancy
state of each mBS, (iii) buffer occupancy state of each vehi-
cle, and (iv) history of provisioned average quality of video
for vehicles along with their trajectory. These four states
consist of the state of the MBS, which calculates the cor-
responding caching action, and is derived from the neural
network of the DDPG algorithm. In other words, the MBS
can learn the optimal caching policy through trial and error.
The detailed procedure of learning process is given in Al-
gorithm 1. In addition, the MBS can be assumed that video
chunks toward an mBS for each vehicle is limited up to m
unit size, which is the upper bound (UB) of the video size
cached at the corresponding mBS, for satisfying fairness
of caching service considering the limited storage of mBS
cache.

« Contents: Guided by previous research work [37], we as-
sume that the popularity of video contents among vehicles
follows Zipf distribution [38] where all chunks during a
video session are deterministically requested in sequence.
Moreover, for each video chunk, it is assumed that the
data rate of corresponding quality of video determines the
unit size of a chunk. For example, suppose that there ex-
ists two video chunks with 360p and 720p quality, where
the required data rate for supporting them is 1 Mbps and
5 Mbps, respectively. Then, we assume that the unit size
of each corresponding single chunk for those quality is 1
and 5. That is, in case of a vehicle requesting three chunks
of 720p quality video, 3 x 5 unit size of vehicle’s buffer
is increased, while the associated mBS’s cache loses cor-
responding unit size. Finally, each vehicle is assumed to
watch a video, which it firstly requested, throughout the
entire sojourn time on the highway.

B. System Description

In the following, descriptions of system elements including
vehicles, cache, buffer, and video are provided.
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Fig. 2. The finite state Markov chain for vehicle association transition model.
The system average velocity of vehicles affects the value of transition prob-
ability p.

B.1 Vehicles on Highway

There exists vehicles up to N and K fixed mBSs on
the roadside of the considered highway mmWave IoV net-
works. The set of vehicles and mBSs are denoted by U =
{ug, w1, - u;,--un—1} and X ={xg, 21, -
T -1}, respectively. The u; and x; represent ith vehicle and
jth mBS, where Vu; € U,Va; € X, i€ [0,N),and j € [0, K).
We assume that every u; can be associated with only one mBS
at the same time, which follows hard handoff mechanism. In
addition, the u; can only move forward on the highway, i.e., if
the u; is associated with z; at time step ¢, the u; can only as-
sociate with x; or x;; at time step ¢ + 1, not x;_; such that
j € (0, K — 1). In addition, the association information or the
discrete position of Vu,; can be represented as a matrix Py« g,
where

. ‘r]" cee

Po,o Po,Kx

Pyyi =

Dij €

PN-1,0 PN-1,K-1

and each element p; ; of Py x represents whether u; belongs
to the coverage of x; or not. For example, the p; ; is —1 if u;
is associated with x;. Moreover, if the p; ; is 1, u; is associated
with z;_;. Otherwise, the value is set to 0.

The value p; ; € Py can be equal or changed over time
by following the FSMC transition probability model described
in Fig. 2, where the transition probability set is represented as
o, which is derived from system average velocity vector ) and
mBS cell range O. For example, if v; is associated with x; such
that i € [0, N), and j € [0, K — 1), the value of p; ; = —1 and
Di,j+1 = 1 and the rest of elements p; ; such that [ € [0,K —1)
except j and j + 1 is 0. The mBS cell range O is assumed as
150 m, and the system average velocity V of Vu,; € U is set to
V =80 km/h [19]. Suppose that each time step is one second
and considering the V and O settings, the o can be calculated as
0.143, which is the probability of each vehicle to move forward
to associate following mBS for the next time step. That is, each
u; € U, which is associated with x;, transits its position over
time toward the cell of the following mBS x ;11 with the FSMC
transition probability given that average velocity of users in the
IoV networks is available and © =150 m for i € [0, N), and
j € [0, K — 1), respectively.

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 4, AUGUST 2020

Table 1. System description parameters.

Parameter || Description

The number of vehicles

The number of mBS

The set of mBS

The set of vehicles

The set of mBS cache

The set of vehicular buffer

The macro base station

The vector of vehicle velocity

The UB of mBS cache storage

The UB of vehicular buffer

The UB of cached video at z; for u;
The vector of FSMC transition probabilities

The total reward of IoV network

The learning rate of M

The state of mBS cache

The state of vehicular buffer

The state of average quality history

The state of vehicle position

The action of mBS power allocation
The action of proactive cache allocation

O % e oS ma S e

T W Q
z 2z
X X X
RS

Py i
Vnxk
Lnxi

B.2 Cache, Buffer, and Video

There exists a set of video caches C ={cg, c1, -+, ¢j, -+,
cx—1} on the highway and each ¢; is equipped with mBS z;
such that j € [0, K). Each video cache ¢; of z; stores video
chunks for vehicles. Suppose that c; is requested to provide
video chunks from u;, where p; ; = —1, then x; immediately
provides the cached video chunks or request the media server.
In addition, the following mBS, denoted by x;1, notices the
request of the vehicle and proactively allocates cache size and
contents from the media server to prepare the position transition
of u;. In addition, the spatial upper bound of ¢; is denoted as ¢,
and the video contents, which are cached in c;, are transmitted
towards the associated set of vehicles u,_ ;, such thaty € [0, N).
We assumed that the capacity of the mmWave link between wu;
and x; is sufficient so that x; can provision the entire video
chunks towards a set of vehicles, which are associated with x;.
Moreover, video buffer set B ={bg, b1, - -+, b;, - -+, by—1} rep-
resents the set of buffer which is equipped within each vehicle.
The buffer b; is mounted on u; and the spatial upper bound of
b; and buffer playback rate is denoted by b and F, respectively.
Meanwhile, there is a set of video qualities, which are denoted
by Q. Moreover, it is assumed that each u; can be served with
each quality of video chunk in the quality set Q. The Q can
be defined as Q =[360p, 480p, 720p, 1080p, 4K], for example.
Each quality level in Q requires an average link capacity of 1, 3,
5, 8, and 40 Mbps, respectively, in ascending order, which deter-
mines the QoS of u; associated with x;. Per the aforementioned
assumption regarding video contents, the unit size of a chunk is
determined by the quality of the video.
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C. DDPG-based Caching

The system can be represented in terms of reinforcement
learning, where the agent in the system is M. The M controls
the overall power and proactive cache allocation toward each x;
on a highway from the remote media server Z, with specific
power allocation level vy of the video and cache size c; ; and
¢ j+1 for u; where k € [0, 2], 7 € [0, N), and j € [0, K — 1),
respectively. In the following, the learning process of power
allocation and proactive cache allocation toward mBSs are in-
troduced in terms of the state space, action space, reward, and
algorithmic description, in details.

C.1 State space

The state space of the caching system consists of the follow-
ing elements: Preloaded unit size of video for each u; along with
the entire mBS &, buffer occupancy of each u;, average quality
history of the provisioned video for each u;, and the position of
each vehicle u; over time. The elements are denoted by C'n x .,
Bnxx, Hyxk, and Pyx i, respectively. The state of a posi-
tion is represented as in (3) and the rest of the elements of the
state space are represented as follows:

€0,0 Co,K—1
Cnxk = : Cij : ; )
CN-1,0 CN—-1,K—1
bo,o bo, k-1
brv-10 -+ byn—1K-1
ho,o ho, k-1
Hyxi = hi : (6)
hn—10 -+ hN-1,k—1

First, ¢; ; in (4) represents the cache occupancy of x; which
is the preloaded unit size of the video for satisfying w;’s re-
quest. The maximum storage size of each ¢; ; for i € [0, N)
and j € [0, K) is limited to 77 for vouching fair video transmis-
sion toward vehicles and ), c¢x ; < €, where k& € [0, N) and
mx N <¢.

Next, the b; ; of (5) represents the buffer occupancy of u; as-
sociated with z;. Each b; j for Vj € [0, K) has UB of b and
packet drop can occur when b; ; + ¢; ; — F > b. Moreover,
video playback service can be stalled if b; ; + c; j; — F < 0.

Finally, the average quality state of the provisioned video at
u; ; can be calculated by the cumulative average quality of the
provisioned video history through trajectory of u; from xq to x;.
The average quality state of u; ; can be denoted by h; ;, and is
utilized for learning the policy of M which aims to provision an
enhanced quality of the video toward u;. Suppose that s; ; rep-
resents the sojourn time step of u; associated with x;, the h; ;
can be calculated as follows:

J si,k—1 k,t
hij = ZMJ e[0,N),je(0,K). (7
= s

Moreover, h; ; = 0 when p; ; = 1 and j = 0, i.e., we only
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consider the history of quality provisioned at u;, which has the
drive experience on the highway. The qf " in (7) represents tth
quality index of video chunks, where it is provisioned at u; as-
sociated with .

C.2 Action Space

The M can learn the optimal action, which proactively re-
quests the optimal power and cache allocation toward x; and
241 (i.e., vicinity of the u;) from Z for seamless video re-
trieval, given that the state of mmWave IoV networks can be
observed. Here, the action space of M consists of Vi« and
Ly« i, where each of them represents the amount of power al-
location matrix and cache allocation matrix, respectively, and
they can be denoted as follows:

0,0 Vo,K—1
Vi = Vi j ) ®)
UN-1,0 UN—-1,K—-1
loo lo,x—1
Lnxk = li : 9)
IN—1,0 IN—1,K-1

First, the v; ; of Viyx x represents the amount of power alloca-
tion of mBS, where M requests specific quality of video with
respect to the power v; ; to Z to serve video at x; for u;. In
addition, [; ; of L« i stands for the size of the allocated cache
size at z; for u; by M. The M requests cache size up to two
neighboring mBSs for accomplishing two missions as follows:
(i) Secure seamless current video provisioning service for x;
and (ii) preemptive cache allocation at ;4 for enabling seam-
less services where j € [0, K — 1). For example, if u; on a
highway is associated with xz;, the M allocates cache storage
with unit size of [; ; and [; ;41 at x; and x;1, respectively, for
supporting current video service for u; and preemptive video
caching for handoff of u;. When u; is not yet on the highway,
i.e., p;; = 1and j = 0, the M only allocates cache size toward
xq for u; for proactive video caching. If the u; is associated with
Tx 1, the M requests xx 1 to allocate cache size of [ for
satisfying current video service of u;.

C.3 Algorithm for Learning The Proactive Caching

The M learns the proactive caching policy and accomplishes
power and preemptive cache allocation toward mBSs for seam-
less video retrieval by utilizing the proposed DDPG based al-
gorithm as shown in Algorithm 1. The overall caching policy
learning procedures are as follows. First, the parameters of the
actor and critic network, which activate and evaluate action of
M, are initialized (line 1). Then, the target networks regarding
both actor and critic network, Ql and A/, are initialized with the
origin’s one (line 2). By iterating each episode, the M repeats
following procedures to learn optimal caching policy which is
power-cache aware:

1) For every episode, the transition pairs, attained by an ar-
bitrarily generated set of states s of size ¢, corresponding
actions generated by the actor network with input s, reward
value for s and a, and the next state space s/, are paired and
stored at replay buffer ® (lines 5-7).
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Algorithm 1: DDPG based joint power-cache aware learn-
ing algorithm for mmWave IoV networks

Initialize the critic and actor network Q(s, a|@<) and A(s|0**) with
weights 09 and 04
’ ’
Initialize the target network 0 and A’ with weights 09 <« 09,
’
64 <« 04 for episode = 1, £ do
Initialize the replay buffer ® with following steps
for mini batch = 1, ¢ do
> Randomly generate a state space S with size of minibatch ¢
’
and calculate corresponding action space A with weights A,
ie., ¢: R¥
> Input the pair of S and A in size of ¢ to IoV network

’
environments and observe the set of next state space S and
reward set R for each state-action pair

> Store the each transition pair £ = (s, a, r, s/)
end
Then, update the target networks iteratively
for time step = 1, T do
> Sample a random minibatch & refresh « in ®
’ ’ ’ !
>Sety; =71 +0Q (8¢+1, A (S¢+1|9A )|9Q )
> Update critic network by minimizing the loss:
2

L=13%(yi — Q(siail9)
> Update the actor policy 7 4 using the sampled policy gradient:

Voad = i > VaQ(s, al6?)

> Utilize soft update to the target networks Ql and A’:

’

09 «— 19 + (1 —7)8° (10)

’ ’

04 «— 704 + (1 — 7)ot

an

end
end

ii) After the ® is fully calculated, the minibatch of transitions
% is randomly sampled from the replay buffer ®. Then,
for ¢th transition pair of k, it is utilized for calculating
the difference between target value y; and model value
Q(s4,a;|09) to update the critic network with the gradi-
ents obtained from the difference. In addition, stochastic
policy gradient is utilized to update parameters of the actor
network as per line 15.

Overall, the updated parameters of critic and actor net-
works are utilized to update the target parameters of Q'
and A" with soft update weight 7 for efficient and stable
learning (i.e., (10) and (11)). Note that the sampled & is
refreshed with another trained transition pairs for better
learning procedure after it is sampled. The computational
complexity of this algorithm depends on the stochastic pol-
icy gradient method for minimizing loss; and our proposed
algorithm does not exceed the complexity of stochastic pol-
icy gradient.

iif)

C.4 Reward

A comprehensive revenue of M is used as our caching
scheme’s reward. The M takes composite action {Vyxx,
Ly« x}, when it observes the state of mmWave IoV networks
as {Cnxk,Bnxr, Hvxk, Pnxk}, and get the next state of

ToV networks {Cy . x> Byx i Hax i Pa i} and weighted
average reward sum R of the considered system reward includ-
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ing (i) quality variation, (ii) packet drop occurrence, and (iii)
playback stall. These sub-rewards are denoted as r?, rP, and r°,
respectively. The total reward R of each episode is calculated as
the average of transitions’ rewards of x sampled from ®. Note
that the sub-rewards are calculated in vehicle-by-vehicle man-
ner, and each of them is added together for each reward domain
as RY, RP, and R?, respectively. That is, the episode reward R
is equal to R? + RP + R®.

First, in the case of the reward of quality r9, it is determined
by the action taken by M, which is Vi« x. The IoV network
environment, e, which interacts with M, calculates the r¢ by
comparing HJI\,X x and Hyy k. Then e compares the cumula-
tive average quality of video among them and gives a weighted
reward to M if the expected quality corresponding to the allo-
cated power v; ; originates an enhancement of the provisioned
video quality and vice versa. The M can get reward if the ac-
tion for u; results in a higher quality of video than its previous
average video quality. However, if not, M gets negative reward
of r? as penalty, which represents the degradation of QoS of u;.
Specifically, the quality of video is determined by the data rate,
which can be calculated by:

N
9ij = AR (12)
167T2(5—(‘)’)’7
Vi Gij
SINR; ; = SELS) , 13
s3] Zkeu Uk,jgk,j+0'2 ( )
%4
a;; = A logy,(1+ SINR,; ;),Vj € X. (14)
j

The g; ; in (12) represents the power gain from jth mBS to ith
user. In addition, g/>¥ and g/5¥ stand for transmit antenna gain
and receive antenna gain from jth mBS to ith user. Moreover,
the p represents the wavelength and d; ; and dy represents dis-
tance from jth mBS to ¢th user and far field reference distance,
respectively. Lastly, the 1 represents the path-loss exponent.
The v; ; in (13) represents the transmit power from jth mBS
to ith user, 2 is the variance of additive white Gaussian noise
(AWGN). According to Shannon’s capacity formula, the achiev-
able rate for ¢th user from jth mBS is as (14). The W stands for
the system bandwidth, and Kj is the total number of users as-
sociated with jth mBS. Thus, each user can utilize 1/K; of the
total frequency bandwidth of each mBS. Based on the a; ;, each
user can receive the corresponding quality of video chunks from
associated mBS.

Next, the rP is calculated by observing the current buffer oc-
cupancy of each wu;, allocation action Ly of M, and the
buffer saturation rate F. If the difference between the sum of
buffer occupancy of u; with cache z; and F exceeds b, then the
packet drop occurs at u; throughout the video provisioning ser-
vice. This is, M gets punished by attaining minus rewards of
rP because the action of M originated the spectrum waste and
power consumption of the corresponding mBS. By exploiting
this reward structure, the MBS learns to cache the video chunks
in a way that computational overhead and communication loss
derived from unnecessary delivery service are dismissed.

Finally, the 7° can be computed by subtracting F from b; ;
and adding c; ;. If the result is positive, the u; can playback pro-
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visioned video chunks without any stall. On the other hand, if
the result is less than zero, then the video playback at u; can be
stall, which results in a deteriorating QoS for u;. Therefore, we
define R as:

R=R'+R+R®

K—1N—-1 b\ F
= V- pig-r? (”)
i=0 =0 i
(bz:,j+lqz,j—-7:>+
b

sl )7
bij+li;—F

where v, =, and N represent the reward weights of 79, P, and r*,
respectively. The (a/b)™ is a function that returns 1 if @ < bor 0
otherwise. Moreover, (a/b)~ is a function that returns 1ifa > b
and 0 otherwise. The (1/¢)~ function returns 0 if ¢ — —oo and
returns 1 otherwise. Lastly, The (1/¢)” function returns 1 if
¢ — —oo and returns 0 otherwise. By utilizing these functions,
the (15) represents the total system reward calculation procedure
with respect to the quality variation, packet drop occurrence, and
playback stall.

|y )
)
D)

s)

biﬁj-‘r&’j—f
b

1
bijtlij—F

V. PERFORMANCE EVALUATION

We utilized various simulations for verifying the performance
of our proposed power-cache aware caching scheme in mmWave
based IoV networks. The caching scheme is evaluated with these
simulations by measuring the corresponding results with respect
to the aforementioned interest of rewards, given that the state of
IoV network is observable by the agent. We leveraged Tensor-
Flow [39] in our simulations to implement our proposed DDPG
based caching scheme. We first present the simulation settings
and then discuss the results. As many reinforcement learning lit-
erature has shown results based on empirical convergence with-
out complexity analysis [40]-[44], we propose simulation re-
sults based on this approach.

A. Setup

In the following, we elaborate the implementation details of
the proposed DDPG learning based video caching scheme in
mmWave IoV network. First, we introduce hardware configu-
ration for our simulation, and then show the overall design and
implementation details of the software.

Hardware. For hardware, we used an NVIDIA DGX station
equipped with 4 x Tesla V100 GPUs (total of 128GB of avail-
able memory) and Intel Xeon E5-2698 v4 2.2 GHz with 20
cores (total of 256 GB of available system memory) CPU.

Software. We also used Python with version 3.6 on Ubuntu
16.04 LTS to build the DDPG based caching scheme. In addi-
tion, we used Xavier initializer to avoid occurrence of vanishing
gradient descent during the learning phase. The neural network
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Table 2. Simulation parameters setting.

Parameter || Value

Total episode £ 500
Time step T' 100
Minibatch size 64
Discounting factor y 0.95
Initial epsilon 0.9

Size of D 1000

Optimizer AdamOptimizer
Activation function ReLU

is constructed with fully connected deep neural network, and the
number of nodes in the hidden layer was 200.

We implemented both the DDPG based caching algorithm
and the customized mmWave IoV networks in highway sce-
nario. The agent in DDPG based caching algorithm continu-
ously interacts with the dynamic IoV network environment and
attains pairs of state transition. Accordingly, and in turn, the op-
timal caching policy can be acquired with policy gradient after
the learning phase has converged. In addition, simulation param-
eters are summarized in Table 2.

B. Converged Performance for Each Learning Rate

First, the caching scheme is evaluated with three differ-
ent values of learning rate v. Fig. 3 to Fig. 5 show the ten-
dency of convergence of learning phase throughout the episodes.
Note that Fig. 3 to Fig. 5 have the same simulation setting of
(K, N) =(20, 200) and p = 0.143 with different learning rates.
For each learning rate simulation run, learning tendency for each
reward is represented. For example, in case of Fig. 4, the impact
of each reward category can be obtained from the gap between
other measured values of the mixed reward. As the value of the
green-lined graph—which represents the reward value without
(w.0.) the packet drop occurrence reward—is getting higher, it
can be considered that the M makes an optimal policy which
considers the playback stall and quality of provisioned video
to be more important than the packet drop for maximizing the
QoS. Similarly, the red-lined graph in Fig. 4 is getting lower and
is converged at specific value. It can be considered that the total
reward value of caching scheme can be underestimated without
the quality reward value, which means the importance of the
quality reward on the learning phase is not negligible.

When v = 1074, an interesting learning tendency can be
observed in Fig. 5. While the red-lined graph in Fig. 5 does
not quite change over the entire learning phase, other graphs
are dramatically increased and finally converged at the optimal
point. That is, the M learns the caching policy to maximize the
quality reward than other criteria. The red-lined graph, which is
the mixed reward value, consists of packet drop occurrence re-
ward and playback stall reward, and does not change, while the
other two graphs are sharply increased indicating that the qual-
ity reward is dramatically increased.

In summary, the total reward can be illustrated as in Fig. 6.
Throughout the learning phase, the M with different learning
rate ~ learns its caching policy, and the policy can be evaluated
by the system reward criteria as mentioned earlier. In case of
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v =10"3%and v = 5 x 1074, the M gets a converged caching
policy around the 100th episode. However, in case of M with
smaller ~, the M optimized its policy later. Therefore, our pro-
posed power-cache aware video caching scheme accomplished
stable and optimal video provisioning service towards vehicles
in mmWave based distributed IoV networks.

As the optimal caching policy is attained, the M can imme-
diately allocate power and cache units toward the distributed

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 4, AUGUST 2020

x10*

Total scheme reward

) 0 100 200 300 400 500
Episode

Fig. 6. Total reward convergence for each learning rate.

mBS as the system state is observed by M and thus caching
scheme maximizes the QoS of the users. This caching policy
differs from the classical caching scheme’s policy, which needs
to calculate the optimal caching strategy for each observation
of IoV networks over time. Thus, the proposed caching scheme
is highly affordable for optimal power and cache allocation of
mBSs to provision superior quality and playback experience
while seamless service is possible.

C. Robustness on Scalability

In the following, we argue for the importance of scalability
in IoV networks. As the scale of the considered IoV networks
gets larger, calibrating the optimal caching policy for seamless
video services is hard to accomplish with classical approaches.
Moreover, when the number of objective to optimize becomes
larger calculating the optimal point for seamless video services.

Fig. 7 illustrates the total reward value convergence tendency
throughout the learning phase. Note that the total reward of each
case is proportional to the scale of the IoV networks. In ad-
dition, the p of FSMC model is set to 0.186, where the sys-
tem average velocity of vehicles is 100 km/h. Moreover, the
learning rate v was set to 1073, Originally, the action space
of Fig. 3 to Fig. 6 was 4000 = 20x200, where the IoV networks
in Fig. 7 is 5000, 7500, and 20000. That is, the robustness of
the proposed caching scheme with respect to scalability is vali-
dated through simulation in Fig. 7. Each scale of loV networks
in Fig. 7 showed converged performance for provisioning opti-
mal quality of video and mitigated playback stall phenomenon
through learning power and cache allocation toward mBSs.

Next, the learning tendency of average quality level with re-
spect to the controlled power of mBS’s transmitter and unit size
of mBS’s cache in various scale of IoV networks are proposed
in Figs. 8 and 9. For power control aspects, the M with scale
of (K,N) = (20,250) and (K, N) = (25,300) learns opti-
mal power allocation toward mBSs on the road side, which re-
sults in sufficient data rate and can be supported toward users
so that maximized quality of video (i.e., 4K resolution) can be
provisioned. Besides, as the scale of IoV networks is (K, N) =
(40,500), which is 5x more dense compared to setting of Fig. 3
to Fig. 5, the M learned to allocate power corresponding to 720p
resolution of video toward users with limited spectrum availabil-
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Fig. 7. Total reward convergence for each scale of IoV networks.
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Fig. 8. Average quality of provisioned video toward vehicles with respect to
controlled power of mBS.

ity.

Finally, M learns to allocate cache size toward mBS for
supporting seamless video retrieval at neighboring users. As in
Fig. 9, the M with scale of (K, N) = (20, 250) and (K, N) =
(25,300) learns to allocate smaller cache size than scale of
(K,N) = (40,500). That is, the M with larger scale learns
caching policy to allocate low power utilization strategy. How-
ever, the M stabilizes the distributed IoV networks with more
flourish cache size for each user so that playback stall prob-
lem at user can be mitigated. Besides, for smaller scales, M
aims to learn the caching scheme to achieve a maximized aver-
age quality level of provisioned video (i.e., higher power allo-
cation of mBS). Therefore, proposed power-cache aware video
caching scheme in distributed mmWave IoV networks enables
us to learn the optimal caching policy, which accomplishes an
optimal power and cache allocation toward mBSs and attains
stabilized performance even for an enlarged scale of IoV net-
works.

VI. CONCLUSION AND FUTURE WORK

We proposed a deep reinforcement learning based video
caching scheme in mmWave IoV networks to optimize power
consumption and cache allocation of mBS with minimum num-
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ber of stall events for seamless services. With our proposed
caching scheme, stabilized and optimized caching options in a
large-scale distributed IoV networks can be achieved as the sys-
tem state is observed. Through an extensive set of simulations,
the proposed caching scheme is shown to be appropriate for
learning a massive scale of action space and stabilized learning
performance, even when the scale of the considered distributed
IoV networks is enlarged.

As future work directions, real-world implementation and its
corresponding prototype-based performance evaluation will be
considered. Furthermore, additional performance evaluations in
order to compare with the other reinforcement learning algo-
rithms will be intensively conducted. Lastly, the extension of
our work with multi-agent deep reinforcement learning algo-
rithms is worthy to consider in order to build scalable large-
scale systems with multiple distributed base stations. To guaran-
tee the convergence in multi-agent deep reinforcement learning,
we need more sophisticated and well-designed reward functions
and action spaces.
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