JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 22, NO. 3, JUNE 2020

259

Mobile Device-centric Approach for Identifying
Problem Spot in Network using Deep Learning

Woonghee Lee, Joon Yeop Lee, and Hwangnam Kim

Abstract: These days, mobile devices usually have multiple network
interfaces and there are many usable access networks around the
devices. To utilize a wide range of network options properly and
make decisions more intelligently, the mobile devices should be able
to understand networks’ situations autonomously. The current mo-
bile devices have powerful computing power and are able to collect
various network information, and people nowadays almost always
carry their mobile devices. Thus, the mobile devices can be uti-
lized to figure out practical quality of service/experience and infer
the network situation/context. However, networks have become not
only larger but also more complex and dynamic than in the past,
so it is hard to devise models, algorithms, or system platforms for
mobile devices to understand such complex and diverse networks.
To overcome this limitation, we leverage deep learning to devise a
mobile device-centric approach to identifying problem spot having
the most likely cause of network quality degradation, MoNPI. By
using MoNPI, mobile devices are able to identify the network prob-
lem spot, which is like a black box to end nodes heretofore. Mobile
devices with MoNPI are able to understand networks’ situations
and thus take a more proper action.

Index Terms: Deep learning, mobile, network, problem spot identi-
fication, transmission control protocol

I. INTRODUCTION

SUPPORTED by the advancements of communication and
hardware technologies, today’s mobile devices usually have
multiple network interfaces, and there are various usable net-
works around the devices [1]. In addition, there are an enor-
mous number of Internet applications, and many Internet ser-
vice providers (ISPs) provide their own network infrastructures
to users [2]. In other words, the mobile users have a wide range
of network options than they have ever had [3]. To utilize a wide
range of network options properly, the mobile devices should be
able to understand networks’ situations autonomously, so that
the devices can make decisions more intelligently depending
on the situation. As shown in Fig. 1, in the transmission be-
tween the mobile device and the server, there are various factors
that degrade communication performance. In addition, there is
a possibility that problems may occur in any router, base station,
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Fig. 1. Various causes of transmission degradation.

and server that are involved in data transmission. However, the
mobile device cannot identify what and where the transmission
problem occurs.

In the conventional method, since the the mobile device
does not know where the problem occurs in the network, it
should repeat data retransmissions or meaningless reconnection
attempts [4]. By exactly knowing where the problem occurs,
mobile device can appropriately resolve network transmission
problem. For example, if there is a problem with the mobile de-
vice, the device can notify the problem to the user. Also, the mo-
bile device is able to change the data transmission path by recog-
nizing that there is a problem on the router, or request a service
provider to identify the problem if there is a problem with the
server. Nowadays, the mobile devices have powerful computing
power and are able to collect various network information [5].
In addition, people nowadays almost always carry their mobile
devices [6]. Thus, the mobile devices can be utilized to figure
out practical quality of service/experience (QoS/QoE) and infer
the network situation/context around the people. However, it is
not trivial to devise models, algorithms, or system platforms for
mobile devices to understand complex and diverse networks.

To overcome these limitations, we propose a mobile device-
centric approach to identify network problem through machine
learning, MoNPI. As far as we know, this work is the first at-
tempt to devise a mobile device-centric scheme which identifies
the problem spot having the most likely cause of network qual-
ity degradation by leveraging deep learning. MoNPI’s goal is to
provide information of problem spot that enables mobile devices
to flexibly cope with various network problems. The contribu-
tions of this paper are summarized as follows.
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o We show that, by using MoNPI, mobile devices are au-
tonomously able to understand the network’s situation,
which is like a black box to end nodes heretofore.

e MoNPI can detect network problems via ordinary data
transmissions without requiring additional protocols or
equipment installation.

o We leverage deep learning to devise a mobile device-centric
scheme, whereas most of the related work utilized deep
learning to devise solutions for huge systems or infrastruc-
tures.

« We conducted various analysis and experiments, and the re-
sults demonstrate that a mobile device using MoNPI is able
to identify the problem spot having the most likely cause of
network quality degradation.

The remainder of this paper is organized as follows. Firstly,
we introduce related work and describe MoNPI’s novelties and
advantages compared to the related work in Section II. We ex-
plain challenges and problem situations considered in this paper
in Section III. After that, in Section IV, we explain the design
of MoNPI. In Section V, we give an explanation about data col-
lection for learning in MoNPI. In Section VI, we explain anal-
ysis and experiments, and evaluate the performance of MoNPI.
Section VII describes the discussion, and Section VIII finally
concludes this paper.

II. RELATED WORK

In this section, we introduce various researches relevant to
our research. After that, we describe novelties and advantages
of MoNPI compared to the related work.

Deep learning has been utilized mostly in image recognition,
computer vision, speech recognition, etc. However, recently,
various libraries and platforms for deep learning have been pro-
posed, and many researchers have tried to use deep learning
for improving networking and communication. To predict the
amount of data traffic is important for ISPs to operate network
infrastructures efficiently and conduct resource allocation prop-
erly. Poupart et al. described how to use several learning tech-
niques to estimate flow sizes based on information extracted
from the first few packets of each flow [7]. In addition to the
amount of data traffic, the characteristics of data traffic should
also be considered to control and manage network infrastruc-
tures properly. Arzani et al. conducted a research on perfor-
mance problems in data centers [8]. They presented a diagnos-
tic tool to identify causes of performance problems in data cen-
ters. Z. Wang utilized neural network and deep learning to pro-
pose a method for protocol classification and identification [9].
According to the results, the proposed method works well on
the applications. As explained above, deep learning has been
utilized to predict the amount of data traffic and recognize the
data characteristics. In addition, since deep learning method can
identify the unique situation of the network, it is also utilized
to identify security issues in networks [10]-[14]. On the other
hand, there are studies that use deep learning to find the spot
where the power transmission has a problem [15], or to deter-
mine the appearance of drones [16]. As these studies show, deep
learning is being used to identify various problems.

Including the aforementioned researches, most of the work
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using deep learning were proposed mostly for large-scaled sys-
tems, such as data centers, which are controlled centrally. How-
ever, recently, there are some researches which tried to utilize
deep learning to identify network problems in user’s devices.
Nguyen et al. proposed a framework that leverages a deep learn-
ing approach to detect cyber attacks in mobile cloud environ-
ment [17]. Similarly, Yuan ef al. proposed a machine learning
based method that utilizes features extracted from analysis of
Android application for malware detection [18]. Este et al. pro-
posed traffic classification method based on support vector ma-
chine (SVM) [19]. Authors showed that traffic can be classified
using only the transmission control protocol (TCP) information
from the user. Tan et al. proposed a method to identify unau-
thorized and anomalous network services based on the single
connection characteristic [20]. The authors analyzed the TCP
traffic information using a modified neural network. As a result,
this method identified security issues with high probability.

As shown in these studies, it is possible to identify that a
problem has occurred in the network with only information ob-
tained from the user’s devices. However, most of the studies
only identify whether a problem occurred. Also, there was a
lack of research to identify the problem spot. For example, when
a congestion problem occurs due to high traffic, it is necessary
to determine where this problem occurred among access point
(AP), server, or core networks to solve the problem. In order to
solve the network problem, it is necessary to be able to identify
both what and where problem occurred. Also, mobile devices
are able to collect various information around users, so the mo-
bile devices can be effectively utilized to understand the users’
communication/network situation or context.

Motivated by these, we leverage deep learning to devise a mo-
bile device-centric network problem spot identification. Com-
pared to the related work, our research has novelties and
advantages in several perspectives. Firstly, most existing re-
searches, focusing on recognizing network problems, devised
infrastructure-centric methods. However, MoNPI is the mobile
device-centric method, and this paper shows that it is possible to
detect the problem spot in network from the standpoint of end
node. Secondly, by leveraging deep learning, MoNPI is able to
remotely recognize the network situation, so that the device us-
ing MoNPI can make decisions more intelligently. Thirdly, we
evaluate the performance of MoNPI using not only simulation
but also empirical data, which means that MoNPI is verified
practically.

III. PROBLEM STATEMENT

In this section, we explain why it is hard for mobile devices
to understand network situations and identify the problem spot
having the most likely cause of network quality degradation. Af-
ter that, we explain the problem situations considered in this pa-
per.

A. Challenges

As we explained in Section II, many researches utilized deep
learning for networks, but most of them focused on security
issues in networks [10]-[14], [21]-[23]. Few researches tried
to identify network problems by using deep learning. Among
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Fig. 2. The typical topology of today’s network in a mobile environment.

them, some researches [7], [8] tried to utilize deep learning to
identify performance problems, but the research’s target system
is a data center which uses a centralized control. In fact, with-
out using deep learning, most of components in data centers can
be monitored continuously and controlled in real time using ad-
vanced network technologies, such as software defined network
(SDN) and network function virtualization (NFV). However, un-
like data centers, it is challenging for end nodes, such as mobile
devices, to understand network situations and identify the prob-
lem spot having the most likely cause of network quality degra-
dation. The major causes of this are as follows.

1. Limited information of network: Without cooperation of
ISPs or infrastructures, the mobile device should gather in-
formation measured only by the end node itself. Thus, using
such limited information, it is hard for the device to guess
the network situation correctly.

2. Different characteristics of measured parameters: In the
end node, different parameters are collected depending on
the layer. For instance, in physical and data link layer, in-
formation mostly about communications can be collected,
whereas parameters collected in network and transport layer
have more to do with networks. These parameters have very
different characteristics, so they should be preprocessed to
obtain meaningful information.

3. Many factors influencing the network: In data commu-
nications, data are transmitted through many intermediate
nodes between the device and server. Thus, there are a lot
of factors which can influence the network, as well as the
state of the device and server.

4. Huge size and complexity of network: Modeling is one
of the widely used methods to represent a certain system or
phenomenon. However, today’s networks used by mobile
devices have complex and huge topology, and there are a lot
of factors to be considered. Thus, it is practically impossible
to model the entire network with a well-defined mathemati-
cal/analytical/systematic method.

Deep learning is able to deal with complicated problems,
which is a significant advantage. Motivated by this, we lever-
age deep learning to overcome the above challenges and devise
a mobile device-centric network problem spot identification.

B. Problem Situations

In this paper, we consider two representative wireless/mobile
networks, wireless local area network (WLAN) and cellular net-
work, which are the most widely used networks these days, as
target networks of MoNPI. Fig. 2 shows the typical topology
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of networks in a mobile environment. When a mobile device
downloads data from a server, the data transmitted by the server
is delivered to the mobile device through the core network. This
procedure can be divided into three parts as shown in the figure.

o The first part is that the data is transmitted from the server.

« The second part is that the transmitted data is delivered to

the cell tower or the AP through the core network.

o The last part is that the data is finally delivered to the device

from the cell tower or the AP.

In this situation, the poor performance due to the abnormal
state of the server indicates the problem in the part 1. Similarly,
the part 2’s problem means that there is a problem in the core
network provided by the ISP. In addition, a problem can occur
in the part 3 when the cell tower is overloaded due to a large
crowd around the tower. If the mobile device is able to identify
the problem spot in network, it is possible for the device to take
a more proper action, and we discuss the possible actions in
Section VII.

IV. DESIGN OF MONPI

In this section, we firstly describe the overall design of
MoNPI. Then, we explain how to measure parameters used in
MOoNPI and process them. Lastly, we give detailed explanations
about the learning model of MoNPI.

A. Overall Design

Fig. 3 shows the overall design of MoNPI. As shown in the
figure, MoNPI in a mobile device measures various parameters.
After that, MoNPI processed collected data in one time window
to extract information and make an input vector, I, composed
of n values. Wiypy is the length of time window, and the step
length of time window, §, means the time between consecutive
windows. MoNPI serves the vector as the input into the deep
learning model, which is already trained. Using the input vector,
the model returns the result which indicates where the problem
is expected to occur. The above processes are performed repeat-
edly, and MoNPI infers the problem spot by considering one or
more results together.

B. Parameters Used for MoONPI

In mobile devices, various parameters can be measured in dif-
ferent layers, such as physical, data link, network, transport, and
application layer. To consider the network situation, MoNPI uti-
lizes many parameters except parameters collected in applica-
tion layer because collecting the parameters in application layer
requires the modification of application program. Table 1 lists
the parameters used for MoNPI.

1. Parameters collected in physical and data link layer: In
physical and data link layer, MoNPI is able to obtain infor-
mation mostly about communications, such as throughput,
receive (RX) drop count, and frame receive delay of long
term evolution (LTE). From these values, MoNPI is able to
guess the communication situation around the device and
the communication quality of the last one-hop, the link be-
tween the device and the cell tower or the AP.

2. Parameters collected in network and transport layer:
MOoNPI utilizes parameters in network and transport layer,
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Fig. 3. The overall design of MoNPI.

Table 1. Communication and network parameters used for MoNPI.

Layer Parameters
Throughput
Physical and data link RX drop count

Frame receive delay of LTE

Congestion window size
Received window size
Packet inter-arrival time
RTT

Network and transport

such as congestion window size (CWND), received window
size (RWND), packet inter-arrival time, and round trip time
(RTT). These parameters represent characteristics of end-
to-end connection between the mobile device and server.
Moreover, the parameters are affected by the state of core
network, so MoNPI utilizes these values to understand the
state of end-to-end network.

C. Preprocessing

MOoNPI utilizes diverse parameters which have different char-
acteristics, so the preprocessing is essential to obtain meaning-
ful information from such various parameters. Among the pa-
rameters’ characteristics, scales or ranges are most significantly
different. For instance, in general, the average value of conges-
tion window size is thousands of times larger than that of RX
drop count. If values of one specific parameter are much larger
than those of other parameters, the learning model is excessively
influenced by the specific parameter, so the model is trained im-
properly. To avoid this problem, MoNPI conducts the normal-
ization for each parameter. If there are some collected values of
a certain parameter, z, the ith value, x;, is normalized as fol-
lows:

2} = (@i = Tmin)/ (Tmax — Tamin), M
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where i, and 2. are the minimum and maximum value
among values of z, respectively. z indicates the normalized
value of z;.

After the normalization, MoNPI calculates each parameter’s
mean, average, standard deviation, and maximum values to
extract various characteristics from the collected parameters.
While calculating the above values, the time window length,
Winput. 18 important because the calculated values are changed
depending on the time window length. To reflect the character-
istics of end-to-end connection, Wiy, should be larger than
one RTT. Thus, we set Wi,y to 500 ms since RTT on mobile
usually ranges between 100 and 1000 ms according to [24].

D. Deep Learning Model for MoNPI

To properly configure learning model is important to accu-
rately identify problem spot having the most likely cause of poor
network quality. We use various techniques of deep learning to
configure the learning model of MoNPI.

1. Imitializer: Each node in hidden layer has a weight, and
this value is initialized before starting learning. Many re-
searchers conducted researches on initialization and proved
that determining the initial weight value properly is impor-
tant to improve the learning performance. Xavier initial-
izer [25] automatically determines the scale of initialization
based on the number of input and output nodes, and it is one
of the most widely used initializers in deep learning. The al-
gorithm used in Xavier initializer is rather simple compared
to other initializers, such as LSUV [26] and MSRA [27], so
MoNPI uses Xavier initializer.

2. Optimizer: Similar to the initializer, to choose a proper
optimizer is important to achieve better performance. The
Adam optimizer [28] was recently announced, and it is an
extension to stochastic gradient descent. This optimizer is a
popular algorithm in deep learning because it achieves good
results fast. Empirical results demonstrate that Adam op-
timizer works well in practice and compares favorably to
other stochastic optimization methods. Thus, we utilize the
Adam optimizer for MoNPI.

3. Activator: Each node in neural networks needs an activa-
tion function which defines the output of the node. Among
various activators, rectified linear unit (ReLU) has been
widely used because ReLU usually proves faster to train
than standard sigmoid units, which is the most popular ac-
tivation function in the past [29]. Thus, ReLU is used for
nodes in learning model of MoNPI.

4. Techniques for preventing overfitting: In MoNPI, the
dropout technique [30] is used to prevent the overfitting
problem, which is the production of an analysis that cor-
responds too exactly to a particular set of data. When us-
ing dropout, nodes are randomly dropped along with their
connections from the neural network during training, which
prevents nodes from co-adapting too much. The probability
of retaining a node, p, controls the intensity of dropout, and
the lower value of p means more dropout. Typical values
of p for learning are in the range 0.5 to 0.8, and we set p
of MoNPI to 0.7 during the training. The detailed expla-
nation about determining this value will be given in Sec-
tion VLA.2.



LEE et al.: MOBILE DEVICE-CENTRIC APPROACH FOR IDENTIFYING PROBLEM ...

5. Softmax and One-hot encoding: MoNPI analyzes the col-
lected information and returns the result which indicates
where the problem is expected to occur. The softmax func-
tion is for a generalization of the logistic function, and the
output of softmax function can be used to represent a cate-
gorical distribution. In addition, when there are some val-
ues, one-hot encoding picks the largest value, and then sets
the value to 1. At the same time, the remaining values are
changed to 0. Thus, MoNPI utilizes softmax function with
one-hot encoding to find the case which is most likely.

E. Identification Method Using Consecutive Results

Using one input vector, the model generates one result, and
MoNPI is able to infer the problem spot according to the result.
However, parameters related to communication or network can
fluctuate in a split second, which may lead to the misjudgment
of MoNPI. Thus, by default, MoNPI uses multiple results to-
gether to infer the problem spot more accurately. Woutput Means
the number of results used to infer the problem spot as shown
in Fig. 3. MoNPI accumulates Woyutput results, and then picks
the problem spot that the learning model pointed out most fre-
quently in a short period of time. With this method, MoNPI
can obtain information about the tendency of the network from
multiple packets. Therefore, MoNPI can more accurately grasp
the meanings of network parameters and reduce the influence of
exceptional parameters obtained by temporary network fluctua-
tion. We will explain an evaluation on the effectiveness of this
method and show the result of evaluation in Section VLE.

V. DATA COLLECTION

This section explains the data collection to make data sets for
MoNPI. We explain the simulation data collection firstly, and
then give an explanation about the collection of empirical data.
It should be noted that we collected only data which can be ob-
tained from mobile devices since MoNPI is a device-centric ap-
proach. In addition, we collected data by selecting frequently
used scenarios and fault cases that actually occur in real world.

A. Simulation Data Collection

Using a simulator, we are able to control various factors rele-
vant to server and network equipment, so various situations can
be constructed in the simulation. We used a network simulator,
ns-3 [31], and considered LTE and Wi-Fi networks which are
most widely used by mobile users these days.

A.1 LTE Network Scenario

In the first simulation, we collected data while performing
data communication using the LTE network. We constructed the
LTE network similar to the topology shown in Fig. 2. A user
equipment (UE) had a wireless connection with evolved node B
(eNB) which provided LTE communication, and the UE com-
municated with the server at a data rate of 25 Mbits/s. We used
Verizon wireless network characteristics from [32]. The eNB
forwarded data to packet data network (PDN) gateway by wire,
and then the PDN gateway transmitted data to the server through
the core network. This is a general topology of today’s LTE net-
works. With this topology, we considered three cases as follows.
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Each fault case was selected on the assumption of a general sit-
uation that would occur in a practical situation.

« Normal case: As its name says, this case represents the nor-
mal situation without any problem of data communication.
Data transmission was performed with error rate of 0.01%
or less.

o Fault case 1: The server suffers from packet drops caused
by receiving problem of medium access contention (MAC)
layer.

o Fault case 2: There is congestion caused by traffic from mul-
tiple UEs to the server. In this case, we experimented with
6 UEs.

A.2 Wi-Fi Network Scenario

In the second simulation, we tried to construct a general topol-
ogy of Wi-Fi network where data was transmitted through an AP
in Wi-Fi network environment. In this simulation, mobile users
were connected to the AP, which was connected to the server
through the Internet by wire. To emulate practical situations,
users were configured to walk randomly within the communi-
cation range of the AP. Using this topology, three cases that can
actually occur in reality were considered as follows.

o Normal case: This case represents the normal situation
without any problem of data communication with an error
rate of 0.01% or less.

o Fault case 1: Unlike LTE, many APs are not controlled cen-
trally in general, so there is a high probability that com-
munication or network problems occur in the APs. In this
case, we emulated the situation where the throughput of data
communication deteriorates due to the problem of AP.

o Fault case 2: In this case, the throughput of data commu-
nication is degraded because of a problem in the server re-
ceiving data.

The UE using TCP communicated with the server at a rate of

25 Mbits/s for 60 s in all the simulations. While running simu-
lations, we measured the parameters explained in Section I'V.B.

B. Empirical Data Collection

Empirical data is necessary to verify the performance of
MOoNPI in practical situations. We made a scenario where an
Android smartphone (Galaxy Nexus) was connected to an AP
through Wi-Fi, and the smartphone transmitted data to the server
(linux PC) with Iperf application [33]. The AP was connected
to the server by wire, and the network topology was similar to
the simulation in Section V.A.2.

In addition to the upload scenario explained above, we made
an additional scenario where the smartphone downloaded files
through the Internet. In these two scenarios (upload/download),
four cases were considered as follows.

o Normal case: This case represents the normal situation

without any problem of data communication.

o Fault case 1: DDoS is an attack that an attacker maliciously
generates heavy traffic such as UDP flooding to cause heavy
congestion in router or server [34]. To emulate the DDoS
attack, a device that imitated an attacker transmitted a huge
amount of UDP packets to make the AP congested.

o Fault case 2: 5 smartphones using TCP simultaneously
transmitted data to the server.
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Fig. 4. The analysis on the effect of normalization.

o Fault case 3: The quality of communication was degraded
due to a problem of AP in this case.
All data transmissions were conducted for 60 s. In each case,
we measured the parameters explained in Section IV.B using
Wireshark application [35].

VI. PERFORMANCE EVALUATION

In this section, we explain various experiments and analyze
the results of experiments. Firstly, we analyze techniques ap-
plied to MoNPI. After that, we conduct an analysis on the iter-
ation times for learning and configurations of learning model.
Then, we evaluate the performance of MoNPI and show each
parameter’s influence on MoNPI’s performance. In addition, we
show the effectiveness of identification method using consecu-
tive results.

To verify performance, we utilized TensorFlow library [36]
to implement the learning model of MoNPI. Also, we created
a data set that prevents overfitting by randomly combining the
data source from the Section V and used it for learning. We im-
plemented MoNPI on Windows 10 using the desktop equipped
with Intel(R) Xeon(R) CPU E5-2630 v3 and 32GB RAM. We
trained the learning model by utilizing Nvidia’s compute unified
device architecture (CUDA) on NVIDIA GeForce GTX 980 Ti
graphic card for faster learning.

A. Analysis on Learning Techniques Applied to MoNPI

In this subsection, we analyze the effect of techniques used
for MoNPI. We conduct experiments to show the effectiveness
of normalization and dropout, and then analyze the accuracy and
processing time depending on the number of iterations.

A.1 Normalization

As explained in Section IV.C, the ranges and scales of mea-
sured values are very different from one another. Thus, the pre-
processing is essential to make the learning model of MoNPI
learn the characteristics of parameters properly, and we used the
normalization method. In this analysis, we prepared two data
sets, the original value set and normalized value set, based on
the collected data in LTE network scenario explained in Sec-
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Fig. 5. The accuracy results depending on the probability of retaining a node
and the number of iterations.

tion V.A.1. Using the sets, we conducted the learning and com-
pared the results.

Fig. 4 shows the result of comparison. The accuracy means
the number of right estimations over the number of total estima-
tions. As shown in the figure, in the beginning of the learning,
the accuracy values in both cases rise as the iteration increases.
However, after the number of iteration becomes larger than 100,
the accuracy in the case without normalization does not increase
any more and fluctuates after that. This result proves that the nor-
malization can improve the accuracy for analysis on networks.

A.2 Dropout

We used dropout to avoid the overfitting problem as explained
in Section IV.D. If the probability of retaining a node, p, is 0.7,
nodes are dropped with a probability of 0.3 every iteration. To
analyze the effect of dropout, we conducted learning using the
data set used in the previous experiment and measured the accu-
racy by varying p. According to [30], typical values of p are in
the range 0.5 to 0.8, so we changed p from 0.5 to 1.

As shown in Fig. 5, the accuracy in every case rises as the
iteration increases similar to Fig. 4. However, when p is 1, in
other words, when the dropout is not used, the increase rate of
accuracy is significantly decreased after the iteration becomes
larger than about 500. Moreover, there are some fluctuations
unlike other cases’ graph lines, which means that the model was
not trained properly without using dropout.

Using the test set, which was a tenth of the total data set and
not used for training, we evaluated the estimation performance
of the models trained using different p values. Fig. 6 shows the
results, and it is easy to see that the result without using dropout
is poor compared to the results of other cases. Through the re-
sults, we decided to use the dropout with p of 0.7 for MoNPI to
avoid the overfitting problem and obtain better performance.

B. Analysis on Iteration Times

As shown in the results of the previous experiments, the ac-
curacy increases as the number of iterations increases. How-
ever, after the learning operation is performed sufficiently, the
increase rate of accuracy significantly decreases, and the per-
formance improvement finally reaches the limit. To analyze the
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Fig. 7. The accuracy and processing time depending on the number of iterations.

relation between the performance improvement and iteration in
learning process, we measured the learning time and accuracy
according to the number of iteration. We measured them while
conducting the learning similar to the previous experiments.

Fig. 7 shows the results of this analysis. In the figure, the
accuracy rises according to the increase of iteration. However,
after the learning is performed sufficiently, the accuracy does
not increase anymore. On the contrary, the processing time for
learning naturally keeps increasing as the number of iterations
increases. Thus, for efficient learning and satisfactory perfor-
mance, the appropriate number of iterations should be deter-
mined. In this analysis, after the number of iterations is more
than about 5000, the accuracy scarcely increases. According to
this result, we decided to set the number of iterations for learn-
ing process of MoNPI to 5000. In this case, as shown in Fig. 7,
the training time of the neural network takes 150 s.

C. Analysis on Configurations of the Learning Model

To configure learning model properly is important to provide
the acceptable performance. Thus, in this subsection, we ana-
lyze the learning model’s performance by changing the configu-
ration of model, and determine the configuration values suitable
for MoNPI.
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Fig. 8. The processing time depending on the depth and size of hidden layer.
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Fig. 9. The accuracy results depending on the depth and size of hidden layer.

C.1 Performance Depending on the Number and Size of Hidden
Layers

Firstly, we analyze the performance depending on the number
and size of hidden layers. We measured the processing time by
varying the number and size of hidden layers, and Fig. 8 shows
the result. In the figure, the size of hidden layer means the num-
ber of nodes composing each layer, and d in the legend means
the depth of neural network. In other words, d is the number of
hidden layers in Fig. 3. As shown in Fig. 8, the processing time
naturally rises as d or the size increases. Especially, the process-
ing time rises significantly when the size is increased from 256
to 512.

In addition, we measured the accuracy by varying the size and
d. As shown in Fig. 9, the accuracy rises as the size of hidden
layer increases in all cases. However, when d is small (1 or 2),
in other words, when the hidden layer is too shallow, it is hard
for the model to learn characteristics of networks profoundly.
Similar to the depth, the size also needs to be large enough to
provide acceptable accuracy performance. In conclusion, con-
sidering the above results, we decided to set the size and depth
to 256 and 3, respectively.

C.2 Performance Depending on Learning Rate

The learning rate affects the accuracy and time required to ob-
tain acceptable result. Thus, we analyze the accuracy depending



266

1 : : :
—r=0.1
-e-r=0.01
0.9-=r=0.001 Y=o
P
o°
08 ¢
|
307
I
= 5
Q
206F
0.5
044‘
)
0.3

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iteration

Fig. 10. The accuracy results depending on the learning rate and number of
iterations.

Table 2. Accuracy results of MoNPI.
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Table 3. Analysis on influence of each parameter in the simulation experiment.

Simulation Empirical experiment
LTE Wi-Fi Wi-Fi Wi-Fi
(down- (upload)
load)

Total 90.56% | 90.26% | 81.83% 99.36%
Normal case | 92.57% | 95.41% | 68.91% 100.00%
Faultcase 1 | 98.78% | 83.03% | 76.27% 100.00%
Faultcase 2 | 81.65% | 100% 100.00% 97.50%
Fault case 3 | N/A N/A 81.65% 99.13%

on the learning rate, and Fig. 10 shows the result. When the
learning rate is too large, a local minima problem can occur,
and it may be hard for the model to learn properly, so that the
model cannot provide the acceptable performance. On the con-
trary, when the learning rate is too small, it takes a longer time to
obtain the acceptable accuracy. The figure shows such charac-
teristic of learning rate. Thus, we set the learning rate in MoNPI
to 0.01 based on the result.

D. Evaluation on Problem Spot Identification of MoNPI

Using analysis results explained in the previous subsections,
we configured MoNPI. Then, we evaluated MoNPI’s perfor-
mance of problem spot identification using the data sets ex-
plained in Section V. Table 2 shows the each case’s accuracy
result as well as the overall accuracy result of each scenario.
As shown in the table, MoNPI identified the problem spot
in network accurately. This result shows that mobile devices
using MoNPI are able to understand networks’ situations au-
tonomously. In these results, the method explained in IV.E was
not applied yet, in other words, the number of results used to
infer the problem spot, Woutpus, 18 1.

In addition, we analyze each parameter’s influence on
MoNPI’s performance. A certain parameter’s influence means
the accuracy result when MoNPI conducts problem spot iden-
tification using only the parameter. As shown in Table 3 from
the simulation experiment and Table 4 from the empirical ex-
periment, various parameters were utilized together to distin-
guish problem spots. This result shows that different parameters
should be considered to understand complex and diverse net-

Parameter LTE Wi-Fi
Throughput (mean) 50.44% 56.34%
Throughput (max) 57.52% 24.18%
Throughput (median) 55.75% 56.34%
Throughput (std) N/A 56.04%
CWND (mean) 44.54% 56.34%
CWND (max) 47.78% 56.34%
CWND (median) 48.96% 56.34%
CWND (std) 56.04% 56.34%
RWND (mean) 55.13% 74.45%
RWND (max) 54.3% 68.16%
RWND (median) 48.22% 73.65%
RTT (std) 33.92% N/A
Inter-arrival time (mean) 42.77% 56.34%
Inter-arrival time (max) 41.00% 56.34%
Inter-arrival time (median) 32.44% N/A
Inter-arrival time (std) 40.70% 56.34%
RX drop count 24.48% 50.14%
Frame receive delay of LTE  51.91% N/A

Table 4. Analysis on influence of each parameter in the empirical experiment.

Parameter Wi-Fi (down) Wi-Fi (up)
Throughput (mean) 67.73% 16.98%
Throughput (max) 50.42% 16.98%
Throughput (median) 23.29% 16.98%
Throughput (std) 65.81% 16.98%
RWND (mean) 23.29% 91.93%
RWND (max) 23.29% 16.98%
RWND (median) 23.29% 76.43%
RWND (std) 51.28% 16.98%
RTT (mean) 51.49% 91.29%
RTT (max) 51.28% 93.20%
RTT (median) 25.42% 90.23%
RTT (std) 51.49% 16.98%
Inter-arrival time (mean) 23.29% 16.98%
Inter-arrival time (max) 59.61% 16.98%
Inter-arrival time (median) 23.29% 16.98%
Inter-arrival time (std) 56.19% 16.98%
RX drop count 23.29% 35.66%

work situations.

E. Effectiveness of Identification Method using Consecutive Re-
sults

As explained in Section IV.E, MoNPI uses multiple results
together to infer the problem spot more accurately. To verify
the effectiveness of this method, we applied the method to the
results shown in Section VI.D. Fig. 11 shows accuracy results
depending on the number of results used to infer the problem
spot, Woutput- As shown in the figure, the accuracy values of all
scenarios rise as Woyuiput increases, and they are always 1 when
Woutput 18 larger than 60. In Wi-Fi download scenario, without
using the method, in other words, when Wqyiput is 1, MoNPI
identifies the problem spot with a accuracy of 0.81. However,
MOoNPI using the method always identifies the problem spot ac-
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Fig. 11. The accuracy results depending on the number of results used to infer
the problem spot.

curately by considering results for just 3 s'. This result shows
that, by using the method, MoNPI is able to infer the problem
spot accurately regardless of momentary changes in networks or
communications.

VII. DISCUSSION

In this paper, we chose some major problem which can oc-
cur frequently in practical situations. If a device using MoNPI
identifies what the problem is, the device is able to take a proper
action. For instance, if the device knows that the AP used by
the device is congested due to many other devices using the AP,
the device can try to make a new connection with another usable
APs around the device. In addition, to use cellular networks in-
stead of WLANS can be a good choice for the device in this sit-
uation. On the other hand, if the problem is because of the poor
state of server, the device should consider utilizing another ser-
vice which can be an alternative to the service being used by the
device. As explained above, by using MoNPI, mobile devices
are able to conduct data communication more intelligently. The
aforementioned examples are some of many countermeasures.
Thus, to take other proper actions or utilize techniques handling
network problems with MoNPI brings more performance im-
provement.

VIII. CONCLUSION

Nowadays, mobile devices have powerful computing power
and are able to collect various network information, so they can
be utilized to infer the network situation and context around the
people. However, it is not trivial for mobile devices to under-
stand the state of networks because today’s networks are not
only large but also complex and dynamic. Moreover, it is hard
to devise models or algorithms capable of presenting the net-
works accurately or analytically. To overcome such limitation,
we leverage deep learning to devise a mobile device-centric net-
work problem spot identification, MoNPI. We designed and im-
plemented MoNPI, and conducted various evaluations. Through
the results of evaluations, we demonstrated that a mobile de-
vice with MoNPI is able to identify the spot having the most
likely cause of poor network quality. In conclusion, by using

1§ was 50 ms in this experiment.
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MoNPI, mobile devices are able to understand networks’ situa-
tions without cooperation of other devices or systems and thus
make decisions more intelligently.

We have several directions for future work. This paper shows
that MoNPI is able to identify some major network problems
which can occur frequently in practical situations. Furthermore,
we plan to improve MoNPI to recognize more complex and var-
ious network problems. We will analyze various parameters
to improve MoNPI to more accurately understand situations in
which communication quality changes frequently occur, such as
downlink or mobility.
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