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Adversarial Attack on DL-based Massive MIMO
CSI Feedback

Qing Liu, Jiajia Guo, Chao-Kai Wen, and Shi Jin

Abstract: With the increasing application of deep learning (DL) al-
gorithms in wireless communications, the physical layer faces new
challenges caused by adversarial attack. Such attack has signifi-
cantly affected the neural network in computer vision. We choose
DL-based channel state information (CSI) to show the effect of ad-
versarial attack on DL-based communication system. We present
a practical method to craft white-box adversarial attack on DL-
based CSI feedback process. Our simulation results show the de-
structive effect adversarial attack causes on DL-based CSI feed-
back by analyzing the performance of normalized mean square er-
ror. We also launch a jamming attack for comparison and find that
the jamming attack could be prevented with certain precautions.
As DL algorithm becomes the trend in developing wireless commu-
nication, this work raises concerns regarding the security in the use
of DL-based algorithms.

Index Terms: Adversarial attack, CSI feedback, deep learning,
wireless security.

I. INTRODUCTION

DEEP learning (DL) is a promising technology in the sixth
generation (6G) communication system [1]. DL-based al-

gorithm is used to deal with the huge data produced in the
massive multiple-input multiple-output (MIMO) system. The
DL-based algorithm can effectively optimize end-to-end perfor-
mance despite the need for pre-defined mathematic models [2],
[3]. As the DL-based algorithm shows superiorities, it is broadly
applied to physical layer, e.g., channel estimation, modulation
recognition, and channel state information (CSI) feedback [4]–
[6].

Although DL algorithm is used increasingly, natural fragility
makes it susceptible to adversarial attack in computer vision.
Authors in [7] presented a fast gradient method (FGM) to gen-
erate adversarial examples, which could lead to misclassifica-
tion in neural network (NN)-based image classifier. As DL be-
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comes increasingly popular in wireless communication, atten-
tion is paid to the design of the network to improve transmission
rate while little attention is given to DL-based physical layer
security. It is first indicated in [8] that DL-based modulation
recognition network suffers from adversarial attack via FGM.
The same research team futher improved FGM while launching
an adversarial attack on an autoencoder-based end-to-end com-
munication system in [9].

However, FGM is limited in launching adversarial attack
on classification task. Attack on the reconstruction task de-
mands for a different design of adversarial perturbation. Inspired
by [10] that adversarial attack endangers DL-based classifier
and maliciously leads to false feature extraction of image, we
explore the threats that DL-based CSI feedback faces under ad-
versarial attack. The design is based on the similarity between
feature extraction in computer vision and information compres-
sion in communication system.

In this paper, we study the security of the DL-based CSI feed-
back under adversarial attack. We launch a white-box adversar-
ial attack with a well-designed perturbation on DL-based mas-
sive MIMO CSI feedback network, called CsiNet, which was
proposed in [6]. We then compare the output of CsiNet after the
adversarial attack with the original CSI to evaluate the influence
caused by the attack. We carry out a jamming attack by adding
white Gaussian noise during transmission as comparison. Our
specific contributions are as follows. First, we discover that ad-
versarial attack can cause a devastating impact on CSI feedback
process compared to jamming attack. Second, we train the orig-
inal model in additional white Gaussian noise (AWGN) chan-
nel and determine that training in this scenario can efficiently
prevent CsiNet from white Gaussian noise. Nonetheless, adver-
sarial attack could still disable CsiNet from proper functioning.
Encoder of CsiNet compresses CSI into codewords of different
dimension. Therefore, we compare the CsiNet trained with dif-
ferent compression rate and discover that the network with lower
compression rate presents better robustness against adversarial
perturbations. We conduct experiments in indoor and outdoor
environments and find that the network suffers danger in both
scenarios.

The remainder of this study is organized as follows. Section II
introduces the system model and the CSI feedback that our ex-
periments are based on. Section III gives a brief introduction
of adversarial attack and proposes a method to attack CsiNet in
detail. The simulation results and analysis are presented in Sec-
tion IV. The conclusion is given in Section V.

1229-2370/19/$10.00 © 2020 KICS



LIU et al.: ADVERSARIAL ATTACK ON DL-BASED MASSIVE MIMO ... 231

In
p
u

t

C
o

n
v
 +

 B
N

 +
 L

R
e
L

u

R
es

h
ap

e

F
C

 +
 L

in
ea

r

(
)

3
2

3
2

2
´

´

(
)

3
2

3
2

2
´

´

(
)

2
0
4
8

1
´

F
C

 +
 L

in
ea

r

R
es

h
ap

e

C
o

n
v
 +

 B
N

 +
 L

R
e

L
u

C
o

n
v
 +

 B
N

 +
 L

R
e

L
u

C
o

n
v
 +

 B
N

 +
 L

R
e

L
u

R
ef

in
eN

et

C
o

n
v

 +
 B

N
 +

 S
ig

m
o

id

O
u

tp
u

t(
)

1
M
´

(
)

1
M
´

(
)

2
0
4
8

1
´

(
)

3
2

3
2

2
´

´

(
)

3
2

3
2

2
´

´

(
)

3
2

3
2

2
´

´

(
)

3
2

3
2

2
´

´

(
)

3
2

3
2

2
´

´

CsiNet encoder CsiNet decoder

UE BS

(
)

3
2

3
2

2
´

´

RefineNet

s s
Feed back

H

Ĥ

Fig. 1. Architecture of CsiNet: An encoder constructed with convolutional, reshape, and fully connected layers; decoder with fully connected and reshape layers
and two RefineNet units connected in series. RefineNet unit is blocked specifically.

II. SYSTEM MODEL

A. Massive MIMO System

We consider a system with Nt antennas at the base station
(BS) and a single antenna at the user equipment (UE), which uti-
lize orthogonal frequency division multiplexing (OFDM) with
Ns subcarriers. We denote the received signal of UE as follows.

yn = h̃H
n vnxn + zn, (1)

where xn represents the transmitted signal, zn is the additional
noise, h̃n ∈ CNt×1 and vn ∈ CNt×1 are the channel fre-
quency response and the precoding vector, respectively, where
n = 1, 2, · · ·, Ns. The downlink CSI can be described as
H̃ = [h̃1, h̃2, · · ·, h̃Ns

]H ∈ CNs×Nt stacked in spatial fre-
quency domain. To reach high quality downlink transmission,
BS can design a channel precoding vector with knowledge of
downlink CSI. Downlink CSI is first estimated at UE and then
fed back to BS in frequency division dual (FDD) system, where
downlink and uplink channels have no reciprocity. CSI feedback
process can lead to a great overhead and occupy precious band-
width. Therefore, 2D discrete Fourier transformation (DFT) is
used to transform H̃ into angular-delay domain to reduce feed-
back overhead.

H = FdH̃FH
a , (2)

where Fd and Fa are Ns × Ns and NT × NT DFT matrices.
The transformation enables H to be sparsified in angular-delay
domain.

As the time delay between multipath arrival lies within a lim-
ited period, the delay is presented such that the last several rows
of H tend to be infinitely close to zero. Only the firstNc rows of
H exhibit non-zero values. Therefore, practical channel matrix
H is truncated into Nc × Nt, by which the parameters waiting
to be fed back are effectively reduced without interfering with
transmission quality.

B. CSI Feedback

Two main approaches of CSI feedback are available. One
is digital CSI feedback, which compresses CSI, and quantiza-
tion is applied to generate a bit stream for uplink transmis-
sion [11]. The other is analog CSI feedback, which avoids quan-
tization by transmitting downlink CSI through uplink channel
using unquantized quadrature-amplitude modulation [12]. Ad-
versarial attack on digital CSI feedback is similar to attack on
digital end-to-end communication system, which was proposed
in [9]. Therefore, we present a method to start adversarial attack
on analog CSI feedback. Feedback CSI demands for a well-
designed CSI sensing and recovery mechenism, which can be
achieved by DL-based algorithm [6].

Downlink CSI after 2D DFT can be visualized as an image
where the gray-scale values represent the normalized absolute
values of CSI. Since autoencoder has been proved to be an ef-
ficient model in dealing with image reconstruction, similarities
between autoencoder and communication system are utilized by
treating encoder as transmitter and decoder as receiver.

We denote an encoder by fen : H → s ∈ CM×1, where H
refers to CSI matrix as input, and s refers to encoder’s ouput
which is an M dimensional vector. The encoder extracts latent
representations from the original input. Then, representations
would be reconstructed into the output with a decoder denoted
by fde : s → Ĥ. Concatenating an encoder with a decoder
forms an autoencoder, which would be trained to optimize end-
to-end performance with the following loss function.

min ||fde(fen(H))−H||22. (3)

An autoencoder-based NN, called CsiNet, was proposed
in [6] to feedback downlink CSI. The structure of CsiNet is
given in Fig. 1, where the encoder placed at UE compresses CSI
with one convolutional layer to generate two feature maps and
a fully connected layer to generate two feature maps into code-
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words. Compression rate is defined as follows.

γ =M/N, with N = 2Nc ×Nt. (4)

The decoder at BS is used to reconstruct original CSI from code-
words. Codewords are fed into a fully connected layer to reverse
the transformation made by the last layer of encoder. From the
output of the fully connected layer, CSI is then refined by two
RefineNet units connected in series and constructed by one last
convolutional layer. The encoder and decoder would be trained
jointly as a complete autoencoder to accomplish end-to-end op-
timization before placing seperately at UE and BS.

III. ADVERSARIAL ATTACK ON CSINET

In this section, we present the details of launching a white-box
adversarial attack on CsiNet after a brief explanation of adver-
sarial attack.

A. Adversarial Attack in Theory

It is first discovered in computer vision that an intentionally
imperceptible perturbation added on original input can gener-
ate an adversarial example, which could lead a misclassification
with high confidence. The key to launching an adversarial attack
is to find such adversarial perturbation, which can be fulfilled in
theory by solving the following problem.

max
z
||fae(x+ z)− x||22

s.t. ||z||1 ≤ δ,
(5)

where fae(·) : x → x̂ denotes an autoencoder, x refers to orig-
inal input, z is an adversarial perturbation directly added on the
input, and δ is set to constrain the adversarial perturbation. In
computer vision, L1 norm is used to limit perturbation to keep
the variation away from human perception. The constraint could
be changed into other forms, such as L2 norm to fit other kinds
of requirements. In wireless communication, L2 norm is used
to calculate signal power. Hence, we adopt L2 norm to limit the
power of perturbation. Moreover, (5) can be altered by adding
a regularization part to keep the adversarial perturbation within
limitations as follows.

max
z
||fae(x+ z)− x||22 + ε||z||

s.t. ||z||1 ≤ δ,
(6)

where ε is a scaling factor.
Several ways can be applied to solve (5) or (6). According

to [7], L-GBFS-b, which is a limited-memory algorithm for
solving large nonlinear optimization problems subject to sim-
ple bounds on the variables [13], was presented to be a fine
optimization in solving problems like (5). Reference [7] pro-
posed FGM to generate an adversarial perturbation, which leads
a misclassification successfully. However, no specific classifi-
cation is observed in attacking the reconstruction task, which
makes FGM not feasible in generating an adversarial pertur-
bation against autoencoders. The attack against autoencoders
aims at the whole reconstruction. To find an adversarial per-
turbation against autoencoders, [14] introduced that the parame-
ters of addictive bias can make a well-functional perturbation by

self-update of NN. Inspired by [14], we craft adversarial attack
against DL-based CSI feedback which is particularly introduced
in next subsection.

B. Adversarial Attack on CsiNet

We propose a white-box adversarial attack on DL-based CSI
feedback. The complete process of CSI feedback is accom-
plished by assuming that the perfect codeword is received by the
BS. Due to the broadcast nature of wireless communication, the
transmission in physical layer can be endangered by malicious
attacker. In order to study the security matter in physical layer,
we craft adversarial attack during transmission of compressed
codewords between encoder and decoder while [14] added per-
turbation directly on the inputs of autoencoder, which can hardly
be accomplished in wireless communication system. We model
an attacker, which could simultaneously send an adversarial per-
turbation to be added to the transmitted data as follows.

s̃ = s+ p, (7)

where p denotes the adversarial perturbation. Our goal is to
generate a constant perturbation, which is added on transmit-
ted codewords, and disable the decoder at BS. Subsequently, the
BS would fail to reconstruct the perfect downlink CSI, which
could further harm the communication system.

We model an attacker by a bias layer1, which does the follow-
ing calculation.

y = g(h+ p), (8)

where we set activation g(·) to be linear, such that only the bias
represented by p could be updated during back propagation.

We adopt a two-step training strategy by adding the bias layer
between encoder and decoder of CsiNet. First, we initialize the
parameters of bias layer to be zero, which are futher set to be
non-trainable to train a functioning autoencoder designed to ful-
fill the task of CSI feedback using loss function as (3). After
the model is trained, we set the model fixed and start to train the
bias layer by using a loss function as follows.

max ||fde(s+ p)−H||22 (9)

To keep the power of perturbation within limitation, a proper
constraint is need. We previously set an perturbation-to-signal
ratio (PSR), which is used to generate a value with power of
codewords using the following equation.

PSR = ||p||22/||s||22 (10)

Hence, the parameters of the bias layer make an M dimensional
vector that can be used as the addictive adversarial perturba-
tion to attack CsiNet. Epochs, number of training samples, and
learning rates of each step of the training are given in Table 1.

After the two-step training is finished, we feed test data into
the encoder to collect codewords, which are further added to a
perturbation trained earlier. Tampered codewords are sent to the
decoder to finish the reconstruction. Normalized mean square
error (NMSE) is considered an effective criterion to assess the

1We assume that the channel between the attacker and the BS is previously
known by attacker. Therefore, the channel coefficient could be compensated
before the perturbation is sent.
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Table 1. Training parameters.

Step of training Epochs Training samples Learning rate
First step 200 100,000 0.001

Second step 10 30,000 0.001
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Fig. 2. NMSE of CsiNet versus SNR with adversarial and jamming attacks for
the indoor scenario with γ set to be 1/4.

performance of CSI feedback. Therefore, we collect and com-
pare the outputs of the decoder with the original CSI by calcu-
lating NMSE between two elements as follows.

NMSE = E{||H− Ĥ||22/||H||22} (11)

To evaluate the effect of adversarial attack, we launch a jam-
ming attack on CsiNet to obtain outputs for the NMSE calcula-
tion. For the jamming attack, we generate white Gaussian noise
with the same power of the adversarial perturbation to be added
to the transmitted signal. We compare the NMSE performance
of CsiNet under two kinds of attack for the same PSR and set
the original NMSE performance of CsiNet without attack as the
baseline.

CsiNet is first trained in an ideal scenario without consider-
ation of noise. We then alter the training scenario by adding
the AWGN channel between UE and BS. We study whether
the robustness of CsiNet against adversarial perturbation can
be enhanced by certain precaution by adding random Gaus-
sian noise with different power to codewords. In our experi-
ments, we utilize signal-to-noise ratio (SNR) to set the power of
Gaussian noise in the channel during training, where the signal
refers to codewords s. We launch a jamming attack on newly
trained CsiNet for comparison. Furthermore, we extend our ex-
periments on CsiNet by adopting different compression rates.
Considering that the practical scenario is complicated, we use
both indoor and outdoor CSI datasets.

IV. NUMERICAL RESULTS

We use the COST 2100 channel model [15] to generate two
types of CSI dataset in indoor and outdoor scenarios for simula-
tion. We set the carrier frequency indoor at 5.3 GHz and outdoor
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Fig. 3. NMSE of CsiNet trained in AWGN channel versus SNR with adversarial
attack for the indoor scenario with γ set to be 1/4.

at 300 MHz. We place an ULA with 32 antennas at the BS and a
single antenna at the UE in the OFDM system with 1024 subcar-
riers. Due to the sparsity of massive MIMO-OFDM system, the
practical complex channel matrix is truncated into 32× 32 after
being transformed into an angular-delay domain. The training
and validation datasets of the first-step training contain 100,000
and 30,000 samples, respectively. The training dataset of the
second-step training contains 30,000 samples. There are addi-
tional 20,000 samples generated as testing dataset.

We first train CsiNet in an indoor ideal scenario without con-
sideration of natural noise and with compression rate as 1/4.
Adversarial and jamming attacks are launched in succession and
NMSE performances of CsiNet under each kind of attack are
given in Fig. 2. The horizontal dashed line represents the NMSE
performance of CsiNet in the no attack scenario. From Fig. 2,
CsiNet presents a significantly higher NMSE while under ad-
versarial attack compared to jamming attack. Hence, adversar-
ial attack presents a more destructive influence on CsiNet for
the same value of PSR. Moreover, the jamming attack is less
of a threat when the power of noise drops. Adversarial attack
holds a steadily destructive influence even when the power of
perturbation is small. The results of Fig. 2 are simulated in
the scenario assuming that BS could receive intact codewords.
However, wireless communication is fragile because of natural
noise. Therefore, blocks of physical layer should be designed
with consideration of the complex channel state to enhance net-
work robustness. Hence, we retrain the CsiNet in AWGN chan-
nel with different SNR set at 10 and 20 dB. Adversarial and
jamming attacks are launched on the two new models whose re-
sults are given in Fig. 3. To compare the NMSE performance of
the new models under attack with previously trained models, we
choose compression rate as 1/4 and the indoor CSI dataset.

Fig. 3 shows that NMSE of the new model under jamming
attack tends to be infinitely closer to the baseline as the value
of PSR drops. The NMSE performance of models trained in
AWGN channel indicates that certain precaution can effectively
enhance robustness of CsiNet against addictive Gaussian noise.
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However, Fig. 3 shows that NMSE performance of new mod-
els under adversarial attack drops slightly compared to Fig. 2.
When PSR is set to be −30 dB, NMSEs of CsiNet under ad-
versarial attack are 8.94 dB and 14.03 dB higher than the base-
lines in scenarios where SNR is set to be 10 dB and 20 dB, re-
spectively. In comparison with CsiNet trained without Gaussian
noise, the new model shows slight resistance against adversar-
ial attack and low-power adversarial perturbation still prevents
CsiNet from proper functioning. Therefore, the adversarial at-
tack could effectively disable the CSI feedback despite precau-
tionary measures.

Previous experiments are performed using only 1/4 as com-
pression rate, but CsiNet is designed with more than one com-
pression rate to deal with different scenarios. We extend our ex-
periments by attacking models with different compression rates
set as 1/4, 1/16, and 1/32 using indoor CSI dataset. The results
are given in Fig. 4. The network with lower compression rate
owns the NMSE performance under adversarial attack, which is
closer to the baseline. Simultaneously, the NMSE performance
of the network with lower compression rate drops quickly to
the baseline while under jamming attack. Results show that the
network with lower compression rate exhibit slight superiority
in resisting adversarial and jamming attacks. We interpret this
phenomenon as the nature of reconstruction network. A recon-
struction work relies on representations that are extracted from
original input and trained parameters. CsiNet is forced to rely
more on model parameters rather than inputs while less repre-
sentations are extracted. Hence, CsiNet is less sensible to the
variation of the latent representations.

Considering the complexity of practical channel state, we
conduct experiments in indoor and outdoor CSI scenarios to
study whether adversarial attack could endanger CSI feedback
in different scenarios. We train CsiNet with indoor and outdoor
CSI datasets in the AWGN channel, where SNR values set to
10 and 20 dB. We consider the model trained in 1/4 compres-
sion rate as example and compare the NMSE performance of
CsiNet trained for different scenarios under adversarial and jam-
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Fig. 5. NMSE of CsiNet trained for outdoor scenario versus SNR with adver-
sarial attack with with γ set to be 1/4.

ming attacks. Fig. 5 shows that NMSE of CsiNet trained with
outdoor CSI dataset appears severely influenced by adversarial
attack compared to jamming attack. In summary, CSI feedback
suffers from great threats under various circumstances, which
arouse our attention on real state environments where DL-based
physical layer would be exposed under severe threats from a ma-
licious attacker.

V. CONCLUSION

We found that the safety of DL-based CSI feedback against
random noise can be guarded by considering noise during train-
ing. However, adversarial perturbation still endangered CsiNet
despite certain precaution. Due to the broadcast nature of wire-
less communication, transmitted data can be easily tampered
with adversarial perturbation by malicious attackers. With our
work, we hope to raise concerns about the security of DL-based
physical layer. Further studies in ultra-secure communication
system are highly needed.
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