558 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL 21, NO. 6, DECEMBER 2019

MaxPass: Credit-Based Multipath Transmission for
Load Balancing in Data Centers

Minkyung Park, Sungmin Sohn, Kwangwook Kwon, and Ted Taekyoung Kwon

Abstract: Various applications require the data center networks
to carry their traffic efficiently. The data center networks usually
have a hierarchical topology and exhibit distinct traffic patterns,
which is different from the traditional Internet. These features have
driven the data center networks to reduce the flow completion time
(FCT) and to achieve high throughput. One of the possible solutions
is balancing network loads across multiple paths by leveraging
transport mechanisms like equal-cost multipath (ECMP) routing.
ECMP allows flows to exploit multiple paths by hashing the meta-
data of the flows. However, due to the random nature of hash func-
tions, ECMP often distributes the traffic unevenly, which makes it
hard to utilize the links’ full capacity. Thus, we propose an adap-
tive load balancing mechanism for multiple paths in data centers,
dubbed MaxPass, to complement ECMP. A sender adaptively se-
lects and dynamically changes multiple paths depending on the
current network status like congestion. To monitor the network
status, the corresponding receiver transmits a probe packet peri-
odically to the sender; its loss indicates a traffic congestion. We
carry out the quantitative analysis on the ns-2 simulator to show
that MaxPass can improve the FCT and the throughput.

Index Terms: Data center, equal-cost multipath (ECMP), fat-tree
topology, multipath transmission, transport layer protocol.

I. INTRODUCTION

ATA centers are a key platform to enable enterprises to mi-

grate applications to cloud systems successfully and im-
prove the flexibility of their businesses. Since there are various
types of applications running in the data centers such as cache
follower [1], data mining, and web search, the data center net-
works may have diverse traffic patterns. First of all, there exists
a various mix of short and long flows. Greenberg et al. [2] an-
alyzed traffic patterns of a real-world data center that supports
data mining. They reveal that the size of flows in the data cen-
ter network varies from about 10 KB to about 1 MB and the
short flows (under 10 KB) account for 78%, as summarized in
Table 1. According to the analysis [2], most of the small flows
are control messages which are essential to operating the data
center network. Thus, the flow completion time (FCT) of a short
flow should be minimized. However, since the traffic patterns of

Manuscript received January 17; approved for publication by Yu Hua, Divi-
sion III, July 20, 2019.

This work was supported by the National Research Foundation of Korea
(NRF) grant (No. NRF-2016M3C4A7952587) funded by the Ministry of Sci-
ence and ICT (MSIT) of Korea and BK21 Plus for Pioneers in Innovative Com-
puting (Dept. of Computer Science and Engineering, SNU) funded by National
Research Foundation of Korea(NRF) (21A20151113068).

The authors are with the Department of Computer Engineering, Seoul
National University, email: {mkpark, smsohn, kwkwon}@mmlab.snu.ac.kr,
tkkwon@snu.ac.kr.

Ted Taekyoung Kwon is the corresponding author.

Digital Object Identifier: 10.1109/JCN.2019.000047

Table 1. Flow size distribution of data mining applications in data center. Its
average flow size is 7.41 MB.

Flow size 0-10KB | 10-100KB | 100 KB-1MB | 1 MB <

78% 5% 8% 9%

Percentage

data center networks are unpredictable [3], it is difficult to carry
the short flows more quickly than the long flows. As a conse-
quence, the data center network has tried to improve the FCTs
of the short flows and the throughput of the long flows [4].

Many studies [5]-[8] have tried to balance the traffic load
among multiple links to satisfy the above requirements of data
center applications by taking advantage of their network topol-
ogy. Data centers usually use a Clos [9]-based topology such
as fat-tree [10], which scales well in large data center envi-
ronments. The Clos-based topology is hierarchical (or multi-
layered) and multi-rooted, and hence provides multiple paths
between a pair of hosts, the latter of which is used to balance the
traffic across multiple links to avoid or mitigate the congestion.
The primary technique to distribute flows across available paths
is equal-cost multipath (ECMP) [11] routing. When a packet has
arrived at a switch, it is forwarded to a next hop that is cho-
sen based on a digest from hashing the five-tuple of its TCP/IP
header. As ECMP is widely deployed to commodity switches,
other protocols can leverage ECMP to use multiple paths with-
out modifying the switches. For example, Raiciu et al. [5] adopt
multipath TCP (MPTCP) [12] using ECMP in the data center
and show its performance improvement.

Although ECMP helps to exploit the multiple path availabil-
ity, it has shortcomings due to the nature of hash functions. Since
hash collisions can occur even with different flows (i.e., differ-
ent five tuples), it is hard to utilize full bandwidth of multiple
links. Al-Fares et al. [13] show that ECMP utilizes 40-80% net-
work bandwidth with substantial fluctuation. In addition, ECMP
is not adaptive in the sense that it determines a path without con-
sidering the current status of links. That is, although there is a
less congested path between two hosts, a flow between the two
hosts might still choose the most congested path.

In this paper, we propose MaxPass, which is an adaptive load
balancing mechanism, that complements ECMP to mitigate the
above problems. MaxPass splits a single flow into multiple sub-
flows; a subflow is defined as a stream of data packets along the
same path between the sender and the receiver. MaxPass adap-
tively selects multiple different' paths to avoid congested links.
The receiver continuously tries to select (and re-select) multiple
paths (toward the sender) that are estimated to be less congested.
To probe the congestion status of each path, we adopt the idea

I Multiple paths can be partially or wholly overlapping depending on the net-
work topology, number of subflows, and path re-selection, to be detailed later.

1229-2370/19/$10.00 © 2019 KICS

Creative Commons Attribution-NonCommercial (CC BY-NC).
This is an Open Access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)
which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided that the original work is properly cited.

PARK et al.: MAXPASS: CREDIT-BASED MULTIPATH TRANSMISSION FOR ...

of sending a credit packet by the receiver in ExpressPass [14],
which is one of credit-based congestion control mechanisms.

In ExpressPass, a receiver sends a small probing packet,
called a credit packet, periodically to a sender. The receiver ad-
justs the sending rate of the credit packets by the ExpressPass
feedback control algorithm. The feedback control algorithm de-
termines the sending rate of the credit packets based on the num-
ber of dropped credit packets. The algorithm decreases the send-
ing rate as the frequency of dropped credit packets increases.
Otherwise, it increases the sending rate. Then, the sender sends
as many data packets as received credit packets to the receiver.
As each switch manages a credit queue and a data queue for
each port, the credit queue mirrors the status of the data queue in
the opposite direction for the sender. If there are many senders
that share a switch port from the senders to the corresponding
receivers, the credit queue of the opposite direction would be
congested and some credit packets would be dropped. That is,
any dropped credit packet indicates that the data queue is likely
to be congested. As a result, the sending rate of the correspond-
ing data packets is automatically limited by the rate of incoming
credit packets. The details of ExpressPass will be explained in
Section IL.D.

In MaxPass, as the receiver sends credit packets over N dif-
ferent paths; at each path, credit packets are sent at the pre-
determined initial rate. As the sender sends a data packet over
the corresponding path for each received credit packet, the re-
ceiver selects k (out of V) paths over which the data packets
arrive earlier than the ones over the other /N — k paths. Through
this process, we can determine relatively less congested &k paths
among N paths. The receiver adjusts the sending rate of the
credit packets for each subflow to adapt to the network con-
gestion. As the ExpressPass feedback control algorithm is too
aggressive to adopt in the environments of multiple paths, we
introduce a new feedback control algorithm to adjust the send-
ing rate for each subflow, to be detailed in Section II. If the re-
ceiver concludes that credit packets are dropped too frequently,
she concludes that the current k paths are too congested, and
sends credit packets through N paths to re-select k& subflows. In
general, credit packets of the long flows may be more dropped
than those of the short flows, which incurs the long tail distribu-
tion of the FCT. We will show that the adaptive path selection
(i.e., path re-selection) also address this issue.

Our ns-2 simulator-based evaluation shows that MaxPass bal-
ances traffic across different links better than ExpressPass. Also,
our evaluation with the realistic workload shows that MaxPass
significantly reduces the FCT and improves throughput com-
pared to MPTCP and ExpressPass.

The rest of the paper is organized as follows. Section II
presents the background. In Section III, we detail the design of
MaxPass. Section IV studies the performance of the MaxPass
and discusses the simulation results. Section V illustrates the re-
lated works. We conclude the paper in Section VI.

II. BACKGROUND
A. Data Center Network Topology

Some data centers have up to hundreds of thousands of ma-
chines. To provide high bandwidth in a data center, its net-

559

Fig. 1. An architecture of a 4-ary fat-tree topology is shown.

working topology typically has a hierarchical structure. Besides,
since the traffic inside the data center may go back and forth be-
tween distant racks, the switches of upper layers can be more
overloaded (and thus become bottlenecks) than those of lower
layers. A most popular way to mitigate this issue is to have a
topology of multiple roots like Clos topology [9].

A fat-tree topology [10] is a representative example of a Clos
topology. Fig. 1 shows an example of a 4-ary fat-tree. A fat-tree
topology typically consists of three switch layers called core,
aggregation, and edge layers from top to bottom. For a k-ary
fat-tree, there are k pods, each containing two layers of /2
switches each. Each switch in the lower layer (i.e., edge switch)
is directly connected to hosts and k/2 switches in the upper
layer (i.e., aggregation switch). Besides, each switch in the up-
per layer is connected with the core switches. There are (k/2)2
core switches. Each core switch has k ports, each of which is
connected to one of k pods. That is, the ith port of any core
switch is connected to pod 7. In general, a pair of hosts belonging
to different pods has (k/2)? different paths, which is the num-
ber of the core switches. On the other hand, each pair of hosts in
the same pod but not in the same edge switch has (k/2) differ-
ent paths. As shown in Fig. 1, the fat-tree with 4-ary has 4 core
switches, 8 aggregation switches and 8 edge switches. In Fig. 1,
there exists only one path from Host 1 to each core switch, and
one path from each core switch to Host x. Therefore, there are
at most 4 different paths between Host 1 and Host x, each of
which passes through a different core switch.

B. Multipath Routing

In a dense interconnection topology adopted by a data cen-
ter, multiple parallel paths exist between each pair of hosts
for link availability and bandwidth efficiency. To spread traffic
evenly over these paths, a multipath routing technique such as
ECMP [11] is required. ECMP chooses a path for a flow from
the hash result of the five-tuple of its packet header, which con-
sists of source IP, destination IP, source port, destination port,
and protocol fields. As a result, ECMP splits the traffic among
multiple paths and potentially increases their bandwidth effi-
ciency. Also, ECMP is easily adoptable since most of commod-
ity switches support such functionality. However, since ECMP
relies on the deterministic hash results, a path is statically deter-
mined regardless of whether or not the path is congested. Con-
sequently, congestions occur frequently even in network under-

560 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL 21, NO. 6, DECEMBER 2019

utilization if hash collisions occur between different flows. Fur-
thermore, current ECMP implementations limit the multiplicity
of paths to 8—16, which is sometimes less diverse than required
to deliver high bisection bandwidth for a larger data center [10].

C. Multipath Transport Protocol

MPTCP [12] is one of the multipath transport protocols that
allows a single TCP connection to use multiple paths when send-
ing or receiving data. MPTCP establishes a connection with a
three-way handshake like TCP except that its initiation packet
enables the MP_CAPABLE option informing a recipient that its
sender is capable of MPTCP and carries the keys used to authen-
ticate the endpoints. Additional subflows can be opened after the
three-way handshake. Thus a client can advertise its additional
IP addresses by sending TCP packets to the server, and then its
subflows can be opened. A newly created subflow will be linked
to the first connection after its authentication. These subflows
are linked together inside a single MPTCP connection, and send
or receive data. By repeating the process, subflows can be cre-
ated additionally using additional IP addresses or different ports
with the same IP address pair. In the former case, the path is de-
termined by the combination of source IP and destination IP. In
the latter case, ECMP routing should be able to route subflows
over different paths.

D. Credit-Based Congestion Control

Hop-by-hop credit-based congestion control is introduced for
ATM networks [15]. Before sending a data cell (i.e., a short
fixed-size data packet) to the receiver, the sender needs to re-
ceive a credit cell from the receiver. Receiving a credit cell
means that the sender sends a data cell to the receiver without
loss. Since the sender and the receiver are adjacent switches,
there is only one link between the sender and the receiver. Thus,
the credit-based congestion control algorithm works well for the
hop-by-hop congestion control. To extend the hop-by-hop con-
trol to end-to-end settings, the data packet should be delivered
over the same (but in the opposite direction) path of the credit
packet. That is, the path should be symmetric.

Cho efal. [14] recently proposed ExpressPass to lever-
age credit-based congestion control in data center networks.
Like [15], a sender can send a data packet only after receiving a
credit packet from its receiver. One of the differences from [15]
is that the sender and the receiver are not switches but hosts.
Since the data center networks are under control of its adminis-
trator, ECMP in ExpressPass makes a data packet to be delivered
over the same path (but in the reverse direction) for the corre-
sponding credit packet. Moreover, they assign each switch port
two queues: One is for data packets, and the other is for credit
packets. Note that the credit queue size is much smaller than the
data queue size since the size of a credit packet is much smaller
than that of a data packet.

In ExpressPass, since a data packet follows the same (but
in the reverse direction) path of the received credit packet, the
credit queue (i.e., the direction from the receiver and the sender)
reflects the status of the corresponding data queue (i.e., the di-
rection from the sender and the receiver). In this way, the send-
ing rate of data packets (by the sender) is limited by the sending
rate of credit packets (by the receiver). If a congestion occurs in

Algorithm 1 ExpressPass feedback control algorithm.

I W= Winit

2: cur_rate = initial_rate

3: repeat per update period (RTT by default)

4: credit_loss = #_credit_dropped/#_credit_sent
5: if credit_loss < target_loss then

6: (increasing phase)

7: if previous phase was increasing phase then

8: W= (W~+ Wnaz)/2 (Wnaz = 0.5)

9: end if

10 cur_rate = (1 — w) X cur_rate

11: +w x maz_rate X (1+ target_loss)
12: else

13: (decreasing phase)

14: cur_rate = cur_rate X (1 — credit_loss)

15: x (1 + target_loss)

16: w = max(w/2, Wpin)

17: end if

18: until End of flow

the credit queue, credit packets will be dropped due to the credit
queue overflow, which decreases the number of arrived credit
packets at the sender. Consequently, the sending rate of the data
packets will be decreased.

The receiver adjusts the credit sending rate based on a credit
feedback algorithm. As each credit packet has a unique se-
quence number, the sender copies the corresponding number to
the data packet. Thus, if a credit packet is dropped, the receiver
can detect its loss from the sequence number in the received
data packet. If credit packets are lost continuously, the receiver
will decrease the credit sending rate based on the algorithm.
Otherwise, it maintains or increases the rate. The ExpressPass
feedback control algorithm is described in Algorithm 1. It uses
an aggressiveness factor w, which adjusts the credit sending
rate (cur_rate) between the current rate and the maximum
rate. That is, w in the feedback control algorithm strikes a bal-
ance between stability and fast convergence. If the w value is
large, it ramps the current rate up more aggressively. If w is
small, it conservatively adjusts the rate. For each update period
(line 3), it computes the credit loss credit_loss (line 4). The
credit-based congestion controls accept some credit losses be-
cause the credit loss does not affect the data loss. Therefore, if
credit_loss is lower than target_loss, it goes to the increasing
phase (lines 5-11). Otherwise, the decreasing phase is entered
(lines 12-18). When the increasing phase happens twice in a
row (line 7), it concludes that the network is severely underuti-
lized. Therefore, it increases the aggressiveness factor (line 8).
The increasing phase increases the credit sending rate as a re-
sult (lines 10 and 11). If credit_loss is larger than target_loss,
ExpressPass concludes congestion and goes to the decreasing
phase. The algorithm decreases the credit sending rate using the
credit loss and target loss values (lines 14—15). Also, the aggres-
siveness factor w becomes the half of the current value (line 16).
The feedback control algorithm of ExpressPass aggressively in-
creases the credit sending rate since it does not result in data
losses.

ExpressPass is designed to use credit packets to control the

PARK et al.: MAXPASS: CREDIT-BASED MULTIPATH TRANSMISSION FOR ...

Sender Receiver

CREQ “8081, 8082, 8083"
(CREQ=1, PORT=8080)

CREDIT (CSEQ=1, PORT=8080)
CREDIT (CSEQ=1, PORT=8081)

(
(

/ CREDIT (CSEQ=1, PORT=8082)
(

DATA (CSEQ=1, PORT=8080) CREDIT (CSEQ=1, PORT=8083)

DATA (CSEQ=1, PORT=8081)
DATA (CSEQ=1, PORT=8083)

CREDIT (CSEQ=2, PORT=8080)
CREDIT (CSEQ=2, PORT=8081)

DATA (CSEQ=2, PORT=8080)
DATA (CSEQ=2, PORT=8081)

CSTOP (CSTOP=1, PORT=8081) \

Fig. 2. An example of the flow of MaxPass is illustrated. CSEQ, CSTOP, and
PORT in parenthesis are the fields of packet headers in MaxPass. Especially,
PORT refers the port number of the sender-side.

sending rate of the data packets only for a single path, which
cannot utilize the multipath diversity of the data center topology.
Suppose that the ExpressPass feedback control algorithm is used
for each subflow. Since credit packets are sent until the sender
sends a control packet (CREDIT_STOP) to stop sending credit
packets, the credit packets will be wasted if there are no pending
data packets. The number of wasted credit packets will increase
in proportion to the number of the subflows. The waste of credit
packets eventually degrades the network-wide throughput, es-
pecially the performance of long flows. Moreover, ExpressPass
does not consider how to select less congested paths. In the next
section, we explain how MaxPass extends ExpressPass in such a
way that multiple subflows will be delivered over less congested
paths.

III. MAXPASS
A. Design Overview

MaxPass is a multi-path credit-based transport mechanism for
load balancing. It initially sets up k paths between a sender and
a receiver by probing all the paths since the knowledge of the
global link state is unavailable (Section III.C). MaxPass lever-
ages credit packets to select k relatively less congested paths.
Moreover, it adaptively changes k paths as the link status varies
over time (Section II.D). Finally, MaxPass employs a feedback
control algorithm to adjust the credit sending rate, which in turn
adjusts the data sending rate (Section IIL.LE). We assume that
MaxPass is used for all hosts in the data center network.

In the initialization phase, the sender sends a credit-request
packet C REQ to the receiver to inform that the sender has data
to send. The sender selects N available ports that are embed-
ded into CRE(Q), where N is the number of core switches (to
be detailed later). After receiving the credit-request packet, the

561

receiver can figure out [NV ports; one is from the source port field
in the TCP header, and the others are embedded in CREQ. As
the receiver and the sender assign a port to each of N flows,
the receiver can build N subflows using IV different ports. Note
that the receiver uses a single port number. The receiver sends a
credit packet (CREDIT) for each N subflow by the feedback
control algorithm in response. A value in the credit sequence
field CSEQ increases by one per subflow. The sender sends
one data packet for one received credit packet. The data packet
should contain the same C'S EQ value as the one in the received
credit packet.

As the initialization phase is over, the receiver measures
which paths have shorter delays than the other paths. That is,
he chooses k best paths out of NV ones, where k is a system pa-
rameter. Thus, he stops sending credit packets through the other
N — k paths. This way, the receiver uses only k paths by contin-
uously sends credit packets over the k paths. Finally, when the
sender has no more data to send, she sends a credit-stop packet
CSTOP to the receiver. When the receiver receives the credit-
stop packet from the sender, it stops sending the credit packets
for all the subflows. Fig. 2 illustrates the initialization phase of
MaxPass, where N is four and & is two. The CREDIT packet
for CSEQ = 1 and PORT = 8082 is dropped.

We assume that the switch design is same to that of Express-
Pass. Each switch port manages a credit queue and a data queue.
For instance, the size of a credit packet is set to the minimum
Ethernet frame size (say, 84 bytes). Each credit packet can trig-
ger the sender to send a data packet with a maximum Ethernet
frame size (say, 1538 bytes). Thus, each credit queue and data
queue need to accommodate 84/(84+1538) ~ 5% and for 95%
of traffic, respectively. The data packet should follow the same
(but in the reverse direction) path of the corresponding credit
packet so that the credit queue mirrors the data queue in the
opposite direction. Since the data packet and the corresponding
credit packet have the same five-tuple, which results in the same
hash value, ECMP allows the data packet and the credit packet
to pass through the same switches.

B. Credit Request

During the credit request, the sender selects N port numbers
(as described in the above). Note that since NV is the number of
core switches, N is the maximum different paths between two
hosts. To utilize all the available paths by ECMP, the sender is
required to find /V different port numbers whose hash values are
mapped to IV different paths. The data center network is private
and controllable. The assumption that the entire nodes including
hosts and switches can share a single hash function for ECMP is
feasible. Every switch needs to share the hash function and pa-
rameters so that the receiver receives the packets over the differ-
ent but consistent paths. For example, in the 4-ary fat-tree topol-
ogy, every edge or aggregate switch can have four hash buckets.
Each switch should arrange the ¢th bucket to hold packets that
are forwarded to the ¢th core switch.

C. Path Probing

ECMP enables the receiver and the sender to select paths by
choosing port numbers. Although it is important to select fast
and less-congested paths, it is hard to keep track of which path

562 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL 21, NO. 6, DECEMBER 2019

is not congested. The data center network accommodates high-
speed links and high bandwidths, and its traffic is bursty and
unpredictable. Therefore, the links and the switch queues are
changing too dynamically for a centralized entity to monitor and
reflect their states to (re-)routing and load balancing.

MaxPass employs a decentralized approach when to probe
the congestion status of individual paths by exploiting the credit
packets. The credit packets traverse links and switches. Some of
them may be dropped in the switches or experience queueing
delays in some switches. The loss or delay of a credit packet
implies that the corresponding data packet (in the reverse di-
rection) may experience congestion. If these “congested” paths
are selected, it is likely for the data packets to suffer from con-
gestion. Therefore, MaxPass selects paths over which the credit
packets arrive earlier.

After receiving the credit request C REQ), the receiver sends
credit packets and receives data packets corresponding to the
credit packets over its N ports. As the receiver can measure the
round trip time (RTT) for each path using the data packet and
the corresponding credit packet with the same credit sequence
number, she prefers the path with the smaller RTT. Finally, the
receiver selects k paths with the smaller RTTs.

There may exist less than N different paths between the
sender and the receiver. For example, when the sender and the
receiver are in the same pod of the 4-ary fat tree topology, there
are two available paths. In this case, two different subflows will
go through the same path. Note that MaxPass still utilizes all the
possible paths.

D. Adaptive Path Selection

After the initialization, the sender and the receiver use k sub-
flows using path probing. Suppose that a new flow is initiated by
another pair of a sender and a receiver. If IV is not substantially
greater than k, some of subflows of the new flow may share their
paths with those of the existing flow(s). Such dynamics of flows
may degrade the throughput of the flows since they will be in-
terfering with each other. Therefore, MaxPass introduces path
re-selection to cope with congestion due to competing flows.
The degree of congestion can be estimated using the feedback
control algorithm. The feedback control algorithm increases the
credit sending rate or decreases the rate opportunistically. If the
rate decrease happens ¢ times consecutively at the same subflow,
the receiver starts the path re-selection. It is similar to the initial-
ization phase since the receiver behaves as if it receives CREQ).
It sends credit packets over IV different ports.

E. Feedback Control Algorithm

We design a new feedback control algorithm that controls
the credit sending rate for each subflow. The ExpressPass feed-
back control algorithm might be used for each subflow of Max-
Pass. However, we should consider the case in which a link is
shared by different number of subflows. For instance, a link
can be shared by two subflows of flow 1 and one subflow of
flow 2. The feedback control algorithm of MaxPass is inspired
by EWTCP [16] in the sense that MaxPass seeks to give an
equal share of a link capacity to flows (not subflows). More-
over, the ExpressPass feedback control algorithm aggressively
increases and conservatively decreases the credit rate (and hence

Algorithm 2 MaxPass feedback control algorithm.

I W= Winit

2: cur_rate = initial_rate

3. (Wmaz = 0.5, n = #_sub_flows)

4: repeat per update period (RTT by default)

5: credit_loss = #_credit_dropped/#_credit_sent
6: if credit_loss < target_credit_loss then

7: (increasing phase)

8: if previous phase was increasing phase then

9: w = (W + Wnaz)/ (2 X n?)

10: end if

11: cur_rate = (1 —w) X cur_rate

12: +w x mazx_rate X (1+ target_loss)
13: else

14: (decreasing phase)

15: if #_decrease > t then

16: #_decrease =0

17: Path Re-selection

18: else

19: cur_rate = cur_rate

20: X (1—credit_loss) x (1+target_loss)
21 cur_rate = min(cur_rate/2, min_rate)
22: w = mazx(w/2, Win)

23: end if

24: end if

25: until End of flow

data rate). Although credit losses do not result in data losses di-
rectly, the waste of credit packets may eventually degrade the
entire throughput. In contrast, our feedback control algorithm
tries to reduce congestions due to credit packets compared to
ExpressPass. As the sending rate of credit packets increases and
approaches the pre-determined maximum rate (max_rate in Al-
gorithm 2), the MaxPass feedback control algorithm reduces the
amount of increased sending rate gradually.

Algorithm 2 details the feedback control algorithm of Max-
Pass. Except for the re-selection parameter ¢, other parameters
are the same as those of ExpressPass. In the increasing phase,
the aggressiveness factor w is moderately increased (lines 8-
9). Also, the decreasing phase halves the credit sending rate
(line 21) to mitigate the congestion by reducing the credit pack-
ets.

F. Credit Stop

The credit stop message C'STOP is used to terminate all the
subflows. However, the sender can terminate a single subflow by
sending a credit stop message SUBCSTOP as MPTCP. The
subflow termination can be used for the sender to change the set
of paths for the subflows. To differentiate the termination of a
single subflow and the termination of all the subflows, different
fields should be used.

After the sender sends the credit request packet, the sender
can set SUBCSTOP in the data packet for a specific subflow.
Then the receiver excludes the subflow from the k subflows.

PARK et al.: MAXPASS: CREDIT-BASED MULTIPATH TRANSMISSION FOR ...

Table 2. Flow size distribution of the two real-world workloads are classified.

Workload Web Search | Cache Follower
0-10 KB (S) 15% 50%
10 KB-100 KB (M) 38% 3%
100 KB-1 MB (L) 17% 18%
Over 1 MB (XL) 30% 29%
‘ Average flow size ‘ 1.6 MB ‘ 701 KB ‘

IV. EVALUATION

In this chapter, we analyzed the performance of MaxPass
with a focus on (1) throughput, (2) flow completion time (FCT),
and (3) load balancing. We conducted a quantitative comparison
with MPTCP [12], which is the most representative multipath
transport scheme, and ExpressPass [14], which is the single path
credit-based scheme that inspires MaxPass.

We simulated all the three schemes under ns-2 simulator [17].
For a medium-scale data center topology, all the three metrics
are measured under a 4-ary fat-tree topology as illustrated in
Fig. 1. The 4-ary fat-tree topology consists of 4 core switches, 8
aggregation switches, 8 edge switches, and 48 hosts (i.e., 6 hosts
for each edge switch). For a large-scale data center topology, the
throughput and FCT are measured in a 8-ary Clos-based topol-
ogy. The large-scale topology consists of 8 core switches, 32 ag-
gregation switches, 32 edge switches, and 256 hosts (i.e., 6 hosts
for each edge switch). Every link in the topology has a speed of
10 Gbps. Link propagation delays and host delays are set to 4 us
and 1 us, respectively.

The size of a credit buffer has a significant impact on the
performance. A large credit queue can cause the queuing de-
lay, which lags the feedback of congestion. On the other hand,
a small credit queue drops credit packets unnecessarily, which
may hinder the delivery of data packets, and consequently
under-utilizes the network. For our evaluation, the credit buffer
accommodates up to eight credit packets, which is proved to be
sufficient in ExpressPass. The size may have to be coordinated
for other environments.

To make realistic environments for data center networking,
we use two real-world workloads. One is the web search work-
load [18], where a query is sent to many aggregators and work-
ers, and merged later. The other is the cache follower work-
load [19], where cache followers forward and write messages to
a single leader. Table 2 shows the flow size distribution and the
average flow size for the web search and cache follower work-
loads. Each workload covers a wide range of average flow sizes
ranging from less than 10 KB to more than 1 MB. While the
web search workload has a similar fraction of 1 MB or higher
size flows compared to the cache follower one, the size of large
flows is substantially high, resulting in the higher average flow
size. Each run generates 10,000 flows based on the distribution
of each workload. The interval between two consecutive arrivals
follows the Poisson distribution so that the average link utiliza-
tion is 60%.

A. Throughput

We measure the throughput for each flow. As ExpressPass and
MaxPass are the credit-based congestion control algorithms, the
waste of credit packets may degrade the throughput of the net-
work. Besides, as the feedback control algorithm of MaxPass is

563

1e9

2.54 [MaxPass
I ExpressPass
=3 MPTCP

2.01

-
wn

Throughput (bps)

-
o

0.54

v
A

0.0 1

MaxPass ExpressPass MPTCP

Fig. 3. Throughput of each flow in the medium-scale data center topology is
plotted using box plot for the Cache Follower workload.

1le9

[MaxPass
B ExpressPass
=3 MPTCP

2.00 1 -

1.754

1.50

=
N
o

Throughput (bps)
=
)
IS

°
S
G

0.50 1

0.25 1 T

0.00 q

T T T
MaxPass ExpressPass MPTCP

Fig. 4. Throughput of each flow in the medium-scale data center topology is
plotted using box plot for the Web Search workload.

less aggressive than ExpressPass, the experiments are carried
out to show that the feedback control algorithm of MaxPass
does not harm the throughput. The comparison with MPTCP
will show that the merits of the credit-based congestion control
are still kept.

Figs. 3 and 4 show the throughput of each flow in the medium-
scale data center network topology as box plot for the Cache
Follower and Web Search workloads, respectively. They show
that the overall metrics for the box of MaxPass are higher than
others. Figs. 5 and 6 show the same tendency in the large-scale
data center network. Therefore, MaxPass achieves the higher
throughput than ExpressPass and MPTCP.

564

1e9
2.5
{- MaxPass

I MPTCP
=3 ExpressPass

2.04

-
w

Throughput (bps)
-
o

0.5

0.0

MaxPass MPTCP ExpressPass

Fig. 5. Throughput of each flow in the large-scale data center topology is plotted
using box plot for the Cache Follower workload.

1e9

@ MPTCP
[ExpressPass
2.01

1.5

1.0

Throughput (bps)

0.5

0.0 4

T T T
MaxPass MPTCP ExpressPass

Fig. 6. Throughput of each flow in the large-scale data center topology is plotted
using box plot for the Web Search workload.

B. Flow Completion Time (FCT)

FCT is an important metric in data center networks because
most of its traffic is composed of short flows. As explained be-
fore, the short flows are usually control messages, which should
be delivered promptly. Most of the workload is attributed to
short flows. Therefore, FCT will show whether MaxPass can
accommodate the data center traffic well.

Figs. 7 and 8 show the FCT of each flow in the medium-
size data center network topology as the CDF for the Cache
Follower and Web Search workloads, respectively. The plots of
MaxPass are located left compared to the others, which means
that FCTs are shorter than the others. Figs. 9 and 10 reach the

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL 21, NO. 6, DECEMBER 2019

1.0 1
0.8
0.6
w
[m)]
]
0.4
0.2
MaxPass
" ExpressPass
0.01 "t MPTCP

FCT of flows

Fig. 7. Flow completion time of each flow in the medium-scale data center net-
work topology is shown for the Cache Follower workload using CDF. Notice
that the plots of MaxPass are located left compared to those of MPTCP and
ExpressPass, which shows the shorter flow completion times.

1.0 1
0.8
0.6 i’
L]
)]]
O [
]
0.4 E
0.2
MaxPass
" ExpressPass
0.01 "t MPTCP

FCT of flows

Fig. 8. Flow completion time of each flow in the medium-scale data center net-
work topology is shown for the Web Search workload using CDF. The plots
of MaxPass are located left compared to those of ExpressPass and similar to
those of MPTCP.

same conclusion in the large-scale data center network for the
Cache Follower and Web Search workloads, respectively. As the
credit-based congestion control inherently avoids queuing in the
switch, the flows of MaxPass and ExpressPass suffer from lit-
tle queuing delay. Note that MaxPass and MPTCP use under-
utilized paths by distributing traffic loads.

C. Load Balancing

To check whether the load is evenly balanced, we measure
the link load as bytes for each link per unit time in the medium-

PARK et al.: MAXPASS: CREDIT-BASED MULTIPATH TRANSMISSION FOR ...

1.0

0.8 4

0.6 4
TN
[a]
@]
0.4
0.2
MaxPass
" ExpressPass
0.0

FCT of flows

Fig. 9. Flow completion time of each flow in the large-scale data center network
topology is shown for the Cache Follower workload using CDF. Notice that
the plots of MaxPass are located left compared to those of MPTCP and Ex-
pressPass, which shows the shorter flow completion times.

1.04
0.8
7
064 [f
w]
o 3
O
0.4
0.2
MaxPass
" ExpressPass
0.01 MPTCP

FCT of flows

Fig. 10. Flow completion time of each flow in the large-scale data center net-
work topology is shown for the Web Search workload using CDF. The plots
of MaxPass are located left compared to those of ExpressPass and similar
to those of MPTCP.

scale data center network topology. The first goal of MaxPass
is balancing loads using multiple paths for a single connection.
Therefore, the load balancing of MaxPass is compared with that
of ExpressPass that is the single path scheme for comparison
purposes. Figs. 11 and 12 represent the CDFs of the link loads
for the two workloads. If the traffic is evenly distributed to all
links, the loads of all the links would be almost the same. As the
same seed is used for the two experiments of ExpressPass and
MaxPass, their generated flow sizes and arrival times are the
same. Therefore, the higher slope means that the load is more

565

MaxPass
- MPTCP

1.0

0.8 1

0.6 1

CDF

0.4 1

0.2 1

004 ~

Link load

Fig. 11. Load of each link for the Cache Follower workload is plotted using
CDF to see how well MaxPass achieves load balancing. The higher slope
indicates the more balanced load.

—— MaxPass ———
- MPTCP
0.8
0.6
[V
[a]
9]
0.4
0.2
7
A
’/
-
0.01 -~

Link load

Fig. 12. Load of each link for the Web Search workload is also plotted using
CDF to see how well MaxPass distributes the entire load.

evenly distributed. Figs. 11 and 12 show that MaxPass achieves
the higher slope than ExpressPass. As MaxPass adaptively se-
lects less congested paths through path probing, the underuti-
lized paths will be selected and the over-utilized paths will be
avoided.

V. RELATED WORK

As mentioned before, data centers have special network topol-
ogy, e.g., fat-tree. Also, they have distinct traffic characteris-
tics such as many-to-one communication patterns, ON-OFF pat-
terns, or skewed distributions of flow sizes. Due to such particu-
lar topology and traffic characteristics, traditional load balancing
algorithms are not well suited for the data center networking en-

566 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL 21, NO. 6, DECEMBER 2019

vironments. Hence, many studies on load balancing techniques
for data centers have been carried out. Load balancing schemes
for the data centers could be divided into centralized techniques
and decentralized techniques with respect to flow assignment
mechanisms.

A. Centralized

Centralized load balancing mechanisms typically run on a
central controller, collect network congestion information, and
assign flows to under-utilized paths. The central controller usu-
ally holds a global view of data center networks, which helps to
select the least congested path. However, centralized load bal-
ancing mechanisms require the communication overhead of net-
work switches and the controller. Besides, there are time con-
straints for the centralized entity to take effective actions on
the network switches since short flows sends traffic only for a
short interval (say, on the order of microseconds). In Mahout
et al. [20], a centralized balancing mechanism is deployed in
software-defined networks. Mahout et al. suggest that the ele-
phant flow detection process should be performed by end-hosts
to reduce high overhead caused by centralized detection of ele-
phant flows. However, although Mahout reduces the overhead
of detecting large flows, it still cannot work at the level of
milliseconds. In FDALB [21], it classifies flows to short flows
and long flows and schedules them differently. Long flows are
marked with tags at end-hosts. Short flows are transmitted by
switches using static schemes like ECMP, while a central con-
troller schedules long flow depending on the global network sta-
tus (e.g., congestion). In Freeway [22], it considers different re-
quirements depending on flow types, i.e., low latency for short
flows and high throughput for long flows, and proposes a cen-
tralized algorithm to meet those requirements. Freeway dynam-
ically divides paths into low latency paths for short flows and
high throughput paths for long flows. The size of flows is esti-
mated at end-hosts. Then, long flows exchange their traffic in-
formation with the controller before being sent, and the central
controller schedules long flows. On the other hand, short flows
are transmitted directly using ECMP without scheduling of the
central controller. Freeway achieves the higher throughput and
lower latency than ECMP. However, it has a limitation when all
low latency paths have link utilization over 50%. Even though
there are residual link capacities to transfer long flows, Free-
way leaves these capacities unused. In Fastpass [23], it controls
the sending time and path of each packet using a central con-
troller. It adopts a hybrid mechanism that combines transport
control and traffic scheduling in order to achieve zero-queuing
in data center networks. Fastpass can reduce queue lengths and
flow completion times, and achieve high throughput compared
with TCP. However, it is difficult to be deployed and scaled up
since a single controller of Fastpass has the scalability issue of
handling hundreds to thousands of endpoints.

B. Decentralized/Distributed

Distributed load balancing schemes without any centralized
entity select paths for flows locally at hosts or switches. There-
fore, there is no or little scalability issue and hence less con-
strained in extending the topology compared to centralized
schemes. Distributed schemes can relatively quickly respond to

traffic dynamics. However, it is quite hard to collect the accurate
network information.

CLOVE [24] is implemented in soft edge switches to avoid
hardware and end-host stack modifications while quickly react-
ing to latency-sensitive short flows. It uses standard ECMP in
the physical network and changes the header of packets at soft-
ware switches to directly guide how switches transfer packets.
CLOVE reduces average flow completion time. However, since
CLOVE uses overlay and virtualization technologies, it has an
issue when deploying in non-virtualized data centers.

In CONGA [25], itis optimally designed for 2-tier Leaf-Spine
topology. It aims to quickly react to congestion while obtain-
ing the global congestion information from leaf switches with-
out adding an entity. By using four additional fields in VXLAN,
CONGA carries the congestion information through data pack-
ets from destination leaf switches to source leaf switches. To
record the congestion information of paths, each leaf switch
maintains a per-destination congestion table. CONGA can
achieve lower flow completion times than ECMP and MPTCP.
Besides, CONGA achieves from 2 to 8 times better throughput
than MPTCP in incast scenarios.

Random packet spraying (RPS) [26] is an intuitive and simple
multipath scheme, in which packets of every flow are randomly
assigned to one of the available shortest paths to the destination.
RPS outperforms ECMP and achieves similar performance to
MPTCP in symmetric scenarios, while requiring no modifica-
tions to hardware and protocols. The disadvantages of RPS lie
in packet reordering and the influence of asymmetry (e.g., due
to link failures) in the topology.

MP-ECN [27] aims to enable explicit congestion notification
(ECN) for multi-service multi-queue data center network. Each
queue adjusts ECN marking threshold to preserve weighted fair
sharing. However, this scheme is not implementable in current
switch design.

Auto [28] leverages machine learning (ML). It automatically
adjusts the network parameters, especially used in PIAS [29].
It collects flow information from end hosts, and take actions to
achieve operator-defined goals. Due to the decision overhead, it
divides system by peripheral and central nervous systems. While
peripheral systems (PS) located in end hosts collects network
information and makes a decision for short flows, central system
(CS) performs actions for long flows.

Hermes [30] is designed for load balancing resilient to un-
certainties such as traffic dynamics, topology asymmetry, and
failures. When the uncertainty is detected using RTT, ECN and
packet drops, a packet is re-routed.

DCQCN [31] introduces ECN in RDMA over converged eth-
ernet (RoCE) network which uses priority-based flow control
(PFC). PFC transmit a pause packet to connected switches when
their queues are occupied over the threshold. The switches stop
sending packets when they receive the pause packet. Frequent
pause packets can degrade overall network performance or in-
duce a deadlock. DCQCN prevents frequent pause packets by
enabling ECN.

TIMELY [32] uses RTT to detect a bottleneck switch. RDMA
NIC facilitates to measure the RTT precisely with microsecond
accuracy. When RTT increases (i.e., RTT gradient is positive),
a sender reduces a sending rate as the positive RTT gradient is

PARK et al.: MAXPASS: CREDIT-BASED MULTIPATH TRANSMISSION FOR ...

regarded as congestion.

A multipath transport for RDMA is presented in MP-
RDMA [8]. It proposes three mechanisms 1) to aware conges-
tion without managing per-path state, 2) to mitigate out-of-order
packets, and 3) to ensure in-order operations.

VI. CONCLUSION

In this paper we present MaxPass, a new adaptive load bal-
ancing mechanism for data center networks. It leverages a credit
packet to probe each path to mitigate network congestion. The
sender can choose best paths when a flow starts. Also, the
sender can exploit other paths when network congestion hap-
pens, which is indicated by the number of dropped credit pack-
ets exceeds a certain threshold. MaxPass employs a new credit
feedback control algorithm to mitigate credit wastes by increas-
ing the credit sending rate in inverse proportion to the number
of subflows and decreasing the rate dramatically compared to
ExpressPass. Our evaluation on the ns-2 simulation shows the
performance improvement in terms of flow completion time and
link utilization.

REFERENCES

[1] N. Bronson et al., “TAO: Facebook’s distributed data store for the social
graph,” in Proc. USENIX ATC, June 2013, pp. 49-60.

[2] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
in Proc. ACM SIGCOMM, Aug. 2009, pp. 51-62.

[3] J.Zhang, F.R. Yu, S. Wang, T. Huang, Z. Liu, and Y. Liu, “Load balancing
in data center networks: A survey,” IEEE Commun. Surveys Tuts., vol. 20,
no. 3, Third quarter 2018.

[4] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data cen-
ter traffic characteristics,” in Proc. ACM WREN, 2009, pp. 65-72.

[5] C. Raiciu et al., “Improving datacenter performance and robustness with
multipath TCP” ACM SIGCOMM Comput. Commun. Review, vol. 41,
pp. 266-277, 2011.

[6] Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang, “FMTCP: A fountain
code-based multipath transmission control protocol,” IEEE/ACM Trans.
Netw., vol. 23, no. 2, pp. 465-478, 2015.

[71 M. Kheirkhah and M. Lee, “AMP: A better multipath tcp for data center
networks,” arXiv preprint arXiv:1707.00322, 2017.

[8] Y. Lu et al., “Multi-path transport for rdma in datacenters,” in Proc.
USENIX NSDI, Mar. 2018.

[9] C. Clos, “A study of non-blocking switching networks,” Bell Syst. Techni-

cal J., vol. 32, no. 2, pp. 406424, 1953.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data

center network architecture,” ACM SIGCOMM Comput. Commun. Review,

vol. 38, pp. 63-74, 2008.

C. Hopps, “Analysis of an equal-cost multi-path algorithm,” tech. rep.,

2000.

A. Ford et al., “TCP extensions for multipath operation with multiple

addresses, draft-ietf-mptcp-multiaddressed-09,” Internetdraft, IETF, Mar.

2012.

M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,

“Hedera: Dynamic flow scheduling for data center networks,” in Proc.

USENIX NSDI, Mar. 2010.

I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-bounded congestion

control for datacenters,” in Proc. ACM SIGCOMM, 2017, pp. 239-252.

H. Kung, T. Blackwell, and A. Chapman, “Credit-based flow control for

atm networks: Credit update protocol, adaptive credit allocation and statis-

tical multiplexing,” ACM SIGCOMM Comput. Commun. Review, vol. 24,

pp. 101-114, 1994.

M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and H. Tokuda, “Multipath

congestion control for shared bottleneck,” in Proc. PFLDNeT workshop,

vol. 357, p. 378, 2009.

S. McCanne, “Network simulator ns-2,” [Online] Available: http://www.

isi. edu/nsnam/ns/, 1997.

M. Alizadeh et al., “Data center tcp (dctcp),” ACM SIGCOMM Comput.

Commun. Review, vol. 41, no. 4, pp. 63-74, 2011.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

567

A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the so-
cial network’s (datacenter) network,” ACM SIGCOMM Comput. Commun.
Review, vol. 45, pp. 123-137, 2015.

A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead dat-
acenter traffic management using end-host-based elephant detection,” in
Proc. IEEE INFOCOM, 2011, pp. 1629-1637.

S. Wang et al., “Fdalb: Flow distribution aware load balancing for data-
center networks,” in Proc. IEEE/ACM IWQoS, 2016, pp. 1-2.

W. Wang et al., “Freeway: Adaptively isolating the elephant and mice
flows on different transmission paths,” in Proc. IEEE ICNP, 2014,
pp. 362-367.

J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal, “Fastpass:
A centralized zero-queue datacenter network,” ACM SIGCOMM Comput.
Commun. Review, vol. 44, no. 4, pp. 307-318, 2015.

N. Katta et al., “Clove: How i learned to stop worrying about the core and
love the edge,” in Proc. ACM HotNet, 2016, pp. 155-161.

M. Alizadeh et al., “Conga: Distributed congestion-aware load balanc-
ing for datacenters,” ACM SIGCOMM Comput. Commun. Review, vol. 44,
pp- 503-514, 2014.

A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella, “On the impact of
packet spraying in data center networks,” in Proc. IEEE INFOCOM, 2013,
pp- 2130-2138.

W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ecn in multi-service
multi-queue data centers,” in Proc. USENIX NSDI, 2016, pp. 537-549.

L. Chen, J. Lingys, K. Chen, and F. Liu, “Auto: Scaling deep reinforcement
learning for datacenter-scale automatic traffic optimization,” in Proc. ACM
SIGCOM, 2018, pp. 191-205.

W. Bai et al., “Information-agnostic flow scheduling for commodity data
centers,” in Proc. USENIX NSDI, 2015, pp. 455-468.

H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient data-
center load balancing in the wild,” in Proc. ACM SIGCOM, 2017, pp. 253—
266.

Y. Zhu et al., “Congestion control for large-scale rdma deployments,” in
Proc. ACM SIGCOM, 2015, pp. 523-536.

R. Mittal et al., “Timely: Rtt-based congestion control for the datacenter,”
ACM SIGCOMM Comput. Commun. Review, vol. 45, pp. 537-550, 2015.

Minkyung Park received her B.S. degree in Com-
puter Science from Korea Aerospace University, Ko-
rea, in 2014. She is currently working toward her
Ph.D. degree at the School of Computer Science and
Engineering, Seoul National University. Her research
interests include network security, privacy, anonymity,
and wireless network.

| |

Sungmin Sohn received her B.S. degree in Computer
Science and engineering from Ewha Womans Univer-
sity. She is attending a master’s course in School of
Computer Science and Engineering at Seoul National
University since 2017. Her research interests include
network security and web security.

Kwangwook Kwon received B.S degree on Elec-
tronic and Electrical Engineering from Sungkyunkwan
University, Korea in 2011. At present, he is working in
Samsung Electronics in Korea from 2011. He is also
master course student in Seoul National University
from 2018. His research interests include software de-
fined network, datacenter network, SG core network.

568 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL 21, NO. 6, DECEMBER 2019

Ted Taekyoung Kwon received the BS, MS, and
Ph.D. degrees from Seoul National University (SNU)
in 1993, 1995, and 2000, respectively. He is a profes-
sor with the Department of Computer Science and En-
gineering, Seoul National University. Before joining
SNU, he was a Postdoctoral Research Associate at the
University of California Los Angeles and City Univer-
sity New York. During his graduate program, he was a
visiting student at the IBM T.J. Watson Research Cen-
ter and at the University of North Texas. He was a
Visiting Professor at Rutgers University in 2010. His
research interest lies in future Internet, network security, and wireless networks.

