
Creative Commons Attribution-NonCommercial (CC BY-NC).

548 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 21, NO. 6, DECEMBER 2019

Decentralized Gene Regulatory Networks: An
Approach to Energy Efficient Node Coordination

with Delay Constraints for Wireless Sensor Systems
Heejung Byun

Abstract: Wireless sensor networks (WSNs) systems have been used
for several applications from target tracking to environment mon-
itoring. Recently, there has been increased interest in the design
of WSN protocols for delay-sensitive applications, such as mili-
tary surveillance, health monitoring, and infrastructure security.
However, due to the strict resource constraints of the sensor nodes,
WSNs pose critical challenges for network protocol design for reli-
able communications with delay constraints. Biologically inspired
modeling techniques have received considerable attention for their
robustness, scalability, and adaptability with simple local interac-
tions and limited information. In this paper, we apply gene regula-
tory networks (GRNs) principles to the WSN system and propose
a new GRN model for decentralized node coordination to achieve
energy saving while meeting delay requirements. Using control the-
ory, we provide conditions of system parameters to ensure system
convergence and stability. Simulation results indicate that the pro-
posed scheme achieves superior performance with energy savings
as well as desirable delay guarantees compared with other well-
known schemes.

Index Terms: Biologically-inspired algorithm, delay constraints,
energy saving, node coordination, wireless sensor systems.

I. INTRODUCTION

WIRELESS sensor networks (WSNs) connect devices that
can sense and monitor physical phenomena for a wide

variety of applications, such as environmental monitoring, target
tracking, pervasive security, health monitoring, disaster man-
agement and recovery. Recently, delay-sensitive applications,
such as, emergency and rescue applications, require application-
specific functionalities and performance guarantees. Also, large
scale WSNs demand a high level of decentralized optimization
that achieves global performance based on each node’s knowl-
edge of its local state and local interactions with its neighbors.

A number of works have been proposed to achieve a good
tradeoff between power consumption and delay [1]–[5]. Adap-
tive listening [1] proposed the use of overhearing to reduce
the sleep delay. Dynamic sensor medium access control (DS-
MAC) [2] dynamically changed each node’s duty cycle to meet
applications’ demands so that a node increases its duty cycle
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by adding extra active periods when it requires less delay or
when the traffic load increases. Utilization-based medium ac-
cess control (U-MAC) [3] tuned its duty cycle based on a uti-
lization function, which is the ratio of the actual transmission
and receptions performed by the node over the whole active
period. Dynamic duty controller [4] was proposed for end-to-
end delay guarantees in wireless sensor networks. In systems
with cluster [5], cluster heads dynamically change so that nodes
with larger remaining energy become cluster heads. Also, meth-
ods that optimize the sensor energy utilization while achieving
energy balancing were proposed [6], [7]. Concepts and prin-
ciples derived from immune system, insect colonies, activator-
inhibitor systems, and ant colony systems have been applied to
WSN system design [8], [9].

However, these existing works with aim of delay guaran-
tees in WSN require a significant amount of signaling from the
neighboring nodes for the computation of the time delay, which
may lead to processing overhead and resource wastage. In ad-
dition, they cannot effectively control the delay under network
condition changes.

Recently, the biological systems, gene regulatory net-
works (GRNs), a representation of genes/proteins and the in-
teractions between them, have been used for robust network de-
sign [10]–[14]. The analogy between GRNs and WSNs is ev-
ident; in WSN, sensing, actuation, transmission are the main
duties of the sensor node. These tasks do not require a com-
plicated processing and a central entity. The sensor nodes are
randomly deployed to cover a geographical space and prone
to different types of failures. Hence, the network should ap-
ply a fault-tolerant and self-organizing mechanism. Like sensor
nodes, genes perform major functions, i.e., sensing, actuating,
and signaling. In their sensing phase, genes sense the levels of
proteins in the cells through signals mediated by other interact-
ing genes and environmental variables, to determine their own
gene expression levels. Then, in the actuating phase, each gene
produces activator or inhibitor proteins to regulate the expres-
sion level of other genes in the network. In the signaling phase,
genes interact with other genes to regulate protein levels in the
cell. In [15], the authors determined the locations of wireless
sensor nodes using GRN topology to achieve robustness and re-
silience to node failures. In [16], the authors proposed a GRN
model to solve the issue of optimal coverage in WSNs. In spe-
cific, a non-linear differential equation model of GRN was used
to identify the minimum number of sensors required for maxi-
mum coverage in WSNs. In [17], the authors used the non-linear
differential equation based model to emulate the evolution pro-
cess of genes in GRNs for network self-configuration. In [18],
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the authors proposed an embedded controller that offers every
sensor the ability to regulate its sampling rate based on its data
and its neighbors’ behavior and shared information. In [19], the
authors showed how a GRN inspired controller can be used to
configure submarines robots. In [20], the authors proposed the
use of the attractor theory in GRN to achieve a fault-tolerant
WSN routing. In [21], the authors proposed a distributed GRN-
based algorithm for a multi-robot system to organize themselves
autonomously into predefined shapes. The movement dynamics
of each robot is described by a GRN model, where the con-
centration of two proteins represents the positions of the robots,
and that of the proteins represent the internal state of the robot.
A simple self-organizing control scheme using GRN principle
was proposed [22]. This work was designed to build a heuris-
tic controller that determines the behavior of a node considering
only the internal state of the node. However, these GRN-inspired
approaches have not been designed to generate a specific de-
sired behavior for delay-sensitive applications [23]. Thus, the
individual behavior with local interaction does not always meet
application-specific performance requirements. Even for the bi-
ologically inspired algorithms that have been optimized for de-
centralized implementation for WSNs, considerable issues re-
main. The most notable one is that the behaviors of a node are
usually based on some predefined heuristics, and thus it is diffi-
cult to ensure that the system can achieve a specific desired per-
formance of delay-sensitive application. Furthermore, the dy-
namics of GRN are described by a predefined partial differen-
tial equation, which can only be efficient for specific tasks. If
the environment and application requirement change, existing
schemes cannot adapt to those changes, and this is not robust
enough for dynamic WSN environments.

To address these issues, we propose a new GRN model with a
reaction-diffusion mechanism for the node coordination design
of WSNs, which aims to automatically schedule the node state
of each node. The dynamics of node coordination are described
by the proposed GRN model, where the on-off cycles of the
sensor nodes are coordinated based on energy consumption level
and application-specific performance requirements. Considering
external factors, such as end-to-end delay, energy consumption
level, and transcription factors diffused from other nodes, the
proposed scheme controls the expression level of a gene and the
concentration of protein in order to achieve energy savings while
meeting delay requirements in WSNs.

The remainder of the paper is organized as follows. In Sec-
tion II, the GRN-inspired node coordination scheme is proposed
and a theoretical analysis of the system convergence and stabil-
ity is provided. To evaluate the proposed scheme, several sim-
ulation results are presented in Section III. Conclusions and fu-
ture works are discussed in Section IV.

II. GRN-BASED ALGORITHM FOR DECENTRALIZED
NODE COORDINATION

A. System Model

We consider a WSN system consisting of N sensor nodes.
Let N = {1, 2, · · ·, N} denote the set of nodes in the WSN. The
set of neighboring nodes of a node i (1 ≤ i ≤ N ) is denoted
as Ni(⊆ N). The sensor nodes are randomly deployed to cover

Table 1. Notations used.

Notation Description

gi The mRNA level of sensor node i.

pi The protein level of sensor node i.

Ni The cardinality of Ni.
Ei The consumed energy level of sensor node i.

Ei The ratio of Ei to the neighbors’ average.

di The delay between the node i and the sink node.

dr The delay requirement of an application.

fhg The inhibition function.

fap The activation function.

a geographical space. Each node has two states: ON and OFF.
If the sensor is ON, it enters the active state. It works normally,
sampling and communicating with its environment. If the senor
is OFF, it enters the sleep state which helps save its energy. Each
sensor node changes its state based on the proposed scheme. We
introduce the notations used in the paper in Table 1.

B. System Design

The main principle of the proposed scheme is as follows:
each gene produces a certain protein based on the level of en-
ergy consumption of the node and its concentration of pro-
tein. The protein is produced according to the gene expression,
application-specific delay requirement, and gene product dif-
fused from other cells. Here, the protein regulates the expres-
sion of the gene that produces it. Also, each node diffuses gene
product to its neighbors to manage energy consumption level
efficiently.

The proposed scheme is designed for two objectives: one is to
save the energy consumption by equalizing the gene expression
with each other via diffusion, and the other one is to meet the
delay requirement of an application by regulating the protein
concentrations. To do this, we propose a new system dynam-
ics of the GRN for decentralized node coordination of WSNs.
Specifically, the dynamics of node coordination are described
by the proposed GRN model, where the on-off cycles of the
sensor nodes are coordinated based on energy consumption level
and application-specific performance requirements. Considering
external factors, such as end-to-end delay, energy consumption
level, and transcription factors diffused from other nodes, the
proposed scheme controls the expression level of a gene (inter-
nal state of a node) and the concentration of protein (active state
of a node) in order to achieve energy savings while meeting de-
lay requirements in WSNs.

We denote the gene expression (mRNA) level of gi to be inter-
nal state of sensor node i and the concentration level of protein
pi as the probability of being an active state of sensor node i.
In order to consider the consumed energy level and application-
specific requirement, we introduce Ei and Di:

Ei =
Ei∑

∀j∈Ni
Ej/Ni

, (1)

Di = di − dr. (2)
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The dynamics of the proposed GRN model is defined by the
following equations:

dgi
dt

= −agi + ηfhg (Eipi), (3)

dpi
dt

= −cpi + κfap (Digi) + b
∑
∀j∈Ni

(gi − gj), (4)

where a and c are the decay rates of mRNA and protein concen-
tration, respectively. η and κ are the synthesis rates of mRNA
and protein concentration, respectively. Functions fhg and fap
are defined as follows:

fhg (x) = e−x, (5)

fap (x) =
1− e−x

1 + e−x
. (6)

The gene expression g of (3) represents the local environmen-
tal state of a node in WSNs. In specific, the expression level of
the gene of a node is determined by its consumed energy level
and protein concentration. When the consumed energy level of
a node is larger than the average over its neighbors or the protein
concentration increases, the level of gene becomes smaller, and
vice versa. Considering (4), the concentration of protein is de-
termined by the gene expression level and external factors, i.e.,
the delay requirement of an application and transcription factors
diffused from other nodes. When the measured delay is larger
than the delay requirement or the expression level of gene is
larger than the average over all the neighbors, the protein con-
centration increases, and vice versa. The last term of (4) speci-
fies the sum of the concentration of g diffused from neighboring
nodes, which aims to keep the energy consumption of nodes in
balance. The diffusion term in the regulatory model simulates
intercellular signaling in a multi-cellular system.

When each sensor node determines its protein concentration,
it generates a random value ω following the uniform distribu-
tion within [0, 1]. Each node independently generates a random
value. If the protein concentration is less than ω, then the node
goes to sleep. On the other hand, if the protein concentration is
greater than ω, the node becomes active by turning on its sensing
circuitry.

Fig. 1 shows plots of inhibition function fhg (x) and activa-
tion function fap (x). Inhibition function fhg decays with the pro-
tein concentration and the decay rate of fhg increases with E.
In other words, as the value of protein concentration increases
or the consumed energy level is rather large compared to that
of its neighbor, the local condition represented by gene expres-
sion g gets worse. The activation function fap has symmetrical
shapes around the g-axis. When D > 0, as the local condi-
tion becomes better (larger g), the value of fap increases, which
leads to a higher probability of being active. Also, fap increases
rapidly as the measured delay is larger than the desired delay
requirement. A positive D means the measured delay exceeds
the delay requirement, which makes the protein concentration
increase, resulting in an increase in active sensor nodes. On the
contrary, when D < 0, the protein concentration decreases due
to the negative value of fap . This leads to more sensor nodes
going to sleep and energy savings.
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Fig. 1. (a) Inhibition function fhg and (b) activation function fap .

In summary, the gene expression g and protein concentration
p regulate each other via positive or negative feedback: when
the measured delay exceeds the delay requirement or the gene
expression level is larger than the average among neighbors, the
protein concentration increases, which leads to a higher proba-
bility of being active. This leads to delay reduction with more
frequent packet transmission. Meanwhile, the increased protein
concentration represses the expression of gene due to the de-
graded local environment quality, caused by increases in energy
consumption. The repressed gene regulates the protein concen-
tration again, which leads to an increase of sleep time and energy
saving. Consequently, the decreased protein concentration and
lower E promote the gene expression, and this gene expression
also promotes the protein concentration. On the other hand, the
increased protein concentration and higher E repress the gene
expression, resulting in energy balancing with an increase of
sleep time. Through these interactions with each other, the pro-
posed scheme governs the state of each node by regulating the
gene expression and protein concentration according to the con-
sumed energy level and the measured delay.

The proposed scheme requires sensor nodes to store gene
expression, protein concentration, and delay information. For
the implementation, we consider a control period, τ . When the
source node transmits a packet, it includes a time-stamp indi-
cating the send time. With every control period, the sink node
measures the packet delay from the source node to itself and
broadcasts the packet with the delay information, namely, the
difference between the measured delay and the delay require-
ment. Each node stores the delay information in the table. The
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initial value of delay information is zero and it is reset to the
initial value every control period. If a node receives a packet
during a control period, the node updates its stored delay infor-
mation to be the maximum one between the previously stored
delay information and the delay information from the received
packet. Then the node forwards the packet with its gene expres-
sion level to the neighbors. Every control period, a sensor node
reevaluates (4) using the delay information and g diffused from
neighboring nodes.

C. Theoretical Analysis

In this section, a theoretical analysis of the proposed system’s
convergence and stability is provided. We develop a discrete-
time formula of the model in which the control scheme updates
take place every control period τ . Thus, the time is divided into
[k, k + 1), k = 0, 1, · · ·, with time duration equal to τ . Then,
(3)–(4) can be formulated as follows:

gi(k + 1) = (1− a)gi(k) + ηfhg
(
Eipi(k)

)
, (7)

pi(k + 1) = (1− c)pi(k) + κfap
(
Digi(k)

)
+ b

Ni∑
j=1

(gi(k)− gj(k)). (8)

Let gis and pis be the steady state values of gi and pi, respec-
tively. From (7)–(8), the steady states of gis and pis are derived
as follows:

gis =
η

a
e−Eispis =

1

Ni

Ni∑
j=1

gis, (9)

pis =
κ

c

(
1− e−gisDis

1 + e−gisDis

)
, (10)

where Eis and Dis are the steady states of Ei and Di, respec-
tively. For ∀i ∈ N, since 0 < pis < 1, we obtain 0 < κ/c < 1.
In order to ensure the energy balancing among nodes, we pro-
vide the following Lemma.

Lemma 1: For each node, the steady state value of the gene
expression is given by

gis = gjs,∀i 6= j. (11)

Proof: Let ϕij = gis − gjs and ḡis = 1
Ni

∑
j∈Ni

gjs. From

(8) and (9), we obtain
Ni∑
j=1

ϕij = 0 which means that

gis − ḡis =
1

Ni

∑
j∈Ni

ϕij . (12)

Then, (12) means that

gis = ḡis,∀i. (13)

That is, there is a zero fixed point ϕij = 0,∀i 6= j. Conse-
quently, we obtain the following steady states of the system for
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Fig. 2. Relationship between the steady states of the protein level and gene
expression level (pis and gis) varying: (a) The ratio of the consumed energy
level to the neighbors’ average (E) and the difference between delay and
delay requirement (D) and (b) parameters η/a,κ/c.

all i and j:

gis = ḡis,

gis = gjs, (14)
pis = pjs,

Eis = Ejs.

2

From these equations, we see that the proposed scheme balances
the energy consumption among nodes by converging the gene
expression level to the average one for all the neighbor nodes
and this makes the energy consumption level balanced globally
among all nodes. Fig. 2(a) shows the relationship between pis
and gis defined by (9)–(10) varying E and D. As E becomes
larger, the local environmental state becomes worse (lower gis),
resulting in a smaller pis. That is, when the consumed energy
level of a node is larger than the average level over its neigh-
bors, the probability of being activated becomes low and the
node is set to sleep mode instead of active mode. On the con-
trary, when the consumed energy level of of a node is smaller
than the average level over its neighbor, the probability of being
activated becomes high and the node is set to active mode. In
this way, the energy consumption levels can be balanced among
nodes in WSNs. On the other hand, as the measured delay has
exceeded the desired value, D becomes larger, resulting in a
rapid increase of pis. It means that the probability of the node
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to be selected as an active node becomes higher, which leads to
delay reduction with more frequent packet transmission. On the
contrary, as the measured delay is lower than the desired value,
D becomes negative and pis decreases. A smaller pis makes the
probability of the node to be active becomes lower, which leads
to avoid unnecessary energy consumption. Fig. 2(b) shows the
relationship between pis and gis varying control parameter η/c
and κ/c. Increasing the values of η/c and κ/cmakes pis reach a
high value easily, which affects convergence speed. In specific,
smaller values of η/c and κ/c leads to longer convergence time,
while larger values may destabilize a system by incurring oscil-
latory behavior. Therefore, we need to provide a guide to con-
figure related parameters to ensure system stability and expedite
the convergence process.

Next, we prove the system’s stability and provide a guide of
parameter selections. For simplicity, we neglect the dynamics
of the protein diffusion in the proof of the system convergence.
Also, we consider that Ei and Di are arbitrary constants, such
as Ei = Di = 1. However, the results of this paper can be
generalized to the time-dependent variables of Ei, Di. Then,
(7)–(8) can be rewritten as follows:

gi(k + 1) = (1− a)gi(k) + ηfhg (pi(k)) , (15)
pi(k + 1) = (1− c)pi(k) + κfap (gi(k)) . (16)

Theorem 1: The proposed system converges to the steady
states defined by (14) provided that

0 < a, η, c, κ < 1,

0 < κ < c, (17)
0 < κ <

√
a(1− a),

C1 + C2 < c(2− c),

where

C1 =

(
ε2 +

(1− a)2

a
+ 1

)
η2,

C2 =
((1− a)ηε− (1− c)κ)

2

a− (a2 + κ2)
. (18)

Therefore, the energy consumption level of each node is bal-
anced across the networks by converging its energy consump-
tion level to the average level over its neighbors.

Proof: Since fhg and fap are the inhibition and activation
function, respectively, we can draw the following conclusions:
• fhg (x) = e−x ≤ 1− εx,
• |fap (x)| = |(1− e−x)/(1 + e−x)| ≤ |x| and |fap (x)| = |x|

only if x = 0,
where ε = 1− e−1.

For the system stability analysis, we use Lyapunov Theory
[24] to claim that the system defined by (7)-(8) will be conver-
gent if we can find a Lyapunov function V (gi(k), pi(k)) that
satisfies the following conditions:
• V (gi(k), pi(k)) is positive definite;
• V (gi(k+ 1), pi(k+ 1))− V (gi(k), pi(k)) is negative def-

inite;
We consider the Lyapunov function in the following form:

V (gi(k), pi(k)) = g2i (k) + p2i (k). (19)

Here, we remove the subscript i since every node shares the
same dynamics. We denote V (k) = V (g(k), p(k)) and ob-
viously V (k) ≥ 0. Let ∆V (k) = V (g(k + 1), p(k + 1)) −
V (g(k), p(k)). Then, we can get

∆V (k) =
(
(1− a)g + ηfhg (p)

)2 − g2
+ ((1− c)p+ κg)

2 − p2

≤ ((1− a)g + η(1− εp))2 − g2

+((1− c)2 + κg)2 − p2. (20)

Let C2 = −B2/A, where A = (−a + a2 + κ2), B = (1 −
a)εη − (1− c)κ. Then, (20) can be rewritten as follows:

∆V (k) ≤ A

(
g − B

A
p

)2

− a
(
g − (1− a)

a
η

)2

− 2c+ c2

− B2

A
+

(
ε2 +

(1− a)2

a
+ 1

)
η2.

So, if the following stability conditions are satisfied, we can en-
sure ∆V (k) ≤ 0.

1. 0 < a, η, c, κ < 1
2. 0 < κ < c
3. A = −a+ a2 + κ2 < 0⇒ κ <

√
a(1− a)

4. −B
2

A + (ε2 + (1−a)2
a + 1)η2 < c(2− c)

⇒ ((1−a)ηε−(1−c)κ)2
a−(a2+κ2) +

(
ε2 + (1−a)2

a + 1
)
η2 < c(2− c)

By Lyapunov theorem, the equilibrium point is asymptotically
stable if there is a continuous positive definite function V (k),
that is, V (0) = 0 and V (k) > 0 for k 6= 0, so that ∆V (k) is
negative definite. Based on the above analysis, both conditions
of the Lyapunov function V have been satisfied, thus we can
claim that the system is stable and will converge to the steady
states if the system parameters are selected according to the de-
rived stability conditions. Therefore, our proposed GRN model
automatically drives the WSN system performance to the de-
sired application requirement while achieving energy balancing
among sensor nodes. 2

III. SIMULATION RESULTS

A. Configurations

In order to evaluate the performance of our proposed algo-
rithm, we develop a simulation environment using the MATLAB
simulator. The simulation area is 100m × 100m, where the en-
tire network is divided into equally shaped grids, and the sensor
nodes are deployed uniformly. Source nodes generate packets in
a Poisson distribution with an average packet arrival rate of one
packet per second. Each packet is 100 bytes and the controller
time slot duration (τ ) is one second. We set the channel capac-
ity to 200 kbps. According to the derived stability conditions of
(17) and (18), we set a = η = c = 0.1 and κ = 0.05.

B. Results

B.1 Time behavior

We show the simulation results that indicate how the system
behaves over time with the proposed algorithm. Fig. 3 shows the
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Fig. 3. Time behavior of the proposed algorithm with two neighbor nodes for each node: (a) g and p with dr = 10 s, (b) E with dr = 10 s, (c) average delay with
dr = 10 s, (d) g and p with dr = 50 s , (e) E with dr = 50 s, and (f) average delay with dr = 50 s.

0 200 400 600 800 1000

time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

g
 a

n
d

 p

g
1

g
2

g
3

g
4

g
5

g
6

p
1

p
2

p
3

p
4

p
5

p
6

g
6

p
1

p
6

g
1

(a)

0 200 400 600 800 1000

time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b)

0 200 400 600 800 1000

time (s)

0

10

20

30

40

50

60

ti
m

e
 (

s
)

(c)

0 200 400 600 800 1000

time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g
 a

n
d

 p

g
1

g
2

g
3

g
4

g
5

g
6

p
1

p
2

p
3

p
4

p
5

p
6

p
6

g
1

g
6

p
1

(d)

0 200 400 600 800 1000

time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(e)

0 200 400 600 800 1000

time (s)

0

10

20

30

40

50

60

ti
m

e
 (

s
)

(f)

Fig. 4. Time behavior of the proposed algorithm with five neighbor nodes for each node: (a) g and p with dr = 10 s, (b) E with dr = 10 s, (c) average delay with
dr = 10 s, (d) g and p with dr = 50 s, (e) E with dr = 50 s, and (f) average delay with dr = 50 s.

variation of g, p, average delay, and energy consumption. The
average delay is the time between when the source nodes send
packets and the sink node in the network receives the packets,
averaged over all source nodes. We set the delay requirement
for two different values, 10 s and 50 s, respectively. We set the
number of neighbor nodes of each node to two (Ni = 2,∀i).

We denote g and p of node i as gi and pi, respectively. In order
to show the performance of energy balancing, we set the initial
power consumption of each node differently; the initial energy
consumption of nodes 1, 2, and 3 are set to 0 mW, 10 mW, and
20 mW, respectively.

Figs. 3(a), 3(b), and 3(c) shows the results for dr =10 s. From



554 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 21, NO. 6, DECEMBER 2019

Fig. 3(a), we observe that during the first 450 s, g3 is lower
than g1 and g2. The lower g leads to a smaller p, i.e., a lower
probability of achieving an active state. Since node 3 starts with
lower initial battery power compared with node 1 and node 2,
node 3 is considered less fit to be active compared to its neigh-
bors, which leads to the smallest p among them, thereby go-
ing into sleep mode more often in order to save energy. Mean-
while, node 1 has relatively good local environmental quality
in terms of consumed energy, resulting in the highest g and p
among nodes, i.e., the highest probability of being active. Af-
ter 450 s, g and p of all nodes become identical and converge
to almost the same value. This means that the probabilities of
becoming active are almost identical for all nodes, resulting in
energy balancing among nodes. Fig. 3(b) shows the ratio of con-
sumed energy level to the neighbors’ average, Ei(i = 1, 2, 3).
The values ofE1, E2, E3 become almost the same after 450 s in
spite of the difference in initial power among nodes. Based on
(1), it means Ei =

∑
∀j∈Ni

Ej/Ni, for all i. In this way, when
an imbalance in the energy consumption level is detected, each
node adapts its probability of being active and balances the en-
ergy consumption among the neighboring nodes by controlling
both the gene expression and protein concentration. Fig. 3(c)
shows the average delay and our proposed scheme keeps the av-
erage delay around the desired delay requirement, 10 s, for the
entire simulation time. Figs. 3(d), 3(e), and 3(f) show the system
behavior with dr =50 s. In Fig. 3(d), g and p become close to
one and zero, respectively, during the first 100 s. This is due to
the rather loose delay requirement compared to dr =10 s. The
looser delay requirement causes a lower probability to be active
state and sensor nodes go into sleep mode more often in order to
save energy. Accordingly, as shown in Fig. 3(e), the gradient of
E of each node is rather smaller than the result of Fig. 3(b). Af-
ter 450 s, the energy consumption ratio of each node is stabilized
to the same value of one. Also, Fig. 3(f) shows that the average
delay lies around the desired delay requirement, dr =50 s, after
200 s.

Fig. 4 shows the variation of g, p, average delay, and energy
consumption when the number of neighbor nodes of each node
is five (Ni = 5,∀i). The initial energy consumption of node i is
set to (i−1)×10 mW (1 ≤ i ≤ 6). Similarly with the results of
Fig. 3, Fig. 4(a) shows that the node with relatively low initial
energy consumption ratio (i.e., the node has the rather good local
environmental quality in terms of consumed energy) achieves a
higher probability of being active state due to larger g and p.
Figs. 4(b) and 4(e) show that the energy consumption ratio of
each node converges to one in spite of the different initial power
among nodes. Also, g and p of each node are controlled so that
the average delay resides around each desired delay requirement
as shown in Figs. 4(c) and 4(f).

From Figs. 3 and 4, we can say that the proposed scheme
successfully achieves energy balancing among nodes and keeps
the average delay to the desired delay requirement by control-
ling the gene expression and protein concentration. Also, the
time behavior of the proposed scheme verifies that our proposed
scheme achieves both energy balancing and delay guarantee in
spite of the changes in the number of neighbor nodes and the
differences in initial power. These results are consistent with
the theoretical analysis in Subsection II.C.
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Fig. 5. Trajectories for different delay requirement cases: (a) Time-series plots
of protein concentration, (b) delay, and (c) average protein concentration,
active node ratio, and consumed energy level.

Fig. 5 shows the trajectories of protein concentration, delay,
and the average active nodes ratio, consumed energy level for
two different delay requirements, dr = 10 s and 50 s, respec-
tively. The active node ratio is the ratio of the number of ac-
tive nodes to the total number of sensor nodes. As shown in
Fig. 5(a), the protein concentration with dr = 10 s is higher
than that with dr = 50 s during the first 150 s. Also, the av-
erage delay successfully converges to each delay requirement
as shown in Fig. 5(b). According to the results of (10) and
Fig. 2(a), the stricter delay requirement brings the higher pro-
tein concentration and probability to be active state, which leads
to more frequent packet transmission in order to meet the de-
lay requirement. This causes a different result for each delay
requirement in terms of the active node ratio and the consumed
energy level. Fig. 5(c) validates the point mentioned above, that
when the delay requirement becomes looser, the active node ra-
tio slightly decreases, and energy consumption level becomes
lower, resulting in energy savings.

B.2 Average behavior

In this section, we evaluate the average performance under
the variable delay requirements. We vary the delay requirement
within the range of [3 s, 50 s]. For each delay requirement,
1000 simulations are used to obtain averages of gene expres-
sion (G), protein concentration (P ), active node ratio, delay
and consumed energy level (E), so each point in the graphs
represents an average of 1000 executions. To show the effec-
tiveness of the proposed scheme, we compare the proposed al-
gorithm to two existing schemes, QoS-guaranteeing duty cycle
control (Q-DCC) [4] and GRN-based optimal coverage control
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Fig. 6. Average performance varying delay requirements: (a) Gene expression
(G), protein concentration (P) and (b) active node ratio.

(G-OCC) [16]. Q-DCC proposes a feedback controller which
controls the duty cycle to guarantee an end-to-end communica-
tion delay while achieving the energy efficiency for WSNs. To
do this, Q-DCC decomposes the end-to-end delay requirement
problem into a set of single-hop delay requirement problems.
The duty cycle of each node is determined based on the single-
hop delay requirement and the actual packet delay, measured
using time stamps. G-OCC introduces the GRN as a computing
paradigm and demonstrates its effectiveness for sensor cover-
age. G-OCC assigns values of ON or OFF to each sensor node
to attain the maximum possible coverage while simultaneously
keeping the number of active sensors as low as possible to re-
duce power consumption. The sensor nodes turn ON when it
acquires high values of its corresponding gene expression lev-
els. A threshold is selected a priori, and any sensor with a higher
value in its corresponding gene expression level can be turned
ON.

Fig. 6 illustrates the average performance of the proposed
scheme in terms of gene expression (G), protein concentration
(P ), and active node ratio for different delay requirements. As
the delay requirement becomes looser, the value of G increases
while protein concentration P decreases, which increases the
number of nodes entering sleep mode instead of active mode,
as shown in Fig. 6(b). On contrary, as the delay requirement be-
come stricter, the active node ratio increases with the value of P ,
leading to more frequent packet transmissions in order to meet
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Fig. 7. Average performance of the proposed algorithm, Q-DCC, and G-OCC
varying delay requirements: (a) Delay and (b) energy consumption level.

the delay requirement.
Fig. 7 illustrates the average delay and consumed energy

levels of the proposed algorithm, Q-DCC, and G-OCC. From
Fig. 7(a), we observe that the proposed algorithm and Q-DCC
successfully control the average delay according to the desired
requirements. However, G-OCC keeps the average delay close
to zero irrespective of the varying delay requirements. That
leads to excessive energy consumption as shown in Fig. 7(b).
Q-DCC shows a lower energy consumption level compared with
G-OCC, but the energy consumption level is almost constant in
spite of different delay requirements. In contrast, our proposed
scheme achieves the smallest energy consumption ratio, while
meeting delay requirements. Also, as the delay requirement be-
comes looser, the energy consumption level decreases, result-
ing in energy savings. This is because as the delay requirement
becomes looser, the proposed algorithm makes a greater num-
ber of nodes enter sleep mode instead of active mode, resulting
in much lower energy consumption compared to G-OCC and
Q-DCC.

B.3 Convergence analysis

In this section, we investigate the effects of control parameters
on the convergence speed. We measure the convergence time of
our proposed scheme for different control parameters η, a, κ, c.
The convergence time is determined by the total number of iter-
ations until reaching an equilibrium point.



556 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 21, NO. 6, DECEMBER 2019

0.5 1 1.5

/a 

0

50

100

150

200

250

300

350

it
e
ra

ti
o

n

Convergence iteration with

/a= 0.5, 1.0, 1.5

(a)

0.5 1 1.5
/a

0.3

0.305

0.31

0.315

0.32

0.325

0.33

0.335

p

Protein concentration with

 /a=0.5, 1.0, 1.5

(b)

0.25 0.5 0.75

/c

0

100

200

300

400

500

it
e

ra
ti

o
n

Convergence iteration with

 /c=0.25, 0.5, 0.75

(c)

0.25 0.5 0.75

/c

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

p

protein concentration with

/c=0.25, 0.5, 0.75

(d)

Fig. 8. Convergence performance for different control parameters: (a) Con-
vergence iteration with η/a = 0.5, 1.0, 1.5, (b) protein concentration with
η/a = 0.5, 1.0, 1.5, (c) convergence iteration with κ/c = 0.25, 0.5, 0.75,
and (d) protein concentration with κ/c = 0.25, 0.5, 0.75.

Figs. 8(a) and 8(b) illustrate the convergence iteration and
protein concentration for η/a = 0.5, 1.0, and 1.5. As shown
in Figs. 8(a) and 8(b), the protein concentration increases with

η/a, which makes the convergence speed faster. Figs. 8(c) and
8(d) show the convergence iteration and protein concentration
for κ/c = 0.25, 0.50, and 0.75. Similarly, a larger value of κ/c
speeds up the system convergence and raises the protein concen-
tration. However, the large values of η/a or κ/cmay destabilize
the system by incurring oscillatory behavior. Moreover, it leads
to unnecessary energy waste caused by a higher probability of
being active. Therefore, we recommend configuring η/a and
κ/c as our theoretical limit of stability condition, not only to ac-
celerate the node coordination process but also to ensure that the
system behaviors do not oscillate excessively.

IV. CONCLUSION

In this paper, we have presented a decentralized node coordi-
nation scheme for wireless sensor networking systems based on
the GRN model in order to achieve energy saving while meeting
performance requirements. We represent the coordination prob-
lem of on-off cycles of wireless sensor nodes by modifying gene
regulation dynamics of multi-cellular mechanisms. Considering
the measured delay and energy consumption level, the proposed
scheme controls the expression level of gene and the concentra-
tion of protein in order to meet delay requirement while achiev-
ing energy balancing among sensor nodes. Compared to other
existing protocols, the major merits of the proposed scheme are:
(1) A theoretical gene regulation model for node coordination,
which automatically drives the system performance to the de-
sired requirement while balancing energy consumption levels
under network condition changes; (2) insights into the perfor-
mance of the proposed scheme are provided by deriving the
steady states of the systems; (3) a theoretical analysis of the
system’s stability is provided with the parameter conditions to
ensure the desired performance of a specific application.

Some applications may have more strict requirements on de-
lay but are less strict on delivery ratio, which can be solved
by applying cognitive networks with delay constraints to WSN
systems. These issues will be the subjects of our future work.
Also, the proposed algorithm can be extended to the wireless
cyber-physical systems. In the wireless cyber-physical systems,
the actuator nodes that perform diverse tasks have been intro-
duced, and the sensors and actuators can form a network. For the
mission-critical applications, the proposed algorithm can be ap-
plied for the actuators to act responsively and accurately. How-
ever, the proposed scheme is in its infancy, and through our ex-
periments, we identified a number of limitations. The first is that
for more complex environment, it can take a large amount of
time to converge to the desired global state. In addition, we
need to investigate performance subject to the loss of a com-
munication link or a noisy sensor variable. Finally, we need to
implement the proposed scheme and test in a real WSN system.
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