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Deep-Learning-Aided Fast Successive Cancellation
Decoding of Polar Codes
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Abstract—With the continuous evolution of 5G communication
technology to B5G and the next generation of communication
technology, Deep Learning technology will also lead the automa-
tion and intelligent transformation of communication systems.
Existing research has shown that the combination of deep
learning and communication technology is expected to break
some performance bottlenecks of traditional communication
algorithms and solutions. This paper explores the application
of deep learning (DL) in polar decoding algorithms, proposing a
DL-aided-FSC (DL-FSC) polar code decoder algorithm. For the
DL-FSC decoding algorithm, the conventional successive cancel-
lation (SC) decoder is partitioned into multiple sub-blocks, which
are replaced by R0 nodes, R1 nodes and sub-DL decoder. The
log-likelihood ratio (LLR) and frozen bit pattern are input to the
sub-DL decoder to predict decode codewords under any decoding
code rate. Through simulation verification, under the PBCH
channel of 5G communication, the DL-FSC decoder achieves
similar block error rate (BLER) performance to the SC decoder,
even improving by about 1%. In order to verify the performance
optimization effect of the proposed algorithm at the hardware
level, the DL-FSC deocder circuit design was completed. Through
FPGA synthesis, the proposed decoder achieves a throughput
of about 4571 Mbps, which is 1.71× improvement in decoding
throughput at the expense of increased logic resources.

Index Terms—5G, deep learning, fast successive-cancellation
decoding, list decoding, polar codes.

I. INTRODUCTION

POLAR code, proposed by Erdal Arikan [1], is a channel
coding algorithm that can be rigorously proven to reach

channel capacity. In recent years, due to its deterministic
construction method and being the only known channel coding
method that can be strictly proven to reach channel capacity,
it has received widespread attention. During the 3GPP RAN
#87 meeting, polar codes were adopted for the control channel
of the enhanced mobile broadband (eMBB) service category
in 5th generation (5G) wireless communication systems [2].
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The proposed polar coded NOMA (PC-NOMA) scheme can
significantly improve the capacity of access users with low-
complexity multi-user detection algorithms [3], and polar
codes can also meet the large-capacity access requirements
of 6G [4]. Successive cancellation (SC) and belief propaga-
tion (BP) are two traditional methods used in polar code de-
coding. When the code length in a binary memoryless channel
is long enough, the Shannon capacity can be achieved using
the SC decoding algorithm [5]. However, the serial nature
of the SC decoding algorithm imposes data dependencies,
resulting in a high decoding latency and low throughput [6].
Compared with their SC counterparts, polar BP decoders
are more attractive for low-latency applications. However,
due to their iterative nature, the required latency and energy
dissipation of BP decoders increase linearly with the number
of iterations [7].

In recent years, deep learning (DL) [8], also known as
deep neural networks, has received widespread attention for
its ability to solve complex tasks. Recently, researchers have
attempted to apply deep learning techniques to channel coding
problems [9]–[11]. This is because the deep learning network
can complete any mapping from one vector space to another
through learning, and it has the property of one-time decoding.

In polar codes with shorter code lengths, feed-forward
neural networks are used for polar code decoding for the first
time, where log-likelihood ratios (LLRs) serve as inputs and
estimated positions serve as the outputs of the neural net-
work [12]. Based on this, a joint learning system architecture
consisting of a residual learning denoiser (RLD) and a neural
network decoder (NND) is proposed, which uses the multi-
task learning (MTL) strategy to jointly optimize the denoising
loss function and decoding loss function of residual neural
network decoder (RNND), resulting in better denoising and
decoding performance [13].

However, neural network decoders for long polar codes
encounter significant training challenges due to the high-
dimensional space involved, with complexity exponentially
increasing with the number of information bits. To address
this issue, the integration of neural networks with traditional
decoding algorithms, particularly through the substitution of
certain decoding components, has been extensively explored.
Within the conventional BP decoding framework, specific
sub-blocks of the BP decoder have been replaced with BP
neural network decoding (BP-NND) sub-blocks [14], thereby
enhancing decoding performance. Similarly, a ResNet-like
belief propagation structure has been employed to improve the
effectiveness of traditional polar BP decoding. The proposed
BP decoder with a ResNet-like architecture has similar block
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error rate (BLER) performance to the standard BP decoder, but
with fewer iterations [15]. The neural successive cancellation
(NSC) decoder is another solution that connects multiple
neural network decoders through SC decoding [16]. The
proposed NSC sub-block N = 2 SC decoding sub-block can
effectively reduce the decoding time step, but the input-output
data dimension is too small to limit the role of neural networks.
A sub-NN decoder with tanh-based modified LLR is used to
replace the N = 4 SC sub-block to reduce the decoding delay
of polar codes on FSO turbulence channels [17]. However,
these decoding algorithms that utilize DL primarily rely on
polar codes with fixed code length and fixed code rate. By
exploring different NNN recognition strategies, [18] intro-
duces the last subcode NN-assisted decoding (LSNNAD) and
the key-bit-based subcode NN-assisted decoding (KSNNAD)
schemes, which can effectively handle Polar codes with long
code lengths, although there is no simulation test under 5G
channel in this work. Moreover, the BLER performance of
the proposed algorithms has not been compared with that of
the successive cancellation list (SCL) decoding algorithm.

In this paper, we propose a practical deep-learning-aided
fast successive cancellation (DL-FSC) decoding algorithm.
The DL-FSC decoding algorithm uses R0 nodes, R1 nodes
and general N = 8 sub-DL decoders to replace the N = 8
sub-blocks in the traditional SC decoder. The sub-DL decoder
can predict the probability of decoding codewords through a
deep learning network. Among them, the calculation of R0 and
R1 nodes relies on the traditional FSC decoding algorithm to
achieve fast decoding. More specifically, the input to the sub-
DL decoder consists of two-dimensional data, which includes
8 LLRs and the corresponding frozen bit pattern, allowing
the decoding of sub-blocks with varied frozen bit information
and code rates. Integrating deep learning techniques with
traditional decoding methods not only enhances the perfor-
mance of polar codes but also aligns with the evolving trend
of incorporating deep learning into future communication
systems.

Simulations under 5G channel conditions have demonstrated
that the DL-FSC decoder achieves a BLER performance
comparable to the traditional SC decoder. The results indi-
cate that a well-trained sub-DL decoder enables the DL-FSC
decoding algorithms to meet the performance standards of
5G. Additionally, the recursive nature of our scheme allows
for the reuse of the DL-FSC across different parts of the
decoding process. To assess the performance improvements at
the hardware level, a hardware circuit design for the DL-FSC
decoder was completed. Despite consuming more logical re-
sources, a literature review reveals that the DL-FSC decoder’s
throughput has significantly increased. Moreover, the DL-FSC
algorithms are adaptable to various channels within 5G and
prospective 6G technologies, though the integration of deep
learning introduces additional computational complexity.

The rest of this paper is organized as follows. Section II
briefly introduces polar codes, SC, FSC decoding algorithms
and deep learning decoding algorithms. The proposed DL-FSC
decoder and hardware implementation will be described in
detail in Section III. And the simulation process and results
of our DL-FSC decoder in the 5G channel are presented in
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Fig. 1. SC decoding on a binary tree for P(8,5).

Section IV. Finally, Section V draws the main conclusions of
this paper.

II. PRELIMINARIES

A. Polar Codes

Polar code (N,K) of length N = 2n with K information
bits is as x = uF⊗n, where x = {x0, x1, · · ·, xN−1} is
codeword. After determining the code length N , the generator
matrix of the polar code is uniquely determined and can be
generated by the Arikan core matrix F [19]. F⊗n denotes the
nth Kronecker power of F , which can be recursively obtained
from the Arikan core F [20].

Polar code is used as the channel coding scheme for the
control channel in the 5G eMBB scenario. The coding schemes
for the uplink and downlink control channels are different,
and the specific coding scheme is determined according to the
different information sequence lengths.

B. SC Decoding

SC decoding is one of the classic decoding algorithms for
polar codes. The SC decoding algorithm uses LLR as the
decision criterion, makes a hard decision for each bit, and
decodes in the order of bit numbers from small to large.
Fig. 1 shows a binary tree representation of a polar code
P(8,5) and its corresponding SC decoding. For a node of
length N , Li(0 ≤ i < N/2) represents the ith LLR value,
and BN = {b0, · · ·, bN−1} represents frozen bit pattern.

The LLR Li+1 of left-child nodes can be computed as:

Li+1 = sign(Li)sign(Li+N/2)min{|Li|, |Li+N/2|}. (1)

The LLR Li+1 of right-child nodes can be computed as:

Li+1 = (1− 2xi)Li + Li+N/2, (2)

whereas the estimated hard values x of the parent node are
updated from those of the left and right-child nodes.

x̂i =

{
xi, i < N

2 ,

xi ⊕ xi+N/2, otherwise,
(3)
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Fig. 2. (a) The full binary tree representation of P(16, 8), and (b) the pruned
binary tree representation of the same polar code.

where xi = ûi, at the leaf node, ûi can be estimated as

ûi =

{
0, bi == 0 or Li ≥ 0,

1, Li < 0.
(4)

The latency of SC decoding algorithm can be represented
in terms of the number of time steps as

TSC = 2N − 2. (5)

C. FSC Decoding

The FSCL algorithm in [21] provides efficient decoders
for Rate-0, Rep, SPC, and Rate-1 nodes in SCL without
traversing the decoding tree while guaranteeing the error-
correction performance preservation. Fig. 2 shows the division
of special nodes in P(16,8). The pruned decoding tree of
the same polar code is shown in Fig. 2(b) which consists
of R0 nodes, Rep nodes, SPC nodes, and Rate-1 nodes.
The FSC algorithm in [21] provides efficient decoders in
SC without traversing the decoding tree while guaranteeing
the error-correction performance preservation. The definitions
and decoding operations of each special node under FSCL
decoding are given as follows

1) Rate 0: A polar code node of length N where all code-
words u1, u2, · · ·u3 are frozen bits, with no information
bits, is referred to as an R0 Node.

2) Repetition: A polar code node of length N where only
the uN codeword is an information bit, and the rest
u1, u2, · · ·, uN−1 are frozen bits, is referred to as a Rep
Node.

3) Single parity check: A polar code node of length N
where only the u1 codeword is a frozen bit, and the rest
u2, u3, · · ·, uN are information bits, is referred to as a
Rep Node.

4) Rate 1: A polar code node of length N where all
codewords u1, u2, · · ·, u3 are information bits, with no
frozen bits, is referred to as an R1 Node.

D. Deep-learning Decoding

DL [22] is a new research direction in the field of ML.
Generally speaking, by integrating more processing layers
in a neural network, we are able to describe much more
complicated algorithms with improved performance via deep
learning. The fully connected neural network (FCNN) [23] is
a deep neural network model based on multi-layer non-linear
transformations. The input layer has N inputs and the output
layer has K outputs. For each hidden layer i, ni inputs and
mi outputs perform the mapper f(i): Rni → Rmi , and it
is composed of multiple neurons. In these neurons all of its
weighted inputs are added up, a bias is optionally added, and
the result is propagated through a nonlinear activation function.
e.g. a sigmoid function or a rectified linear unit (ReLU), which
are respectively defined as

sigmoid(z) =
1

1 + e−z
, relu(z) = max{0, z}. (6)

Therefore, the input-output mapping of the whole DL de-
coder can be represented as a chain of functions, which is
given by

w = f(v, θ) = out(f (L−1)(· · ·(f (0)(v))), (7)

where L gives the number of layers and is also called depth.
It was shown in [23] that such a DL decoder and nonlinear
activation functions can theoretically approximate any contin-
uous function on a bounded region arbitrarily closely—if the
number of neurons is large enough.

III. DL-FSC DECODING

A. DL-FSC Decoding Algorithm

In this paper, leveraging the design concepts of deep
learning, we propose a deep learning-aided fast successive
cancellation decoder. In the DL-FSC decoding scheme, the R0
node, the R1 node and the sub-DL decoder is used to replace
the sub-block in the traditional SC decoding. The R0 node
consists only of pure frozen bits, and decoding does not require
any computational work, and a node length Nv vector of 0
is output as the decoded results. For Rate-1 node decoding,
since there is no frozen bit, a hard decision (using (4)) can
be made directly through the LLR of the top layer of the
node to obtain XNv . Then multiply it by the corresponding
polar transformation matrix F⊗s to output the decoded data
UNv

of the corresponding node. The sub-DL decoder receives
8 internal LLRs and corresponding frozen bit pattern and
predicts 8 output bits by DL network. The difference between
DL-FSC decoder and SC decoding is that DL-FSC does not
need to traverse all decoding trees and has a similar error
correction performance.

The Fig. 4 shows a system overview of sub-DL decoder
architecture. The LLRs and frozen bit pattern are input to the
sub-DL decoder to predict decode codewords. Before inputting
the LLR into the sub-DL decoder, a sigmoid-like function
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Fig. 3. (a) The division of sub-DL decoder in P(32,17), and (b) the pruned
binary tree representation by the sub-DL decoder.
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Fig. 4. A system overview of sub-DL decoder architecture.

is used in the sigmoid-modified layer to normalize LLR, as
follows:

v = sigmoid(llr, s) =
1

1 + e−s∗llr , (8)

where s represents the scale parameter and v is the modified
LLR, respectively. The range of v is limited to (0,1) by the
sigmoid-modified layer. When LLR is close to zero, there
is a greater unreliability for the channel transmission signal.
Therefore, it is necessary to adjust the scale parameter s so
that the sigmoid-like function has a higher resolution at the
zero point, and the modified LLR v retains more information
metrics.

The modified LLR is input into the neural network de-
coder. The fully connected neural network is adopted as
the neural network decoder, which is composed of an in-
put layer, a sigmoid-modified layer, a fully connected layer
(weights: 256× 16, bias: 256× 1), and a classification layer.
Therefore, the DL-FSC decoder can be seen as a mapper
f{R(llr, frozen bit pattern) → R(û)}. Algorithm 1 shows
the decoding process of polar code using DL-FSC. The chan-
nel LLRs, the frozen bit pattern and the estimated codewords
are denoted as LN = {l0, · · ·, lN−1}, BN = {b0, · · ·, bN−1}
and ÛN = {û0, · · ·, ûN−1}. Unlike other FSC decoders that

Algorithm 1: DL-FSC decoding algorithm
Input: LN = {l0, · · ·, lN−1}, BN = {b0, · · ·, bN}
Output: ÛN = {û0, · · ·, ûN}

1 for i = 0 to N
8 − 1 do

2 /* Calculate 8 LLRs using Eq1, Eq2 and Eq3 */
3 L8 ← SC(LN , BN , ÛN );
4 /* R0 node - decoding */
5 if B8 == 8{0} then
6 Û8 = 8{0};
7 /* R1 node - decoding */
8 else if B8 == 8{1} then
9 /* The hard decision using Eq4 */

10 X̂8 = hard decision{L8};
11 Û8 = X̂8F

⊗log28;

12 /* sub-DL decoding */
13 else
14 /* Normalized LLRs using Eq8, the scale

parameters ’s’ have been trained */
15 V8 = sigmoid(L8, s);
16 /* Predict the probability of each codeword by

DL */
17 Û8[256]← {V8, B8};
18 /* Select the maximum probabiliy codeword */
19 Û8 = max(Û8[256]);
20 end
21 /* Combine the decoding results of each sub-block

*/
22 ÛN ← Û8;
23 end

need to be manually designed to decode special constituent
codes [24], the DL-FSC decoder in this paper is trained to
decode any node without considering any specific frozen bit
pattern.

B. Training of the DL-FSC

As described above, the DL-FSC decoder for a certain
channel polarization code is universal. Therefore, we only
need to train one DL-FSC decoder. In this paper, we use
the polarization code scheme of the PBCH channel under the
5G standard as shown to collect training data and verify the
scheme. The sub-DL decoder is trained using gradient descent
optimization method and backpropagation algorithm [25]. In
order for the DL-FSC decoder to understand the LLR charac-
teristics under the PBCH channel, the scale parameter s in the
sigmoid-modified layer {v = sigmoid(llr, s)} added by the
DL-FSC will also participate in the training. The parameter s
is typically set around 0.25, as determined through training.

The process of collecting training data for DL-FSC decoder
is summarized in Algorithm 2. The training data of the DL-
FSC decoder is collected by assuming that the SC decoder
has perfect knowledge of the transmitted bits. Under the
condition that all decodings are correct, compute the LLRs of
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Algorithm 2: Collect training data for DL-FSC
Input: LN = {l0, · · ·, lN−1},

BN = {b0, · · ·, bN−1},
UN = {u0, · · ·, uN−1}

Output: LS , BS , US

1 Initialization
2 for Different SNR do
3 for i = 0 to N

8
− 1 do

4 for j = 0 to 8 do
5 /* Calculate LLRs using (1), (2), and (3) */
6 L8i+j ← SC(LN , BN , UN );
7 /* Use the correct codewords for SC iteration */
8 û8i+j = u8i+j ;
9 end

10 if {b8i, · · ·, b8i+7} ̸= 8{0} then
11 /* Store the training data for DL-FSC */
12 Store B8 = {b8i, b8i+1, · · ·, b8i+7};
13 Store U8 = {u8i, u8i+1, · · ·, u8i+7};
14 /* Store the n-3 stage LLRs */
15 Store L8 = {l8i, l8i+1, · · ·, l8i+7};
16 end
17 end
18 end

the partitioned sub-blocks in the SC decoder. Finally, collect
the LLR LS , frozen bit pattern BS , and correct codeword US

for each sub-block with a non-zero code rate.
For instance, in the PBCH channel, the core block of the

polar code is (512, 56), which can be decomposed into 64
polar code sub-blocks, among which only 16 sub-blocks have
a non-zero code rate. The information bit numbers of these
16 sub-blocks are {0, 1, 3, 4, 6, 7, 8} respectively. Sub-blocks
without information bits (R0) do not need to be decoded, and
other information sub-blocks can all serve as the training set
for a single DL-FSC decoder. The deepNetworkDesigner in
Matlab was used to help us quickly establish and train neural
networks. Bayesian optimization was used for deep learning to
find the optimal network hyperparameters and training options.

C. The DL-FSC Decoder Architecture
Although deep learning decoders theoretically exhibit one-

shot decoding characteristics, the substantial matrix compu-
tations within deep learning networks necessitate a certain
clock cycle for decoding predictions during hardware imple-
mentation. In this section, for the proposed DL-FSC decoding
algorithm, we completed the hardware design of the polar
code decoder with N = 16 to verify the performance of the
proposed decoding algorithm in hardware.

The Fig. 5 shows the hardware structure of the DL-FSC
decoder. The input of the decoder is mainly a 16-bit frozen
bit pattern and the corresponding LLR value (using 8-bit
quantization) to complete the decoding of the 16-bit codeword.
The process of the decoder is mainly divided into two parts:
the left node and the right node to complete the decoding. The
decoding accelerator receives the LLR data and completes the
8 LLRleft calculations of the left node through the f operation
of (1). Then the LLRleft is input into the R0 sub-block,
the R1 sub-block and the sub-DL decoder for decoding, and
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the corresponding result is selected as the decoding codeword
Uleft [7:0] according to the frozen bit pattern. The calculation
of the right node is based on the g operation of (2), and the
LLRright calculation of the right node is completed, and then
the decoding is completed through the sub-block.

In the DL-FSC decoder, the core part is the sub-DL de-
coder, which mainly completes polar code decoding based
on the trained deep learning network. Through training, we
determined that its core network is a fully connected network
module, and int8 is used as data storage. Therefore, the module
design of the sub-DL decoder is mainly divided into two parts:

1) Fully connected calculation part: Complete the calcula-
tion of each channel (corresponding to the codeword label)
based on the weight and bias data obtained from training. The
calculation formula for each channel Yi is:

Yi =

8∑
j=1

Wi,j ×Bj +

8∑
j=1

Wi,8+j × Lj + biasi, (9)

where B represents the forzen bit pattern and L are the LLRs,
and Wi,j (i ∈ [0, 256]) represents the weight of the ith row
and jth column in the weight matrix.

2) Classification layer calculation part: Since sub-DL de-
coding only needs to output the label with the maximum
prediction probability as the decoding codeword, the design
in this part only needs to calculate the channel corresponding
to the maximum value, and the traditional softmax layer is not
required.

The Fig 6 shows the decoding circuit module of the DL-
FSC core sub-block, which is mainly divided into the fully
connected calculation part and the classification layer cal-
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TABLE I
5G POLAR CODE PARAMETERS.

Parameters Uplink channel Downlink cannel

Channel PUCCH / PUSCH PDCCH PBCH

Data length (A) 12 ≤ A ≤ 19 20 ≤ A ≤ 1706 12 ≤ A ≤ 140 A = 32
Max rate

Matching length (E) 8192 16384 8192 864

CRC length 6 11 24

PC bits 3 N/A N/A

Encode schemes PC-CA-Polar CA-Polar DCA-Polar

Minimum code rate 1/8

TABLE II
THE PARAMETERS OF THE POLAR CODE ENCODING SCHEME.

Channel Data
length (A)

CRC
length (C)

Message
length (K)

Encoded block
length (N)

Rate matching
length (E)

Code block
concatenation

PBCH 32 24 56 512 864

Unsegmented

PUCCH

64

11

75 1024 1728

128 139 1024 3456

256 267 1024 3456

512 523 1024 864

1024 523 1024 6912 2-Segm

culation part. The channel accumulation module is mainly
divided into two modules to complete the accumulation: In
the BPE module, since the frozen bit is a single-bit input,
the multiplier can be optimized to a MUX selector to select
the weight data or 0 to complete the accumulation. The LPE

module completes the accumulation of LLR and weight data
through a constant multiplier. The input of the classification
layer calculation part is the splicing signal of each channel
value and the current channel sequence number, which can
complete the size comparison and get the sequence number
of the current channel. At the same time, in order to speed
up the comparison speed, the three comparators used here
are cascaded into a four-selection comparator to complete the
comparison of multiple channels.

IV. SIMULATION RESULTS

A. Data Pre-Processing and Model Training

In order to obtain suitable training and validation datasets,
we first generate 1 million random codewords and encode
them using the corresponding polar code encoding scheme
according to different 5G channels. Different noises are super-
imposed on the encoded data, and then the correctly decoded
codewords are collected. The LLR values, frozen bit patterns,
and correct codewords of non-R0 and R1 sub-blocks are
collected in the SC decoder. These random codewords include

sub-block decoding results under different frozen bit patterns
and different Eb/N0. Then 95% of the random codewords
are used as training sets, and the remaining 5% are used as
validation sets.

As mentioned in Section II-A, the specific coding scheme
used in uplink or downlink channel depends on the information
length. The specific parameters of the polar code coding
schemes for the uplink and downlink channels are shown in
Table I.

Due to the different message length (A) and rate matching
length (E) in the 5G channel, the corresponding polar code
encoding construction method is also different. Therefore,
we selected some polarization code encoding schemes of 5G
channels for simulation testing. Table II shows the detailed
parameters of the polar code encoding scheme used in this
paper.

After completing the collection of training dataset, we use
the Bayesian optimization algorithm in MATLAB to select the
type of neural network and related hyperparameters. Bayesian
optimization is a hyperparameter search algorithm based on
Bayesian theory. It can find the optimal hyperparameter com-
bination by establishing a probability model representing the
objective function. This experiment selects the following hy-
perparameters for optimization. The specific hyperparameters
are shown in Table III. The squared error of the prediction
dataset and validation dataset of the corresponding model used
at the same time is used as the objective function of the
Bayesian optimization algorithm.
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TABLE III
THE HYPERPARAMETERS BY USING BAYESIAN OPTIMIZATION.

Hyperparameter Range Description

Mode [1, 3] This parameters defines three models: Fully connected network; LSTM; GRU.

Hidden units [1, 512] The number of hidden units affects the model’s expressive power.

Batch size [100, 1000] Its size affects the degree of optimization and the speed of the model.

Initial learn rate [0.01, 1] It affects the convergence speed of training and the performance of the model.

L2Regularization [1e-5, 1e-2] It prevents model overfitting and improves generalization ability.

Scale parameter s [0.01, 1] The self-determined parameter s in (7), determines the resolution of the LLR at zero.

TABLE IV
THE TRAINING RESULT OF DIFFERENT DEEP LEARNING NETWORKS.

Network Fullyconnected LSTM GRU

Hidden units N/A 248 275

Convergence speed 2 epoch 16 epoch 21 epoch

Batch size 508 785 698

Initial learn rate 0.12 0.16 0.31

L2Regularization 4.74e-5 2.95e-5 1.84e-5

Scale parameter s 0.21 0.16 0.24

Validation probability 99.6% 98.7% 99.1%

TABLE IV shows the training result of different deep
learning networks as the core network of the DL-FSC decoder.
Although LSTM, GRU and CNN [18] can effectively solve
problems such as long-term memory and gradients in back-
propagation, fully connected networks have a huge advantage
in terms of convergence speed, model size, and verification
probability in this application scenario. Most importantly, the
simpler network structure makes fully connected networks
more hardware-friendly and easy to hardwareize. Therefore,
a fully connected network is used as the core component of
the deep learning-assisted SC decoder, which is conducive
to achieving good decoding performance and faster response
speed, even under limited computing resources. The specific
network structure comprises an input layer, a fully connected
network with weight dimensions of 256× 16 and bias dimen-
sions of 128 × 1, a softmax activation layer, and an output
layer. Additionally, the data type for this network is INT8.
This compact and efficient neural network architecture allows
the deep learning-assisted SC decoder to balance decoding
performance and computational complexity, making it suitable
for practical implementation in resource-constrained 5G and
beyond communication systems.

B. 5G Channel Simulation Results

To evaluate the error correction performance of the proposed
DL-FSC decoder in a 5G communication context, we conduct
simulations using BLER as the performance metric. The
simulations are implemented in MATLAB, with the channel
model set as AWGN and the modulation scheme as QPSK. To
ensure a fair comparative analysis, the testing process for the

TABLE V
THE PERFORMANCE COMPARISON OF DL-FSC DECODER AND SC

DECODER UNDER 5G PBCH AND PUCCH CHANNELS.

Channel Polar
encode

Performance
improvement (dB)

PBCH P (512, 56) 0.046

PUCCH

P (1024, 75) 0.074

P (1024, 139) 0.023

P (1024, 267) 0.022

P (1024, 523) 0.008

P (1024, 523)2−segm 0.011

proposed DL-FSC decoder is consistent with that of the other
considered decoders, capturing a minimum of 50 error events.
The comparison results of BLER versus Eb/N0 performance
are shown in Fig. 7, when using QPSK for communication
over an AWGN channel.

As shown in Table V, the experimental results under 5G
communication channels show that compared with the tra-
ditional SC decoder, the decoding performance of DL-FSC
decoder is improved by 1% (0.046 dB) on average in PBCH
channel and 0.7% (0.028 dB) on average in PUCCH channel.
In the context of polar code decoding, the DL-FSC decoder
exhibits a higher degree of parallelism compared to the SC
decoder. However, the incorporation of the DL component also
introduces an associated increase in computational complexity.

C. Hardware Design and Comparison of DL-FSC Decoder

In terms of hardware, the proposed DL-FSC decoder
achieves a decoding time of 14 clock cycles for N = 16
polar codes, without considering input data preparation time.
Table VI presents the deep learning-based polar code decoder
accelerator proposed in this work, compared to other polar
code decoders. For ease of comparison, the results are based
on FPGA synthesis. The deep learning-assisted FSC decoder
in this study consumes more logic resources (look-up tables
and flip-flops) on the FPGA compared to decoder [26] and
decoder [27]. However, this design avoids using RAM and
prioritizes more logic resources to achieve higher processing
efficiency. Simultaneously, the proposed decoder significantly
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Fig. 7. The BLER performance comparison of the proposed DL-FSC decoder and SC decoder for the 5G polar code, when using QPSK for communication
over an AWGN channel.
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TABLE VI
COMPARING THE SYNTHESIS OUTCOMES FOR THE DECODER ON THE

XILINX FPGA WITH CODE LENGTHS N = 16.

Ours Y Ali [26] SP Badar [27]

LLR quantification 8 bit 5 bit 5 bit

LUTs 5798 1460 722

FFs 1723 261 N/A

RAM [bits] N/A 114 127

Frequency [Mhz] 400 360 300

Throughput [Mbps] 4571 2672 1245

improves throughput by sacrificing some hardware resources,
achieving a 1.71× throughput improvement compared to the
latest decoder [26]. In future communication systems and other
high-speed data transmission scenarios with strict require-
ments for real-time performance and data processing speed,
the proposed decoding accelerator can provide enhanced data
processing capabilities.

V. CONCLUSION

This paper proposes a DL-FSC polar code decoder.
The proposed DL-FSC decoder connects the sub-DL de-
coder through the SC decoder. The sub-DL decoder
can be regarded as a mapper of the general decoder
f{R(llr, frozen bit pattern) → R(û)}, and the frozen bit
pattern allows the DL-FSC decoder to support Polar codes
with any code rate under a certain code length. We prove
that the proposed DL-FSC decoder has slightly better BLER
performance than the SC decoder. At the same time, the
proposed deep learning accelerator improves the decoding rate
from the hardware level. Compared with the latest literature,
the proposed decoding accelerator improves the throughput
by 1.71×. The proposed polar code encoding and decoding
system based on deep learning is suitable for future intelligent
communication systems. Combined with intelligent decoding
based on deep learning, it can improve the reliability of com-
munication links and data transmission efficiency. Our future
work will design and implement the hardware architecture
of the proposed DL-FSC decoder, and optimize the fully
connected network of DL-FSC through quantization, pruning,
and other algorithms to reduce decoding delays.
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